Чрезвычайные ситуации и действия при их возникновении

Основные понятия и определения курса, его цели и задачи. Характеристика факторов среды обитания. Особенности производственного освещения и параметров воздушной среды, их показатели и требования. Классификация и общие черты чрезвычайных ситуаций.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид шпаргалка
Язык русский
Дата добавления 25.06.2009
Размер файла 35,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Основные понятия и определения

БЖД - это область знаний, в которой изучаются опасности, угрожающие человеку (природе), закономерности их проявления и способы защиты от них. В определении существенны три момента: опасность, человек (природа), защита. Любая деятельность потенциально опасна. Из этого положения следует вывод, что всегда существует некоторый риск, и что риск не может быть равен нулю. Опасность - явления, процессы, объекты, способные в определенных условиях наносить ущерб здоровью человека непосредственно или косвенно, т.е. вызывать нежелательные последствия. Опасность хранят все системы, имеющие E, а также характеристики, не соответствующие условиям ЖД человека.

Безопасность - это состояние деятельности, при которой с определенной вероятностью исключено причинение ущерба здоровью человека. Безопасность - это цель. Безопасность жизнедеятельности - средство достижения безопасности. По характеру неблагоприятного воздействия на организм человека воздействующие факторы называют вредными и опасными. К вредным относят факторы, которые становятся в определенных условиях причинами заболеваний или снижения работоспособности. Опасные те, которые приводят в определенных условиях к травматическим повреждениям или другим внезапным и резким нарушениям здоровья.

Цель БЖД - обеспечение комфортных условий деятельности человека на всех стадиях его жизненного цикла и нормативно допустимых уровней воздействия негативных факторов на человека и природную среду.

Задачи БЖД - теоретический анализ и разработка методов идентификации (распознавание и количественная оценка) опасных и вредных факторов, генерируемых элементами среды обитания (технические средства, технологические процессы, материалы, здания и сооружения, элементы техносферы, природные явления). В круг научных задач также входят: комплексная оценка многофакторного влияния негативных условий обитания на работоспособность и здоровье человека; оптимизация условий деятельности и отдыха; реализация новых методов защиты; моделирование ЧС и др. Круг практических задач прежде всего обусловлен выбором принципов защиты, разработкой и рациональным использованием средств защиты человека и природной среды (биосферы) от негативного воздействия техногенных источников и стихийных явлений, а также средств, обеспечивающих комфортное состояние среды жизнедеятельности.

БЖД состоит из четырех разделов:

теоретические основы БЖД;

БЖД в условиях производства (охрана труда);

природные аспекты БЖД (защита окружающей среды);

БЖД в условиях чрезвычайных ситуаций.

Опасные и вредные факторы среды обитания

Вредные факторы: запыленность и загазованность воздуха; шум; вибрации; электромагнитные поля; ионизирующие излучения; повышенные и пониженные атмосферные параметры ( tо, влажность, подвижность воздуха, давление); недостаточное и неправильное освещение; монотонность деятельности; тяжелый физический труд; токсичные вещества; загрязненные вода и продукты питания и др.

Опасные факторы: огонь, ударная волна, горячие и переохлажденные поверхности; электрический ток; транспортные средства и подвижные части машин; отравляющие вещества; острые и падающие предметы; лазерное излучение; острое ионизирующее облучение и др.

Негативные факторы в быту: воздух, загрязненный продуктами сгорания природного газа, выбросами ТЭЦ, промышленных предприятий, автотранспорта; вода с избыточным содержанием вредных примесей; недоброкачественная пища; шум; инфразвук; вибрации; электромагнитные поля от синтетических материалов, бытовых приборов, телевизоров; медикаменты при избыточном и неправильном их применении; алкоголь; табачный дым; бактерии; естественный фон и другие факторы. Опасные и вредные факторы, обусловленные деятельностью человека и продуктами его труда, называются антропогенными.

Порядок изучения опасностей надо вести в следующей последовательности:

- Выявить источники опасности.

- Определить части системы, которые могут вызвать эти опасности.

- Ввести ограничения на анализ, т.е. исключить опасности, которые не будут изучаться.

-Выявить последовательности опасных ситуаций, построить дерево событий и опасностей, провести анализ последствий.

Любая опасность реализуется, принося ущерб, благодаря какой-то причине или нескольким причинам. Без причин нет реальных опасностей. Следовательно, предотвращение опасностей или защита от них базируется на знании причин; опасность есть следствие некоторой причины (причин), которая, в свою очередь, является следствием другой причины и т.д. Т.о., причины и опасности образуют цепные структуры или системы. Графическое изображение таких зависимостей напоминает ветвящееся дерево. В строящихся деревьях имеются ветви причин и ветви опасностей; разделение этих ветвей нецелесообразно, а иногда и невозможно. Построение деревьев является эффективной процедурой выявления причин различных нежелательных событий (аварий, травм, пожаров и т.д.). Многоэтапный процесс ветвления дерева требует введения ограничений в целях определения его пределов; границы ветвления определяются логической целесообразностью получения новых ветвей.

Производственное освещение

Сохранение зрения человека, состояния его ЦНС и безопасность на производстве в значительной мере зависят от условий освещения. От освещения зависят также производительность труда и качество выпускаемой продукции. Для оценки условий освещения пользуются понятием освещенности Е, лк. Освещенность измеряют люксметрами. На производстве применяют естественное и искусственное освещение.

Естественное освещение разделяется на боковое (световые проемы в стенах), верхнее (прозрачные перекрытия или световые фонари), комбинированное, когда к верхнему освещению добавляется боковое.

Естественное освещение характеризуется коэффициентом естественной освещенности е %:

где Ев - освещенность внутри помещения, лк;

Ен - одновременная освещенность рассеянным светом снаружи, лк.

Нормированное значение е % определяется по СН и П 23-05-95 с учетом характера зрительной работы, системы освещения, района расположения здания на территории РФ и ориентации здания к солнцу. Чистку стекол световых проемов необходимо проводить не реже 2 - 4р/год в зависимости от характера запыленности производственного помещения.

Искусственное освещение, осуществляемое газоразрядными и электрическими лампами, по конструктивному исполнению может быть двух систем - общее освещение и комбинированное (общее и местное). Освещенность рабочей поверхности, создаваемая светильниками общего освещения в системе комбинированного, должна составлять не менее 10% нормируемой для комбинированного освещения. Общее освещение подразделяется на общее равномерное, общее локализованное. Применение одного местного освещения внутри зданий не допускается. По функциональному назначению искусственное освещение делится на следующие виды: рабочее, охранное, дежурное.

Аварийное освещение бывает двух видов: освещение безопасности, эвакуационное освещение.

Освещение безопасности должно быть предусмотрено во всех случаях, если действия людей в темноте могут явиться причиной взрыва, пожара, травматизма, привести к длительному расстройству технологического процесса. Светильники такого освещения должны создавать на рабочих поверхностях не менее 5% освещенности, нормируемой для рабочего освещения при системе общего освещения.

Аварийное освещение для эвакуации людей устраивается при наличии опасности возникновения травматизма. Светильники такого освещения должны обеспечивать по линии основных проходов в помещениях освещенность не менее 0,5лк.

В соответствии со СН и П 23-05-95 для освещения помещений следует предусматривать газоразрядные лампы (люминесцентные, натриевые и т.д.). В случае невозможности применения газоразрядных источников света допускается использование ламп накаливания.

Люминесцентные лампы по сравнению с лампами накаливания имеют преимущества: по спектральному составу света они близки к естественному освещению, обладают более высоким КПД, повышенной светоотдачей и большим сроком службы.

Искусственное освещение нормируется исходя из характеристики работ, при этом задаются как количественные (min освещенность, допустимая яркость), так и качественные характеристики (показатель ослепленности, коэффициент пульсации освещенности, спектр излучения).

Минимальная освещенность устанавливается согласно условиям зрительной работы, которые определяются наименьшим размером объекта различения, контрастом объекта с фоном (большой, средний, малый) и характеристикой фона (темный, средний, светлый).

Расчет искусственного общего равномерного освещения производится методом светового потока (коэффициента использования).

Световой поток лампы накаливания или группы люминесцентных ламп, объединенных в один светильник, определяется по формуле:

где Ен - нормированная минимальная освещенность, лк;

S - площадь освещаемого помещения, м2;

Z - коэффициент min освещенности (1,1 - 1,5);

К - коэффициент запаса (1,3 - 1,8);

N - число светильников в помещении;

пом - коэффициент использования светового потока, определяемый по таблицам в зависимости от коэффициентов отражения светового потока от потолка, стен;

св - КПД светильника.

Для расчета освещения наклонных поверхностей, местного и локализованного освещения применяется точечный метод, а для приближенных расчетов применяют метод удельной мощности, Вт/м2.

Для создания средней освещенности 100лк на каждый квадратный метр освещаемой площади при светлых потолках и стенах требуется удельная мощность 16 - 20 Вт/м2 при прямом освещении лампами накаливания и 6 - 10 Вт/м2 при прямом освещении люминесцентными лампами.

Чистку светильников проводят 4 - 12р/год в зависимости от запыленности помещения. Замену ламп обычно производят индивидуально и групповым методом (через определенный срок работы). На крупных предприятиях при установленной общей мощности на освещение (свыше 250 кВт) должно быть специально выделенное лицо, ведающее эксплуатацией освещения (инженер или техник). Освещенность проверяется не реже 1 р/год, после очередной чистки светильников и замены перегоревших ламп.

Параметры воздушной среды

Метеорологические условия на рабочих местах определяются интенсивностью теплового облучения, tо воздуха, относительной влажностью и скоростью движения воздуха, tо поверхности.

Эти параметры воздушной среды во многом влияют на самочувствие человека. Организм человека обладает свойствами терморегуляции. tо тела постоянна, т.к. излишнее тепло отдается окружающей среде с помощью конвекции, излучения или испарения выделяющего пота при перегревах.

Нарушение терморегуляции приводит к головокружениям, тошноте, потере сознания и тепловому удару.

При tо воздуха до +30°С отдача тепла с тела осуществляется за счет конвекции и излучения. При tо > 30°С большая часть тепла отдается путем испарения. Повышенная влажность (>75%) затрудняет терморегуляцию, т.к. уменьшает испарение.

Особо опасна высокая tо при повышенной влажности. Наступает утомление, расслабление, потеря внимания.

Движение воздуха улучшает терморегуляцию при работе, т.к. увеличивается отдача тепла конвекцией, но при низкой tо это уже неблагоприятный фактор.

Т.о., для теплового самочувствия человека важно определенное сочетание tо, относительной влажности и скорости движения воздуха на рабочем месте.

Оптимальные метеоусловия:

влажность воздуха 40-60%;

скорость воздуха 0,1-0,5 м/с зимой и в 2 раза выше летом;

давление воздуха 760мм ртутного столба;

оптимальное значение tо +20°С (зависит от сезона и тяжести работы).

Мероприятия по оздоровлению воздушной среды - механизация и автоматизация, герметизация, вентиляция, кондиционирование, отопление, индивидуальные средства защиты, организация рационального отдыха, в горячих цехах снабжение рабочих подсоленной питьевой или газированной водой.

Вентиляция

Вентиляция является важнейшим средством, обеспечивающим нормальные санитарно - технические условия в производственных помещениях. Вентиляция достигается удалением загрязненного или нагретого воздуха из помещения и подачей в него свежего воздуха. По способу перемещения воздуха вентиляция бывает естественная и механическая. Возможно сочетание естественной и механической вентиляции. По назначению вентиляция может быть приточной, вытяжной, приточно-вытяжной; по месту действия - общеобменной, местной. Приток воздуха в помещение и вытяжка по объему не должны отличаться более чем на ± 10%. Необходимое количество воздуха при общеобменной вентиляции определяют следующим образом.

1. При выделении паров или газов в помещении (мг/ч) необходимое количество воздуха Q(м3/ч) определяют исходя из разбавления до допустимых концентраций q(мг/м3).

Количество приточного или удаляемого воздуха равно:

где qпр, qвыт - концентрация вредных веществ в приточном и удаляемом воздухе.

Если наружный воздух не содержит вредных веществ, то Q = /qвыт.

По санитарным нормам qпр 0,3 x qпдк,

где qпдк - санитарная норма предельно допустимой концентрации вредных веществ в воздухе.

2. Для ориентировочных расчетов, когда неизвестны виды и количество выделяющихся вредных веществ, необходимое количество воздуха определяется по кратности воздухообмена. Кратность воздухообмена К (1/ч) показывает, сколько раз в час меняется воздух в помещении.

Количество воздуха Q = К V , где V - объем помещения, м3, К = 1 - 10.

Естественная вентиляция осуществляется за счет разности плотностей теплого воздуха, находящегося в помещении, и более холодного воздуха, находящегося снаружи. Регулируемый воздухообмен (аэрация) осуществляется с помощью фрамуг, через которые поступает наружный воздух, а внутренний, более теплый воздух, выходит через вытяжные фонари, устанавливаемые на крыше здания. Для усиления движения воздуха на крыше здания устанавливают камеры - патрубки(дефлекторы), располагаемые на верхней части вытяжной трубы или шахты(в которых под действием ветра возникает тяга воздуха). Достоинство аэрации - отсутствие механических вентиляторов, значительно дешевле механических систем вентиляции. Недостаток аэрации - снижается эффективность в летнее время, не происходит очистки воздуха, возможны сквозняки.

Для очистки воздуха применяют пылеуловители (циклоны, электрофильтры, фильтры из пористого фильтрующего материала, туманоуловители, адсорберы и т.д.).

Защита от шума, ультразвука, инфразвука

Шум - беспорядочное сочетание различных по уровню и частоте звуков. Шум не только действует на слуховой аппарат, но может вызвать расстройства сердечнососудистой и нервной систем, гипертоническую болезнь, головокружение, ослабление внимания, замедление психических реакций, повышенную склонность к различным заболеваниям и т.д. Ухо человека воспринимает звуковые колебания с частотой от 16 до 20000Гц. Звуки с частотой ниже 16Гц называют инфразвуками, а выше 20000Гц - ультразвуками. Инфразвуки и ультразвуки также воздействуют на человека, но он их не слышит.

Основными физическими параметрами шума являются: звуковое давление Р и уровень звукового давления Lр, частота f, интенсивность звука I и уровень интенсивности Li.

Уровень звукового давления в децибелах (дБ) определяют по формуле

где Р - звуковое давление в точке наблюдения, Па;

Ро = 2 x 10-5 Па - пороговая величина звукового давления, являющаяся порогом слышимости человека с нормальным слуховым аппаратом при частоте 1000Гц.

Уровень интенсивности звука (дБ) определяется по формуле

гдеI - фактическая интенсивность звука в данной точке, Вт/м2;

Iо - пороговое значение интенсивности;

Iо = 10-12 Вт/м2

Некоторые данные по шуму:

3-20дБ - практически безвредно для человека, это естественный шумовой фон;

70дБ - громкая речь;

80дБ - допустимая граница звуков на производстве по шкале «А» шумомера;

80-100дБ - шум мотоцикла, автобуса, грузовика;

95дБ - токарный станок при точении;

130дБ - вызывает у человека болевое ощущение;

190дБ - вырывает заклепки из металла.

Зрительная реакция при шуме 90дБ уменьшается на 25%.

Уровень интенсивности звука на дистанции L от источника шума можно определить по формуле

L = Lист - 20 lg l - 8,

где Lист - уровень интенсивности звука источника шума, дБ;

L - уровень интенсивности звука на расстоянии l от источника шума, дБ;

l - расстояние до источника шума, м.

Основными методами борьбы с шумом являются:

1. Уменьшение шума в источнике его возникновения.

2. Звукопоглощение (применение материалов из стекловаты, поролона и т.д.).

3.Звукоизоляция. Звукоизолирующие конструкции изготавливаются из плотного материала (металл, дерево, пластмасса).

4. Установка глушителей шума.

5. Рациональное размещение цехов и оборудования, имеющих интенсивные источники шума.

6. Зеленые насаждения (уменьшают шум на 10-15дБ).

7. Индивидуальные средства защиты (наушники, шлемы).

Защита от ультразвука

1. Использование в оборудовании более высоких рабочих частот, для которых допустимые уровни звукового давления выше.

2. Изготовление оборудования, излучающего ультразвук, в звукоизолирующем исполнении.

3. Устройство экранов (из листовой стали или дюралюминия, оргстекла).

4. Размещение ультразвуковых установок в специальных помещениях.

5. Загрузка и выгрузка деталей при выключенном источнике ультразвука.

6. Применение индивидуальных защитных средств.

Защита от инфразвука

Основными источниками инфразвука являются двигатели внутреннего сгорания, реактивные двигатели, вентиляторы, поршневые компрессоры.

Под действием инфразвука возникают головные боли, осязаемое движение барабанных перепонок, вибрации внутренних органов, появление чувства страха, нарушение функции вестибулярного аппарата и т.д.

Мероприятия по борьбе с инфразвуком: повышение быстроходности машин, что обеспечивает перевод максимума излучения в область слышимых частот; повышение жесткости конструкций; устранение низкочастотных вибраций; установка глушителей реактивного типа.

Вибрации

Вибрация - механические колебания упругих тел при низких частотах (1-100Гц), передаются на человека через конструкцию машин, фундамент, пол.

Систематическое воздействие вибраций вызывает вибрационную болезнь с потерей трудоспособности. Эта болезнь возникает постепенно, сопровождается головными болями, раздражительностью, плохим сном. Появляются боли в суставах, судороги пальцев, спазмы сосудов . Особенно опасны вибрации с частотой 6-9Гц, близкие к колебаниям внутренних органов.

Согласно санитарным нормам определяются предельно допустимые параметры вибраций на рабочем месте в зависимости от частоты. К этим параметрам относятся: скорость колебаний, амплитуда перемещения. Измерение вибраций производятся виброметрами.

Защита от вибраций

1. Уменьшение вибраций в источнике его возникновения (замена ударных механизмов безударными, применение шестерен со специальными видами зацеплений, повышение класса точности обработки, балансировка и т.д.).

2. Отстройка от режима резонанса путем рационального выбора массы или жесткости колеблющейся системы.

3. Виброизоляция (применение прокладок из резины, пружины и т.д.).

4. Вибропоглощающие покрытия из фетра, войлока, резины, пластмассы, мастики и т.д.

5. Динамическое гашение колебаний - присоединение к защищаемому объекту дополнительно колеблющейся массы, работающей в противофазе с основной возмущающей силой.

6. Организационные мероприятия.

7. Индивидуальные средства защиты (виброзащитные перчатки, обувь).

8. Медико-профилактические мероприятия.

Защита от электромагнитных полей

Источниками электромагнитных полей в природе являются магнитные бури, во время которых напряженность магнитного поля земли может возрастать в тысячи, а иногда в десятки тысяч раз.

Источниками электромагнитных полей промышленной частоты 50Гц являются электроустановки промышленных предприятий, шины высоковольтных электрических подстанций и токонесущие провода воздушных линий электропередачи.

Источниками электромагнитных полей радиочастотного диапазона являются антенны радиовещательных и телепередающих станций, специальных средств связи и радиолокационных станций.

Действие электромагнитных полей на организм человека проявляется в повышенной утомляемости, чувстве апатии или, наоборот, повышенного беспокойства, т.е. происходит воздействие на ЦНС. Люди, подвергающиеся воздействию электромагнитного поля (особенно электротехнический персонал), заболевают раковыми болезнями на 15% чаще, чем работники других профессий.

Защита от полей магнитных бурь

1. Предупреждать людей о днях магнитных бурь (неблагоприятные дни).

2. Ограничивать физическую нагрузку в неблагоприятные дни.

3. Принимать успокоительные лекарства, на работе и в быту быть спокойными, не портить настроение своими действиями.

4. Принимать лекарства по назначению врача.

Защита от электромагнитных полей промышленной частоты 50Гц.

Известно, что в промышленных установках с частотой тока 50Гц тело человека поглощает энергию электрического поля примерно в 50 раз больше, чем энергию магнитного поля. Кроме того , существующие установки не создают напряженности 150-200А/ч, при которой начинает сказываться вредное воздействие магнитного поля. Поэтому воздействием магнитного поля в практике обычно пренебрегают.

Воздействие электрического поля на человека принято оценивать величиной тока, протекающего через человека в землю (мкА): Iч = 12 Е,

где Е - напряженность электрического поля на высоте человека среднего роста, кВ/м.

Допустимое значение тока, длительно проходящего через человека при воздействии электрического поля, составляет примерно 50-60мкА, что соответствует напряженности электрического поля, примерно 5 кВ/м. Измерение напряженности электрических полей выполняют измерителями напряженности.

Исходя из допустимой величины тока, проходящего через человека, разработаны и нормы времени пребывания его в электрическом поле установок сверхвысокого напряжения промышленной частоты.

1. Пребывание в электрическом поле (ЭП) напряженностью до 5 кВ/м включительно допускается в течение рабочего дня.

2. При напряженности ЭП свыше 20 до 25 кВ/м время пребывания персонала в ЭП не должно превышать 10мин.

3. Допустимое время пребывания в ЭП напряженностью свыше 5 до 20 кВ/м вычисляют по формуле:

где t - допустимое время пребывания в ЭП, ч;

Е - напряженность ЭП, кВ/м.

4. Пребывание в ЭП напряженностью более 25 кВ/м без применения средств защиты не допускается.

Средствами защиты человека от воздействия ЭП являются:

1. Экранирующие устройства (экраны). Экраны обязательно заземляются.

2. Экранирующие костюмы, которые изготавливаются из специальной ткани с металлизированными нитями.

Основные меры защиты от воздействия высоких частот:

- уменьшение излучения непосредственно от его источника (поглотители мощности);

- экранирование источника излучения(металлические сплошные или сетчатые устройства, экраны с поглощающими покрытиями);

- экранировании рабочего места у источника или удаление источника от рабочего места;

- покрытие стен и потолка специальными материалами (металлические листы, сетки, меловая краска);

- использование индивидуальных средств защиты (халаты, фартуки, комбинезоны, защитные очки).

Классификация и общая характеристика чрезвычайных ситуаций

ЧС (авария) - внешне неожиданная, внезапно возникающая обстановка, характеризующаяся резким нарушением установившегося процесса или явления и оказывающая значительное отрицательное воздействие на ЖД людей, функционирование экономики, социальную сферу и природную среду.

Каждая ЧС имеет свою физическую сущность, свои, только ей присущие причины возникновения, движущие силы, характер и стадии развития, свои особенности воздействия на человека и среду его обитания. Катастрофа - авария, сопровождающаяся гибелью людей.

Классификация ЧС:

а)по причинам возникновения:

- стихийные бедствия (землетрясения, наводнения, селевые потоки, оползни, ураганы, снежные заносы, грозы, ливни, засухи и др.);

- техногенные катастрофы (аварии на энергетических, химических, биотехнологических объектах, транспортных коммуникациях при перевозке разрядных грузов, продуктопроводах и т.д.);

- антропогенные катастрофы (катастрофические изменения биосферы под воздействием научно-технического прогресса и хозяйственной деятельности);

- социально-политические конфликты (военные, социальные).

б) по масштабу распространения с учетом тяжести последствий:

- локальные; объектовые; местные; региональные; национальные и глобальные.

в) по скорости распространения опасности (темпу развития):

- внезапные; быстро распространяющиеся; умеренные; плавные "ползучие" катастрофы.

Основные последствия ЧС:

- разрушения; затопления; массовые пожары; химическое заражения; радиоактивные загрязнения (заражение); бактериальное (биологическое) заражение.

Масштаб последствий (ущерб) ЧС (количество заболеваний, травм, смертей, экономические потери и т. д.) является следствием взаимодействия многих факторов.

Основными причинами аварий и катастроф на объектах являются:

- ошибки, допущенные при проектировании, строительстве и изготовлении оборудования;

- нарушение технологии производства, правил эксплуатации оборудования, требований безопасности;

- низкая трудовая дисциплина;

- стихийные бедствия, военные конфликты.

Наиболее характерными последствиями аварий являются взрывы, пожары, обрушение зданий, заражение местности сильнодействующими ядовитыми и радиоактивными веществами.

Характерными условиями возникновения ЧС являются:

а) существование источника опасных и вредных факторов (предприятия и производства, продукция и технологические процессы которых предусматривают использование высоких давлений, взрывчатых, легковоспламеняющихся, а также химически агрессивных, токсичных, биологически активных и радиационно опасных веществ и материалов; гидротехнические сооружения; транспортные средства; места захоронения отходов токсичных и радиоактивных веществ; здания и сооружения, построенные с нарушением СНиП; военная деятельность и т.п.);

б) действие факторов риска (высвобождение энергии различных видов, а также токсичных, биологически активных или радиоактивных веществ в количествах или дозах, представляющих угрозу жизни и здоровью населения и загрязняющих окружающую среду);

в) экспозиция населения, а также среды его обитания (зданий, орудий труда, воды, продуктов питания и т.д.), способствующих повышению факторов риска.

В развитии ЧС любого типа можно выделить четыре характерные стадии:

I - стадия накопления проектно-производственных дефектов сооружений (зданий, оборудования) или отклонений от норм (правил) ведения того или иного процесса. Иными словами, это стадия зарождения ЧС, которая может длиться сутки, месяцы, а иногда годы и десятилетия;

II - инициирование чрезвычайного события;

III - процесс чрезвычайного события, во время которого происходит высвобождение факторов риска - энергии или вещества, оказывающих неблагоприятное воздействие на население и окружающую среду;

IV - стадия затухания, которая хронологически охватывает период от перекрытия (ограничения) источника опасности - локализации ЧС, до полной ликвидации ее прямых и косвенных последствий, включая всю цепочку вторичных, третичных и т.д. последствий. Продолжительность данной стадии может составлять годы, десятилетия.

Основными принципами защиты населения в ЧС являются:

а) заблаговременная подготовка и осуществление защитных мероприятий на всей территории страны. Этот принцип предполагает, прежде всего, накопление средств защиты человека от опасных и вредных факторов и поддержания их в готовности для использования, а также подготовку и проведение мероприятий по эвакуации населения из опасных зон (зон риска);

б) дифференцированный подход к определению характера, объема и сроков проведения этих мероприятий. Дифференцированный подход выражается в том, что характер и объём защитных мероприятий устанавливается в зависимости от вида источников опасных и вредных факторов, а также от местных условий;

в) комплексность проведения защитных мероприятий для создания безопасных и здоровых условий во всех сферах деятельности человека в любых условиях обстановки. Данный принцип обуславливается большим разнообразием опасных и вредных факторов среды обитания и заключается в эффективном применении способов средств защиты от последствий стихийных бедствий, производственных аварий и катастроф, а также современных средств поражения, согласованном осуществлении их со всеми мероприятиями по обеспечению БЖД.

В современных условиях БЖД при ЧС достигается путем проведения комплекса мероприятий, включающих три основных способа защиты:

а) эвакуация населения из мест, где для них реально существует риск неблагоприятного воздействия опасных и вредных факторов;

б) использование населением средств индивидуальной защиты, а также средств медицинской профилактики;

в) применение коллективных средств защиты.

Наряду с этим для обеспечения БЖД населения в ЧС осуществляются:

- обучение населения действиям в ЧС; - своевременное оповещение об угрозе и возникновении ЧС;

- защита воды, продуктов питания от заражения радиоактивными, токсичными и бактериальными веществами; - радиационная, химическая и бактериологическая разведка, лабораторный контроль;

- профилактические противопожарные, противоэпидемические и санитарно- гигиенические мероприятия; - требуемые режимы работы и поведения населения в зонах риска; - спасательные и другие неотложные работы в очагах поражения; - санитарная обработка людей, дегазация, дезактивация и дезинфекция материальных средств, одежды и обуви, зданий и сооружений.

Основные сценарии управления в ЧС:

- создается правительственная комиссия;

- мобилизуются части и невоенные формирования гражданской обороны, армия, противопожарные подразделения, милиция, добровольцы, иногда без соответствующей подготовки и экипировки;

- путем героических усилий ликвидаторы добиваются определенной локализации аварии или катастрофы;

- предпринимаются первоочередные меры по спасению населения и его жизнеобеспечению, в некоторой степени стабилизируется ситуация. Формируется программа неотложной помощи.

Характеристика ЧС техногенного характера

Отличительными особенностями транспортных аварий (катастроф) могут являться:

- удаление места катастрофы от крупных населенных пунктов, что усложняет сбор достоверной информации в первый период и объем оказания первой медицинской помощи пострадавшим;

- ликвидация пожаров (взрывов) на территории ж/д станций и узлов, связанная с необходимостью вывода ж/д состава с территории станции на перегоны, тупики и подъездные пути;

- необходимость использования тепловозов для рассредоточения составов на электрифицированных участках;

- затрудненность обнаружения возгорания в пути следования, отсутствие мощных средств пожаротушения;

- труднодоступность подъездов к месту катастрофы и затрудненность применения инженерной техники;

- наличие, в некоторых случаях, сложной медико-биологической обстановки, характеризующейся массовым возникновением санитарных и безвозвратных потерь;

- необходимость отправки большого количества пострадавших (эвакуация) в другие города в связи со спецификой лечения;

- трудность в определении числа пассажиров, выехавших из различных мест и оказавшихся в зоне аварии;

- организация отправки погибших к местам их захоронения в другие города;

- организация поиска останков погибших и вещественных доказательств путем прочесывания местности и т.д.

Внезапное обрушение сооружений и зданий

Этот тип аварий, как правило, инициируется каким- то побочным фактором. Например, большое скопление людей; активная производственная деятельность в разгар рабочего дня; проходящий подвижной состав и т.п. В результате, эти ЧС трудно предсказуемы и сопровождаются большими человеческими жертвами.

Аварии на электроэнергетических сетях

Подобные аварии приводят к ЧС, обычно, из-за вторичных последствий и при условии наложения на них каких-либо чрезвычайных условий. К особенно тяжелым последствиям приводят аварии на электроэнергетических сетях в зимнее время года, а также удаленных и труднодоступных районах.

Особенно характерны такие ЧС для сельских районов или в особо холодные зимы из-за перегрузок энергосетей в связи с резким увеличением расхода энергии на обогрев.

Аварии на коммунальных системах жизнеобеспечения

Подобные аварии происходят обычно в городах, где большое скопление людей, промышленных предприятий, установившийся ритм жизни. Поэтому любая подобная авария, даже устранимая и не всегда опасная, сама по себе может вызвать негативные последствия среди населения.

Аварии на очистных сооружениях

Опасность данного типа аварий обусловлена не только резким отрицательным воздействием на обслуживающий персонал и близлежащие населенные пункты, но и большими залповыми выбросами отравляющих, токсичных и просто вредных в больших количествах веществ в окружающую среду.

Защита от ионизирующего излучения

Ионизирующие излучения возникают при работе приборов, в основе действия, которых лежат радиоактивные изотопы (при работе электровакуумных приборов, дисплеев)…

Под влиянием излучения в живой ткани образуются новые химические соединения, не свойственные здоровой ткани. В результате нарушения биохимических процессов в организме может происходить торможение функций кроветворных органов, нарушение нормальной свертываемости крови, увеличение хрупкости кровеносных сосудов, истощение организма, снижение сопротивляемости организма инфекционным заболеваниям, раковые опухоли и т.д.

Мерой безопасности облучения является эквивалентная доза. Ее единица измерения - биологический эквивалент рада (бэр), равный количеству энергии любого вида излучения, поглощаемого тканью, биологический эффект которого эквивалентен 1 рад рентгеновского излучения.

Эквивалентная доза Д (бэр), накопленная за Т лет с начала профессиональной работы, не должна превышать значения Д = ПДД x Т.

В любом случае доза, накопленная к 30 годам, не должна превышать 12 ПДД.

Предельно допустимая доза облучения (ПДД) - наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений. ПДД для всего тела профессиональных работников (категория А)-2 бэр/г. Для категории Б установлен предел дозы (ПДД) 0,1 Бэр/г. Для практических целей можно принимать 1 бэр = 1 Р, где Р - рентген.

Для измерения дозы рентгеновских излучений применяют дозиметры.

Эффективными мерами от ионизирующих излучений являются:

организационные методы - выбор изотопов с меньшим периодом полураспада, правильное хранение и контроль за расходованием радиоактивных веществ, строгое соблюдение инструкций и др.;

экраны, перегородки, корпуса из материалов с высоким атомным номером и высокой плотностью (свинец, вольфрам, сталь, бетон…)

стены, потолки, полы - гладкие; углы - круглые; влажная уборка; кратность воздухообмена не менее 5;

уборочный инвентарь из помещения не выносят, а хранят в специальных ящиках или шкафах;

могильник (место захоронения радиоактивных веществ) не ближе 20км от города, с глинистыми почвами:

допустимые расстояния и время работы с радиоактивными веществами, которые можно определить из формулы:

где Д - допустимая доза облучения в смену, Бэр;

t - время работы , ч;

l - расстояние до человека, см;

с - гамма-эквивалент радиоактивного вещества (указывается в справочнике или паспорте на радиоактивное вещество);

индивидуальные средства защиты (специальная обувь и одежда, защитные перчатки и очки, респираторы, специальные костюмы с принудительной вентиляцией и т.д.).

Электробезопасность

Согласно ПТЭ и ПТБ все электроустановки принято разделять на 2 группы:

установки напряжением до 1000В;

установки напряжением выше 1000В.

Число несчастных случаев в электроустановках напряжением до 1000В в 3 раза больше, чем в электроустановках напряжением выше 1000 В.

Это объясняется тем, что установки напряжением до 1000В применяются более широко, а также тем, что контакт с электрооборудованием здесь имеет большее число людей, как правило, не имеющих электрическую специальность. Электрооборудование выше 1000В распространено меньше, и к его обслуживанию допускаются только высококвалифицированные электрики.

Опасность поражения электрическим током отличается от прочих опасностей тем, что человек не в состоянии без специальных приборов обнаружить ее дистанционно, как например движущиеся части машин, раскаленный металл и т. п. Наличие напряжения обнаруживается часто слишком поздно, когда человек уже оказался под напряжением.

Причины электротравматизма

Наиболее распространенными причинами являются:

появление напряжения там, где его в нормальных условиях быть не должно на корпусах оборудования, на технологическом оборудовании, на металлических конструкциях сооружений и т.д.). Чаще всего происходит это вследствие повреждения изоляции;

возможность прикосновения к неизолированным токоведущим частям при отсутствии соответствующих ограждений;

воздействие электрической дуги, возникающей между токоведущей частью и человеком в сетях напряжением выше 1000В, если человек окажется в непосредственной близости от токоведущих частей;

прочие причины. К ним относятся: несогласованные и ошибочные действия персонала; подача напряжения на установку, где работают люди; оставление установки под напряжением без надзора; допуск к работам на отключенном электрооборудовании без проверки отсутствия напряжения и т.д.

Действие электрического тока на организм человека

Электрический ток, проходя через живые ткани, оказывает термическое, электролитическое и биологическое воздействия. Это приводит к различным нарушениям в организме, вызывая как местные повреждения тканей и органов, так и общее повреждение организма.

Виды электропоражений:

Электрический удар - это поражение внутренних органов человека.

Небольшие токи вызывают лишь неприятные ощущения. При токах, больших 10-15мА, человек неспособен самостоятельно освободиться от токоведущих частей и действие тока становится длительным (неотпускающий ток). При длительном воздействии токов величиной несколько десятков миллиампер и времени действия 15-20сек. может наступить паралич дыхания и смерть. Токи величиной 50-80мА приводят к фибрилляции сердца, которая заключается в беспорядочном сокращении и расслаблении мышечных волокон сердца, в результате чего прекращается кровообращение и сердце останавливается.

Как при параличе дыхания, так и при параличе сердца функции органов самостоятельно не восстанавливаются, в этом случае необходимо оказание первой помощи (искусственное дыхание и массаж сердца). Кратковременное действие больших токов не вызывает ни паралича дыхания, ни фибрилляции сердца. Сердечная мышца при этом резко сокращается и остается в таком состоянии до отключения тока, после чего продолжает работать.

Действие тока величиной 100мА в течение 2-3сек. приводит к смерти (смертельный ток).

Ожоги происходят вследствие теплового воздействия тока, проходящего через тело человека, или от прикосновения к сильно нагретым частям электрооборудования, а также от действия электрической дуги. Наиболее сильные ожоги происходят от действия электрической дуги в сетях 35-220кВ и в сетях 6-10кВ с большой емкостью сети. В этих сетях ожоги являются основными и наиболее тяжелыми видами поражения. В сетях напряжением до 1000В также возможны ожоги электрической дугой (при отключении цепи открытыми рубильниками при наличии большой индуктивной нагрузки).

Электрические знаки -- это поражения кожи в местах соприкосновения с электродами круглой или эллиптической формы, серого или бело-желтого цвета с резко очерченными гранями (Д = 5-10 мм). Они вызываются механическим и химическим действиями тока. Иногда появляются не сразу после прохождения электрического тока. Знаки безболезненны, вокруг них не наблюдается воспалительных процессов. В месте поражения появляется припухлость. Небольшие знаки заживают благополучно, при больших размерах знаков часто происходит омертвение тела (чаще рук).

Электрометаллизация кожи - это пропитывание кожи мельчайшими частицами металла вследствие его разбрызгивания и испарения под действием тока, например при горении дуги. Поврежденный участок кожи приобретает жесткую шероховатую поверхность, а пострадавший испытывает ощущение присутствия инородного тела в месте поражения. Исход поражения зависит от площади пораженного тела, как и при ожоге. В большинстве случаев металлизированная кожа сходит и следов не остается.

Кроме рассмотренных возможны следующие травмы: поражение глаз от действия дуги; ушибы и переломы при падении от действия тока и т. д.

Факторы, влияющие на исход поражения электрическим током

Воздействие тока на организм человека по характеру и последствиям поражения зависит от следующих факторов:

величины тока;

длительности воздействия тока;

частоты и рода тока;

приложенного напряжения;

пути прохождения тока через тело человека;

состояния здоровья человека и фактора внимания.

Величина тока, протекающего через тело человека, зависит от напряжения прикосновения UПР и сопротивления тела человека RЧ.

IЧ = UПР / RЧ.

Сопротивление тела человека - величина нелинейная, зависящая от многих факторов: сопротивления кожи (сухая, влажная, чистая, поврежденная и т.д.); от величины тока и приложенного напряжения; от длительности протекания тока.

С ростом тока, проходящего через человека, его сопротивление уменьшается, т. к. при этом увеличивается нагрев кожи и растет потоотделение. По этой же причине снижается RЧ с увеличением длительности протекания тока. Чем выше приложенное напряжение, тем больше ток человека lЧ, тем быстрее снижается сопротивление кожи человека.

Исход поражения при воздействии электрического тока зависит от психического и физического состояния человека.


Подобные документы

  • Понятие и источники техногенных чрезвычайных ситуаций. Причины техногенных чрезвычайных ситуаций, негативные факторы при их возникновении. Классификация чрезвычайных ситуаций по масштабу распространения, по темпу развития и по природе происхождения.

    реферат [32,1 K], добавлен 23.02.2009

  • Понятие чрезвычайной ситуации, классификация и общая характеристика. Наиболее характерные причины возникновения ЧС. Региональные особенности чрезвычайных ситуаций в России. Техногенные и природные чрезвычайные ситуации, факторы, их провоцирующие.

    контрольная работа [28,8 K], добавлен 01.09.2011

  • Классификация чрезвычайных ситуаций естественного (природного) происхождения. Чрезвычайные ситуации: землетрясения, извержение вулканов, сель, оползни, ураган, буря, смерч, сильный снегопад, заносы, обледенения, лавины, наводнение, подтопление и др.

    контрольная работа [36,0 K], добавлен 04.12.2008

  • Понятие чрезвычайных ситуаций, их классификация. Основные мероприятия по предупреждению и ликвидации чрезвычайных ситуаций. Организация мониторинга, наблюдения и лабораторного контроля за состоянием окружающей среды и потенциально опасных объектов.

    реферат [23,9 K], добавлен 23.11.2014

  • Условия возникновения чрезвычайных ситуаций. Классификация и общие характеристики чрезвычайных ситуаций по принципам возникновения, скорости распространения, масштабу распространения с учётом последствий. Последствия экологического и природного характера.

    презентация [500,9 K], добавлен 13.01.2015

  • Характеристика воздушной среды производственного помещения, источники его загрязнения и нормативные требования. Мероприятия, направленные на оздоровление воздушной среды производственных помещений, роль и значение в них кондиционирования и вентиляции.

    реферат [24,7 K], добавлен 13.11.2009

  • Условия формирования и классификация техногенных чрезвычайных ситуаций. Характеристика чрезвычайных ситуаций техногенного происхождения: аварии на химических, радиационных, пожаро- и взрывоопасных объектах, на транспорте, гидротехнических сооружениях.

    реферат [1,0 M], добавлен 09.04.2014

  • Чрезвычайные ситуации, их поражающие факторы. Особенности неблагоприятного влияния поражающего фактора на человека, окружающую среду. Классификация чрезвычайных ситуаций, стадии развития, причины возникновения. Прогнозирование, зоны поражения при авариях.

    контрольная работа [34,1 K], добавлен 13.02.2010

  • Определение чрезвычайных ситуаций. Радиационно-опасные объекты. Опасные химические вещества. Аварии на гидротехнических сооружениях. Аварии на транспорте. Негативные воздействия факторов природной среды. Обучение населения.

    реферат [19,9 K], добавлен 06.11.2006

  • Понятие и признаки чрезвычайной ситуации, этапы ее развития. Классификация и разновидности чрезвычайных ситуаций, степень их опасности для жизни и здоровья людей. Первые действия и правила при наступлении природных и антропогенных чрезвычайных ситуаций.

    реферат [25,2 K], добавлен 10.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.