Техносфера и безопасность жизнедеятельности

Понятия "биосфера", "техносфера". Техногенные аварии и катастрофы, последствия разрушения биосферы, создание новой среды обитания — техносферы. Строение органов и систем человеческого организма. Опасные факторы, возникающие при техногенных катастрофах

Рубрика Безопасность жизнедеятельности и охрана труда
Вид шпаргалка
Язык русский
Дата добавления 19.05.2009
Размер файла 360,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

По способу передачи на человека вибрация подразделяется на:

1. Общая - передается через опорные поверхности на тело человека в положении сидя или стоя.

2. Локальная - передается через руки.

Длительное воздействие на человека вибрации ведет к вибрационной болезни. Это заболевание является профессиональным. Вибрационная патология занимает 2-е место после пылевых, среди профессиональных заболеваний. Гигиеническое нормирование вибраций регламентируют документы ГОСТ 12.1.012 - 90 «ССБТ. Вибрационная безопасность», СН - 2.2. 4/2.1.8. 556 - 96 «Производственные вибрации»

В зависимости от степени воздействия на организм человека выделяют 4 стадии развития вибрационной болезни:

1. На первой стадии симптомы незначительные: боль в руках, спазмы капилляров, боли в мышцах плечевого пояса.

2. На второй стадии усиливаются боли в руках, происходит расстройство чувствительности, понижается температура, синеет кожа кистей рук.

При условии исключения влияния вибрации на человека на первой и второй стадии лечение эффективно и изменения обратимы.

Третья четвертая стадии характеризуются интенсивными болями в руках, резким снижением температуры кистей рук. Происходят изменения в нервной и эндокринной системах, а также сосудистые изменения. На этих стадиях нарушения приобретают генерализованный характер.

Больные страдают головокружением, головными и загрудными болями. Изменения имеют стойкий характер, необратимы.

Виброзащита человека представляет собой сложную проблему биомеханики. При разработке методов виброзащиты необходимо учитывать эмоциональное состояние человека, напряженность работы и степень его утомления.

Основные меры защиты:

Виброизоляция источника

Виброизоляция - защита сооружений и машин от распространения механических колебаний (вибраций), возникающих вследствие работы механизмов, движения транспорта и т. д. Для осуществления виброизоляции применяются амортизаторы из упругих материалов. Например, автомобильные и вагонные рессоры.

Виброактивные агрегаты устанавливаются на виброизоляторах - пружинах, упругих прокладках, пневматических или гидравлических устройствах, защищающих фундамент от воздействия вибрации.

Санитарные нормы регламентируют предельно допустимые уровни вибрации и лечебно-профилактические мероприятия.

Однако, следует отметить, что вибрация в определенных количествах оказывает положительное влияние на организм человека. Вибрация способна увеличивать активность жизненных процессов в организме.

28. Воздействие на организм чел-ка ЭМП и излучений

Среди различных физических факторов окружающей среды, которые могут оказывать неблагоприятное воздействие на человека и биологические объекты, большую сложность представляют электромагнитные поля неионизирующей природы, особенно относящиеся к радиочастотному излучению. Электромагнитные поля - это особая форма существования материи, характеризующаяся совокупностью электрических и магнитных свойств. Основными параметрами, характеризующими электромагнитное поле, являются: частота, длина волны и скорость распространения. Электромагнитные поля окружают нас повсюду, но мы не можем их почувствовать и вообще заметить, - поэтому мы не видим излучений милицейского радара, не видим лучей, поступающих от телевизионной башни или линии электропередачи.

Природные источники электромагнитных полей

Природные источники электромагнитных полей делят на две группы. Первая - поле Земли - постоянное электрическое и постоянное магнитное поле. Вторая группа - радиоволны, генерируемые космическими источниками (Солнце, звезды и т.д.), атмосферные процессы - разряды молний и т.д. Естественное электрическое поле Земли создается избыточным отрицательным зарядом на поверхности; его напряженность обычно от 100 до 500 В/м. Грозовые облака могут увеличивать напряженность поля до десятков, а то и сотен кВ/м. Вторая группа природных электромагнитных полей характеризуется широким диапазоном частот.

Антропогенные источники электромагнитных полей

Антропогенные источники также делятся на 2 группы:

Источники низкочастотных излучений (0 - 3 кГц).

Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека. Транспорт на электроприводе является мощным источником магнитного поля в диапазоне от 0 до 1000 Гц. Железнодорожный транспорт использует переменный ток. Городской транспорт - постоянный. Максимальные значения индукции магнитного поля в пригородном электротранспорте достигают 75 мкТл, средние значения - около 20 мкТл. Средние значения на транспорте с приводом от постоянного тока зафиксированы на уровне 29 мкТл. У трамваев, где обратный провод - рельсы, магнитные поля компенсируют друг друга на гораздо большем расстоянии, чем у проводов троллейбуса, а внутри троллейбуса колебания магнитного поля невелики даже при разгоне. Но самые большие колебания магнитного поля - в метро. При отправлении состава величина магнитного поля на платформе составляет 50-100 мкТл и больше, превышая геомагнитное поле. Даже когда поезд давно исчез в туннеле, магнитное поле не возвращается к прежнему значению. Лишь после того, как состав минует следующую точку подключения к контактному рельсу, магнитное поле вернется к старому значению. Правда, иногда не успевает: к платформе уже приближается следующий поезд и при его торможении магнитное поле снова меняется. В самом вагоне магнитное поле еще сильнее - 150-200 мкТл, то есть в десять раз больше, чем в обычной электричке.

Источники высокочастотных излучений (от 3 кГц до 300 ГГц).

К этой группе относятся функциональные передатчики - источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц - 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.). Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

Излучение бытовых приборов

Источником электромагнитного поля в жилых помещениях является разнообразная электротехника - холодильники, утюги, пылесосы, электропечи, телевизоры, компьютеры и др., а также электропроводка квартиры. На электромагнитную обстановку квартиры влияют электротехническое оборудование здания, трансформаторы, кабельные линии. Электрическое поле в жилых домах находится в пределах 1-10 В/м. Однако могут встретиться точки повышенного уровня, например, незаземленный монитор компьютера

Замеры напряженности магнитных полей от бытовых электроприборов показали, что их кратковременное воздействие может оказаться даже более сильным, чем долговременное пребывание человека рядом с линией электропередачи. Если отечественные нормы допустимых значений напряженности магнитного поля для населения от воздействия линии электропередачи составляют 1000 мГс, то бытовые электроприборы существенно превосходят эту величину.

Индукция магнитного поля от электроплит типа "Электра" на расстоянии 20-30 см от передней панели - там, где стоит хозяйка, - составляет 1-3 мкТл. У конфорок, оно, естественно, больше. А на расстоянии 50 см уже неотличимо от общего поля в кухне, которое составляет около 0,1-0,15 мкТл.

Невелики и магнитные поля от холодильников и морозильников. Так, по данным Центра электромагнитной безопасности (см. ниже), у обычного бытового холодильника поле выше предельно допустимого уровня (0,2 мкТл) возникает в радиусе 10 см от компрессора и только во время его работы. Однако у холодильников, оснащенных системой "no frost", превышение предельно допустимого уровня можно зафиксировать на расстоянии метра от дверцы.

СВЧ-печи, в силу принципа своей работы, служат мощнейшим источником излучения. Но по той же причине их конструкция обеспечивает соответствующую экранировку, да и пища разогревается или готовится в них быстро. Но все же опираться локтем на включенную "микроволновку" не стоит. На расстоянии 30 см печь создает заметное переменное (50 Гц) магнитное поле (0,3-8 мкТл). Неожиданно малыми оказались поля от мощных электрических чайников. Так, на расстоянии 20 см от чайника "Tefal" поле составляет около 0,6 мкТл, а на расстоянии 50 см неотличимо от общего электромагнитного поля в кухне.

У большинства утюгов поле выше 0,2 мкТл обнаруживается на расстоянии 25 см от ручки и только в режиме нагрева.

Зато поля стиральных машин оказались достаточно большими. Например, у малогабаритной "Спини" поле на частоте 50 Гц у пульта управления составляет более 10 мкТл, на высоте 1 метра - 1 мкТл, сбоку на расстоянии 50 см - 0,7 мкТл. В утешение можно заметить, что большая стирка - не столь частое занятие, да и при работе автоматической или полуавтоматической стиральной машины хозяйка может отойти в сторонку или просто выйти из ванной. Еще больше поле у пылесоса "Тайфун". Оно порядка 100 мкТл. Впрочем, здесь тоже есть утешительное обстоятельство: пылесос обычно таскают за шланг и находятся от него достаточно далеко. Рекорд держат электробритвы. Их поле измеряется сотнями мкТл. Таким образом, бреясь электробритвой, убивают сразу двух зайцев: приводят себя в порядок и попутно проводят магнитную обработку лица.

Западная промышленность уже реагирует на повышающийся спрос к бытовым приборам и персональным компьютерам, чье излучение не угрожает жизни и здоровью людей, рискнувших облегчить себе жизнь с их помощью. Так, в США многие фирмы выпускают безопасные приборы, начиная от утюгов с бифилярной намоткой и кончая неизлучающими компьютерами.

В нашей стране существует Центр электромагнитной безопасности, где разрабатываются всевозможные средства защиты от электромагнитных излучений: специальная защитная одежда, ткани и прочие защитные материалы, которые могут обезопасить любой прибор. Но до внедрения подобных разработок в широкое и повседневное их использование пока далеко. Так что каждый пользователь должен позаботиться о средствах своей индивидуальной защиты сам, и чем скорее, тем лучше. Сотрудники Центра электромагнитной безопасности провели независимое исследование ряда компьютеров, наиболее распространенных на нашем рынке, и установили, что "уровень электромагнитных полей в зоне размещения пользователя превышает биологически опасный уровень".

Излучения от длинноволновых радиопередающих центров

В 1920 - 30 гг. в московских домах, расположенных вокруг радиостанции имени Коминтерна, которая вещала на длине волны 2 км, можно было провести такой опыт. Намотать на рамку около сотни витков, присоединить к концам лампочку от карманного фонарика - и она загоралась. Для этого напряженность магнитного поля должна была составлять никак не меньше нескольких А/м. Сейчас во многих странах это предельно допустимый уровень для 8-часового рабочего дня. Радиоволны большой длины "накрывают" соответственно и большее пространство. Электрическую составляющую волны экранируют стены зданий, но магнитную они ослабляют мало. В свое время в штате Мэн (США) была развернута система радиосвязи с подводными лодками, находящимися на глубине в океане. Морская вода сильно поглощает радиоволны, но все-таки, чем больше длина волны, тем поглощение меньше. Поэтому связь вели на частоте 15 Гц, то есть на длине волны 20 тысяч километров. А так как излучаемая антенной мощность пропорциональна кубу отношения ее размеров к длине волны, то антенны протянулись почти через весь штат. Большую проблему составляют ведомственные и частные РПЦ, которые в последние годы растут как грибы после дождя. К примеру, только Министерству связи РФ принадлежит более 100 передающих радиоцентров (а ведь под них отводится большая площадь - до 1000 га). Телевизионные передатчики расположены почти всегда в городах. Их антенны размещены на высоте 110 м на расстоянии 1 км, типичные значения напряженности электрического поля достигают 15 В/м от передатчика мощностью 1 МВт.

Единственное, что радует, это то, что на фоне РПЦ антенны базовых станций сотовой телефонной связи вносят незначительный вклад в электромагнитное загрязнение городских улиц. Разумеется, если не влезать на крышу дома, где их обычно устанавливают, и не изучать конструкцию антенны.

Воздействие электромагнитных полей на организм

Степень биологического воздействия электромагнитных полей на организм человека зависит от частоты колебаний, напряженности и интенсивности поля, режима его генерации (импульсное, непрерывное), длительности воздействия. Биологическое воздействие полей разных диапазонов неодинаково. Чем короче длина волны, тем большей энергией она обладает. Высокочастотные излучения могут ионизировать атомы или молекулы в соматических клетках - и т.о. нарушать идущие в них процессы. А электромагнитные колебания длинноволнового спектра хоть и не выбивают электроны из внешних оболочек атомов и молекул, но способны нагревать органику, приводить молекулы в тепловое движение. Причем тепло это внутреннее - находящиеся на коже чувствительные датчики его не регистрируют. Чем меньше тело, тем лучше оно воспринимает коротковолновое излучение, чем больше - тем лучше воспринимает длинноволновое.

Особенно чувствительны к неблагоприятному воздействию электромагнетизма эмбрионы и дети. Человек, создав такой вид излучения, не успел выработать к нему защиты. Первичным проявлением действия электромагнитной энергии является нагрев, который может привести к изменениям и даже к повреждениям тканей и органов. Механизм поглощения энергии достаточно сложен. Наиболее чувствительными к действию электромагнитных полей являются центральная нервная система (субъективные ощущения при этом - повышенная утомляемость, головные боли и т. п) и нейроэндокринная система.

С нарушением нейроэндокринной регуляции связывают эффект со стороны сердечнососудистой системы, системы крови, иммунитета, обменных процессов, воспроизводительной функции и др. Влияние на иммунную систему выражается в снижении фагоцитарной активности нейтрофилов, изменениях комплиментарной активности сыворотки крови, нарушении белкового обмена, угнетении Т-лимфоцитов. Возможны также изменение частоты пульса, сосудистых реакций. Описаны изменения кроветворения, нарушения со стороны эндокринной системы, метаболических процессов, заболевания органов зрения. Было установлено, что клинические проявления воздействия радиоволн наиболее часто характеризуются астеническими, астеновегетативными и гипоталамическими синдромами:

1. Астенический синдром. Этот синдром, как правило, наблюдается в начальных стадиях заболевания и проявляется жалобами на головную боль, повышенную утомляемость, раздражительность, нарушение сна, периодически возникающие боли в области сердца.

2. Астеновегетативный или синдром нейроциркулярной дистонии. Этот синдром характеризуется ваготонической направленностью реакций (гипотония, брадикардия и др.).

3. Гипоталамический синдром. Больные повышенно возбудимы, эмоционально лабильны, в отдельных случаях обнаруживаются признаки раннего атеросклероза, ишемической болезни сердца, гипертонической болезни.

Поля сверхвысоких частот могут оказывать воздействие на глаза, приводящее к возникновению катаракты (помутнению хрусталика), а умеренных - к изменению сетчатки глаза по типу ангиопатии. В результате длительного пребывания в зоне действия электромагнитных полей наступают преждевременная утомляемость, сонливость или нарушение сна, появляются частые головные боли, наступает расстройство нервной системы и др. Многократные повторные облучения малой интенсивности могут приводить к стойким функциональным расстройствам центральной нервной системы, стойким нервно-психическим заболеваниям, изменению кровяного давления, замедлению пульса, трофическим явлениям (выпадению волос, ломкости ногтей и т. п.).

Аналогичное воздействие на организм человека оказывает электромагнитное поле промышленной частоты в электроустановках сверхвысокого напряжения. Интенсивные электромагнитные поля вызывают у работающих нарушение функционального состояния центральной нервной, сердечнососудистой и эндокринной системы, страдает нейрогуморальная реакция, половая функция, ухудшается развитие эмбрионов (увеличивается вероятность развития врожденных уродств). Также наблюдаются повышенная утомляемость, вялость, снижение точности движений, изменение кровяного давления и пульса, возникновение болей в сердце (обычно сопровождается аритмией), головные боли. В условиях длительного профессионального облучения с периодическим превышением предельно допустимых уровней у части людей отмечали функциональные перемены в органах пищеварения, выражающиеся в изменении секреции и кислотности желудочного сока, а также в явлениях дискинезии кишечника. Также выявлены функциональные сдвиги со стороны эндокринной системы: повышение функциональной активности щитовидной железы, изменение характера сахарной кривой и т.д. Предполагается, что нарушение регуляции физиологических функций организма обусловлено воздействием поля на различные отделы нервной системы. При этом повышение возбудимости центральной нервной системы происходит за счет рефлекторного действия поля, а тормозной эффект - за счет прямого воздействия поля на структуры головного и спинного мозга. Считается, что кора головного мозга, а также промежуточный мозг особенно чувствительны к воздействию поля. В последние годы появляются сообщения о возможности индукции ЭМИ злокачественных заболеваний. Еще немногочисленные данные все же говорят, что наибольшее число случаев приходится на опухоли кроветворных тканей и на лейкоз в частности. Это становится общей закономерностью канцерогенного эффекта при воздействии на организм человека и животных физических факторов различной природы и в ряде других случаев.

Исследователи США и Швеции установили факт возникновения опухолей у детей при воздействии на них магнитных полей частоты 60 Гц и напряженностью 2-3 мГс в течение нескольких дней или даже часов. Такие поля излучаются телевизором, персональной ЭВМ. Наблюдения за людьми, которые регулярно пользовались электродрелями, показали неблагоприятное для здоровья действие низкочастотных электромагнитных полей частотой 50 - 60 Гц: ночью у большинства испытуемых повышался в крови уровень мелатонина - гормона шишковидной железы, или эпифиза. Эпифиз играет роль основного "ритмоводителя" функций организма Нарушение этого ритма может повлечь за собой серьёзные заболевания, в частности, образование опухоли.

В конце 1995 года было опубликовано 14 работ по исследованию возможного развития рака молочной железы у лиц, имеющих контакт с электромагнитным полем в производственных условиях или в быту. В Варшаве проводилось исследование, которое показало, что у лиц, облучавшихся электромагнитным полем, вероятность развития рака лимфатической системы и кроветворных органов была больше в 6,7 раза, рака щитовидной железы - в 4,3 раза, наиболее обычен рак легкого при действии микроволнового излучения.

Защита от электромагнитных излучений

Бурное развитие машиностроительных отраслей народного хозяйства привело к использованию в некоторых производствах электромагнитных волн. Причем в ряде случаев человек оказывается подвержен их воздействию. Электромагнитные волны, взаимодействуя с тканями тела человека, вызывают определенные функциональные изменения. При интенсивном облучении эти изменения могут оказать вредное воздействие на организм человека. Знание природы воздействия электромагнитных волн на организм человека, норм допустимых облучений, методов контроля интенсивности излучений и средств защиты от них является совершенно необходимым для специалистов машиностроения в их многогранной практической деятельности.

Действие электромагнитного излучения на организм человека в основном определяется поглощенной в нем энергией. Известно, что излучение, попадающее на тело человека, частично отражается и частично поглощается в нем. Поглощенная часть энергии электромагнитного поля превращается в, тепловую энергию. Эта часть излучения проходит через кожу и распространяется в организме человека в зависимости от электрических свойств тканей (абсолютной диэлектрической проницаемости, абсолютной магнитной проницаемости, удельной проводимости) и частоты колебаний электромагнитного поля.

Существенные различия электрических свойств кожи, подкожного жирового слоя, мышечной и других тканей обусловливают сложную картину распределения энергии излучения в организме человека. Точный расчет распределения тепловой энергии, выделяемой в организме человека при облучении, практически невозможен. Тем не менее, можно сделать следующий вывод: волны миллиметрового диапазона поглощаются поверхностными слоями кожи, сантиметрового -- кожей и подкожной клетчаткой, дециметрового -- внутренними органами.

Кроме теплового действия электромагнитные излучения вызывают поляризацию молекул тканей тела человека, перемещение ионов, резонанс макромолекул и биологических структур, нервные реакции и другие эффекты.

Из сказанного следует, что при облучении человека электромагнитными волнами в тканях его организма происходят сложнейшие физико-биологические процессы, которые могут явиться причиной нарушения нормального функционирования как отдельных органов, так и организма в целом.

Люди, работающие под чрезмерным электромагнитным излучением, обычно быстро утомляются, жалуются на головные боли, общую слабость, боли в области сердца. У них увеличивается потливость, повышается раздражительность, становится тревожным сон. У отдельных лиц при длительном облучении появляются судороги, наблюдается снижение памяти, отмечаются трофические явления (выпадение волос, ломкость ногтей и т. д.).

Нормы допустимого облучения устанавливаются для обеспечения безопасных условий труда обслуживающего персонала источников излучения и всех окружающих лиц.

Напряженность электромагнитных полей на рабочих местах не должна превышать:

1) по электрической составляющей: в диапазоне частот 60 кГц--3 МГц -- 50. В/м; 3--30 МГц -- 20. В/м; 30--50 МГц -- 10 В/м; 50--300 МГц -- 5 В/м;

2) по магнитной составляющей: в диапазоне частот 60 кГц-- 1, 5 МГц -- 5 А/м; 30 МГц--50 МГц -- 0, 3 А/м.

Предельно допустимая плотность потока энергии электромагнитных полей в диапазоне частот 300 МГц -- 300 ГГц и время пребывания на рабочих местах и в местах возможного нахождения персонала, связанного профессионально с воздействием полей (кроме случаев облучения от вращающихся и сканирующих антенн), взаимосвязаны следующим образом: пребывание в течение рабочего дня --до 0, 1 Вт/м2; пребывание не более 2ч-- 0, 1--1 Вт/м2, в остальное рабочее время плотность потока энергии не должна превышать 0, 1 Вт/м2; пребывание не более 20 мин -- 1--10 Вт/м2 при условии пользования защитными очками. В остальное рабочее время плотность потока энергии не должна превышать 0, 1 Вт/м2.

Напряженность электрического поля промышленной частоты (50 Гц) в электроустановках напряжением 400 кВ и выше для персонала, систематически (в течение каждого рабочего дня) обслуживающего их, не должна превышать при пребывании человека в электрическом поле: без ограничения времени--до 5 кВ/м; не более 180 мин в течение одних суток 5--10 кВ/м; не более 90 мин в течение одних суток 10--15 кВ/м; не более 10 мин. в течение одних суток 15-30 кВ/м; не более 5 мин в течение суток 20-25 кВ/м. Остальное время суток человек должен I находиться в местах, где напряженность электрического поля не превышает 5 кВ/м.

Если облучение людей превышает указанные предельно допустимые уровни, то необходимо применять защитные средства.

Защита человека от опасного воздействия электромагнитного облучения осуществляется рядом способов, основными из которых являются: уменьшение излучения непосредственно от самого источника, экранирование источника излучения, экранирование рабочего места, поглощение электромагнитной энергии, применение индивидуальных средств защиты, организационные меры защиты.

Для реализации этих способов применяются: экраны, поглотительные материалы, аттенюаторы, эквивалентные нагрузки и индивидуальные средства.

Экраны предназначены для ослабления электромагнитного поля в направлении распространения волн. Степень ослабления зависит от конструкции экрана и параметров излучения. Существенное влияние на эффективность защиты оказывает также материал, из которого изготовлен экран.

Толщину экрана, обеспечивающую необходимое ослабление, можно рассчитать. Однако расчетная толщина экрана обычно мала, поэтому она выбирается из конструктивных соображений. При мощных источниках излучения, особенно при длинных волнах, толщина экрана может быть принята расчетной.

Толщина экрана в основном определяется частотой и мощностью излучения и мало зависит от применяемого металла.

Очень часто для экранирования применяется металлическая сетка. Экраны из сетки имеют ряд преимуществ. Они просматриваются, пропускают поток воздуха, позволяют достаточно быстро ставить и снимать экранирующие устройства.

29. Качественный и количественный анализ опасностей

Оценивание каждой опасности включает изучение вероятности ее появления, а также серьезности травм персонала, повреждений систем, зданий и пр. компонентов производства, а также экологического ущерба, к которым может привести авария. Опасности должны быть сравнимы, это необходимо для их ранжирования.

Чтобы способы обеспечения безопасности стали реальностью, необходимо использовать определенные процедуры или отдельные действия:

идентификация опасностей, их анализ и оценка;

логические процедуры формулирования предупредительных мероприятий (контрмер);

выбор лучшей контрмеры для внедрения (принятие решения).

Проблема безопасности решается выбором метода, который дает более выгодное решение при несовершенных исходных данных.

Методы анализа основаны на качественном и количественном подходах к оценке опасностей.

Качественный анализ системы, как правило, предшествует количественному. Например, измерениям должна предшествовать стадия идентификации опасностей, выполняемая только на основе качественного анализа опасностей, который ведется просмотром изучаемой системы. Задача - выделить проблемы безопасности, нуждающиеся в более подробном рассмотрении. В любых отраслях промышленности можно выявить источники повышенной опасности или (и) ненадежные компоненты эксплуатируемой системы.

В технике и технологиях встречаются разнообразные опасности и если они характеризуются высокими температурами, большими скоростями и давлениями, то опасные точки обнаружить относительно просто. Чаще это достигается качественным анализом.

Кроме идентификации опасностей, качественная оценка существенна и при выборе альтернативных средств усовершенствования системы для ликвидации опасностей и достижения безопасности. Обилие возможностей при выборе контрмер безопасности также обусловливает применение качественного анализа.

Качественные оценки ведутся по более грубой шкале, чем количественные, поскольку человек не может учесть более четырех - пяти факторов одновременно в одной задаче.

Качественные методы анализа допускают использование полуколичественных оценок (больше, меньше), определенное ранжирование, например, по частоте встречающихся событий (никогда, редко, часто) или по сумме ущерба от аварий.

При качественном анализе используются специальные формы, технические стандарты и утвержденные нормы безопасности. Его результаты приводят к последующим задачам оптимизации, осуществляемым количественными методами.

Количественные методы анализа эффективны при сравнении сопоставимых опасностей системы в конкретном интервале времени. Недостаточная эффективность в других случаях объясняется тем, что неизвестно будущее состояние системы. Однако это не исключает количественных методов для оценки и прогнозирования состояния системы.

Количественные методы эффективны по следующим причинам:

оценки будущих характеристик системы могут выполняться по характеристикам компонентов системы. Оценки на этом уровне более точны, а их погрешности меньше влияют на результат;

оценки могут выполняться различными лицами, так что для каждого вида оценок может быть привлечен наиболее квалифицированный специалист;

оценки могут осуществляться методом последовательного приближения, причем при каждом пересчете можно изучать влияние изменения исходных данных.

Применение количественных методов анализа требует в первую очередь выбора группы критериев или отдельного критерия, определенного как мера для сравнения количественных показателей исследуемой операции в отношении затрачиваемых усилий и получаемых результатов.

Классификация критериев анализа включает:

Общие (интегральные) критерии, дающие наиболее полную оценку совершенствования системы (общее число возможных аварий и случаев травматизма, сумма затрат на создание системы безопасности).

Условные (косвенные) критерии, отражающие одно из свойств системы путем отнесения его к некоторому показателю (стоимость получения единицы конечной продукции, вероятность безотказной работы определенного комплекса защитных мер, вероятность возникновения аварийной ситуации в определенном промежутке времени).

Относительные (нормированные) критерии, характеризующие безопасность системы в отношении оснащенности и эффективности средств защиты (отношение времени воздействия опасного фактора к общему времени работы, сопоставление экономической эффективности внедрения различных средств защиты, изменение уровня безопасности по сравнению с внедрением).

Количественный анализ возможен на основе методов объективного измерения и прогнозирования последствий опасности.

При проведении количественного анализа необходимо оценивать полноту и достоверность исходных данных, адекватность и точность используемых схем, обоснованность принимаемых допущений и зависимость от них получаемых рекомендаций и выводов.

По результатам количественного анализа могут быть проведены корректирование перечня возможных отказов и ранжирование причин отказов систем. В перечень вводятся критические виды отказов, которые имеют наибольшую вероятность появления, а также отказы, анализ которых затруднен.

Методы анализа, основанные на качественном и количественном подходах и применяемые на различных стадиях проектирования и эксплуатации технологического оборудования, существенно зависят от целей анализа.

30. Средства автоматического контроля и сигнализации. Защита от опасностей автоматизированного и роботизированного произ-ва

Наличие контрольно-измерительных приборов - одно из условий безопасной и надежной работы оборудования. Это приборы для измерения давления, температур, статических и динамических нагрузок, концентраций паров и газов и др. Эффективность их использования повышается при объединении их с системами сигнализации, как это имеет место в газосигнализаторах, срабатывающих при определенных уровнях концентрации паров, газов, пыли в воздухе.

Устройства автоматического контроля и сигнализации подразделяют: по назначению - на информационные, предупреждающие, аварийные и ответные; по способу срабатывания - на автоматические и полуавтоматические; по характеру сигнала - на звуковые, световые, цветовые, знаковые и комбинированные; по характеру подачи сигнала - на постоянные и пульсирующие.

Информативную сигнализацию используют для согласования действий работающих, в частности крановщиков и стропальщиков. Такую же сигнализацию применяют в шумных производствах, где нарушена речевая связь. Подвидом информативной сигнализации являются всякого рода схемы, указатели, надписи. Как правило, надписи делают непосредственно на оборудовании либо в зоне его обслуживания на специальных табло.

Устройства предупредительной сигнализации предназначены для предупреждения об опасности. Чаще всего в них используют световые и звуковые сигналы, поступающие от различных приборов, регистрирующих ход технологического процесса, в том числе уровень опасных и вредных факторов. Большое применение находит предупредительная сигнализация, опережающая включение оборудования или подачу высокого напряжения. К предупредительной сигнализации относятся указатели и плакаты: «Не включать - работают люди», «Не входить», «Не открывать - высокое напряжение» и др.

Указатели желательно выполнять в виде световых табло с переменной по времени (мигающей) подсветкой.

Подвидом предупредительной сигнализации является сигнальная окраска. Травмоопасные элементы оборудования выделяют чередующимися (под углом 45° к горизонтали) полосами желтого и черного цвета. На станках в красный цвет окрашивают обратные стороны дверец, ниш для электрооборудования, а также поверхности схода стружки.

Знаки безопасности установлены ГОСТ 12.4.026-76*. Они могут быть запрещающими, предупреждающими, предписывающими и указательными и отличаются друг от друга формой и цветом. В производственном оборудовании и в цехах применяют предупредительные знаки, представляющие собой желтый треугольник с черной полосой по периметру, внутри которого располагается какой-либо символ (черного цвета). Например, при электрической опасности - это молния, при опасности травмирования перемещаемым грузом - груз, при опасности скольжения - падающий человек, при прочих опасностях - восклицательный знак.

Запрещающий знак - круг красного цвета с белой каймой по периметру и черным изображением внутри. Предписывающие знаки представляют собой синий круг с белой каймой по периметру и белым изображением в центре, указательные -синий прямоугольник.

Предупреждающий знак радиационной опасности имеет символ и кайму красного цвета. Указательные знаки средств пожаротушения имеют символ красного цвета на белом фоне, остальные черного.

Она обеспечивается прежде всего технологией проведения работ. Для периодической смены инструмента, регулировки и подналадки станков с ЧПУ и автоматов, их смазывания и чистки, а также для мелкого ремонта в цикле работы автоматической линии должно быть предусмотрено специальное время. Все перечисленные работы должны выполняться на обесточенном оборудовании. Требования безопасности к промышленным работам и робототехническим комплексам установлены ГОСТ 12.2.072-82.

Контроль за обеспечением оборудования средствами защиты от механического травмирования и за их исправностью возложен на службу главного механика предприятий и на механиков подразделений.

31. Защита от механического травмирования

К средствам защиты от механического травмирования относятся предохранительные тормозные, оградительные устройства, средства автоматического контроля и сигнализации, знаки безопасности, системы дистанционного управления. Системы дистанционного управления и автоматические сигнализаторы на опасную концентрацию паров, газов, пылей применяют чаще всего во взрывоопасных производствах и производствах с выделением в воздух рабочей зоны токсичных веществ.

Предохранительные защитные средства предназначены для автоматического отключения агрегатов и машин при отклонении какого-либо параметра, характеризующего режим работы оборудования, за пределы допустимых значений. Таким образом, при аварийных режимах (увеличении давления, температуры, рабочих скоростей, силы тока, крутящих моментов и т. п.) исключается возможность взрывов, поломок, воспламенений. В соответствии с ГОСТ 12.4.125-83 предохранительные устройства по характеру действия бывают блокировочными и ограничительными.

Блокировочные устройства по принципу действия подразделяют на механические, электронные, электрические, электромагнитные, пневматические, гидравлические, оптические, магнитные и комбинированные.

Ограничительные устройства по конструктивному исполнению подразделяют на муфты, штифты, клапаны, шпонки, мембраны, пружины, сильфоны и шайбы.

Блокировочные устройства препятствуют проникновению человека в опасную зону либо во время пребывания его в этой зоне устраняют опасный фактор.

Особенно большое значение этим видам средств защиты придается на рабочих местах агрегатов и машин, не имеющих ограждений, а также там, где работа может вестись при снятом или открытом ограждении.

Механическая блокировка представляет собой систему, обеспечивающую связь между ограждением и тормозным (пусковым) устройством. При снятом ограждении агрегат невозможно растормозить, а следовательно, и пустить его в ход.

Электрическую блокировку применяют на электроустановках с напряжением от 500 В и выше, а также на различных видах технологического оборудования с электроприводом. Она обеспечивает включение оборудования только при наличии ограждения. Электромагнитную (радиочастотную) блокировку применяют для предотвращения попадания человека в опасную зону. Если это происходит, высокочастотный генератор подает импульс тока к электромагнитному усилителю и поляризованному реле. Контакты электромагнитного реле обесточивают схему магнитного пускателя, что обеспечивает электромагнитное торможение привода за десятые доли секунды. Аналогично работает магнитная блокировка, использующая постоянное магнитное поле.

Оптическая блокировка находит применение в кузнечно-прессовых и механических цехах машиностроительных заводов. Световой луч, попадающий на фотоэлемент, обеспечивает постоянное протекание тока в обмотке блокировочного электромагнита. Если в момент нажатия педали в рабочей (опасной) зоне штампа окажется рука рабочего, падение светового тока на фотоэлемент прекращается, обмотки блокировочного магнита обесточиваются, его якорь под действием пружины выдвигается и включение пресса педалью становится невозможным.

Электронную (радиационную) блокировку применяют для защиты опасных зон на прессах, гильотинных ножницах и других видах технологического оборудования, применяемого в машиностроении.

Преимуществом блокировки с радиационными датчиками является то, что они позволяют производить бесконтактный контроль, так как не связаны с контролируемой средой. В ряде случаев при работе с агрессивными или взрывоопасными средами в оборудовании, находящемся под большим давлением или имеющем высокую температуру, блокировка с применением радиационных датчиков является единственным средством для обеспечения требуемых условий безопасности.

Пневматическая схема блокировки широко применяется в агрегатах, где рабочие тела находятся под повышенным давлением: турбинах, компрессорах, воздуходувках и т. д. Ее основным преимуществом является малая инерционность. Примерами ограничительных устройств являются элементы механизмов и машин, рассчитанные на разрушение (или несрабатывание) при перегрузках. К слабым звеньям таких устройств относятся: срезные штифты и шпонки, соединяющие вал с маховиком, шестерней или шкивом; фрикционные муфты, не передающие движения при больших крутящих моментах; плавкие предохранители в электроустановках; разрывные мембраны в установках с повышенным давлением и т. п. Слабые звенья делятся на две основные группы: звенья с автоматическим восстановлением кинематической цепи после того, как контролируемый параметр пришел в норму (например, муфты трения), и звенья с восстановлением кинематической цепи путем замены слабого звена (например, штифты и шпонки). Срабатывание слабого звена приводит к останову машины на аварийных режимах.

Тормозные устройства подразделяют: по конструктивному исполнению - на колодочные, дисковые, конические и клиновые; по способу срабатывания - на ручные, автоматические и полуавтоматические; по принципу действия -на механические, электромагнитные, пневматические, гидравлические и комбинированные; по назначению -на рабочие, резервные, стояночные и экстренного торможения.

Оградительные устройства - класс средств защиты, препятствующих попаданию человека в опасную зону. Оградительные устройства применяют для изоляции систем привода машин и агрегатов, зоны

Конструктивные решения оградительных устройств весьма разнообразны. Они зависят от вида оборудования, расположения человека в рабочей зоне, специфики опасных и вредных факторов, сопровождающих технологический процесс. В соответствии с ГОСТ 12.4.125-83, классифицирующим средства защиты от механического травмирования, оградительные устройства подразделяют: по конструктивному исполнению -на кожухи, дверцы, щиты, козырьки, планки, барьеры и экраны; по способу изготовления-на сплошные, несплошные (перфорированные, сетчатые, решетчатые) и комбинированные; по способу установки-на стационарные и передвижные. Примерами полного стационарного ограждения служат ограждения распределительных устройств электрооборудования, кожуха галтовочных барабанов, корпуса электродвигателей, насосов и т. п.; частичного - ограждения фрез или рабочей зоны станка.

Возможно применение подвижного (съемного) ограждения. Оно представляет собой устройство, сблокированное с рабочими органами механизма или машины, вследствие чего закрывает доступ в рабочую зону при наступлении опасного момента. Особенно широкое распространение получили такие ограничительные устройства в станкостроении (например, в станках с ЧПУ ОФЗ-36).

Переносные ограждения являются временными. Их используют при ремонтных и наладочных работах для защиты от случайных прикосновений к токоведущим частям, а также от механических травм и ожогов. Кроме того, их применяют на постоянных рабочих местах сварщиков для защиты окружающих от воздействия электрической дуги и ультрафиолетовых излучений (сварочные посты). Выполняются они чаще всего в виде щитов высотой 1,7 м.

Конструкция и материал ограждающих устройств определяются особенностями оборудования и технологического процесса в целом. Ограждения выполняют в виде сварных и литых кожухов, решеток, сеток на жестком каркасе, а также в виде жестких сплошных щитов (щитков, экранов). Размеры ячеек в сетчатом и решетчатом ограждении определятся в соответствии с ГОСТ 12.2.062-81*. В качестве материала ограждений используют металлы, пластмассы, дерево. При необходимости наблюдения за рабочей зоной кроме сеток и решеток применяют сплошные оградительные устройства из прозрачных материалов (оргстекла, триплекса и т. д.).

Чтобы выдерживать нагрузки от отлетающих при обработке частиц и случайные воздействия обслуживающего персонала, ограждения должны быть достаточно прочными и хорошо крепиться к фундаменту или частям машины. При расчете на прочность ограждений машин и агрегатов для обработки металлов и дерева необходимо учитывать возможность вылета и удара об ограждение обрабатываемых заготовок.

32. Средства электробезопасности

Повышение электробезопасности в установках достигается применением систем защитного заземления, зануления, защитного отключения и других средств и методов защиты, в том числе знаков безопасности и предупредительных плакатов и надписей. В системах местного освещения, в ручном электрофицированном инструменте и в некоторых других случаях применяют пониженное напряжение.

Требования к устройству защитного заземления и зануления электрооборудования определены ПУЭ*, в соответствии с которыми они должны устраиваться при номинальном напряжении 380 В и выше переменного и 440 В и выше постоянного тока. В условиях работ в помещениях с повышенной опасностью и особо опасных они должны выполняться в установках с напряжением питания > 42 В переменного и > 110 В постоянного тока. Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека, которые могут оказаться под напряжением в результате повреждения изоляции.

Защитное заземление представляет собой преднамеренное электрическое соединение металлических частей электроустановок с землей или ее эквивалентом (водопроводными трубами и т п). Схема защитного заземления представлена на рис. 5.10.

При наличии заземления вследствие отекания тока на землю напряжение прикосновения уменьшается и, следовательно, ток, проходящий через человека, оказывается меньше, чем в незаземленной установке. Чтобы напряжение на заземленном корпусе оборудования было минимальным, ограничивают сопротивление заземления. В установках 380/220 В она должна быть не более 4 Ом, в установках 220/127 В-не более 8 Ом. Если мощность источника питания не превышает 100 кВА, сопротивление заземления может быть в пределах 10 Oм.

В качестве заземляющих устройств электроустановок в первую очередь должны быть использованы естественные заземлители Возможно применение железобетонных фундаментов промышленных зданий и сооружений. При отсутствии естественных заземлителей допускается применение переносных заземлителей, например, ввинчиваемых в землю стальных труб, стержней, уголков. После заглубления в землю они должны иметь концы длиной 100…200 мм над поверхностью земли, к которым привариваются соединительные проводники. Категорически запрещается использовать в качестве заземлителей трубопроводы с горючими жидкостями и газами.

Зануление состоит в преднамеренном соединении металлических нетоковедущих частей оборудования, которые могут оказаться под напряжением вследствие пробоя изоляции, с нулевым защитным проводником. При замыкании любой фазы на корпус образуется контур короткого замыкания, характеризуемый силой тока весьма большой величины, достаточной для «выбивания» предохранителей в фазных питающих проводах. Таким образом электроустановка обесточивается. Предусматривается повторное заземление нулевого проводника на случай обрыва нулевого провода на участке, близком к нейтрали. По этому заземлению ток стекает на землю, откуда попадает в заземление нейтрали, по нему во все фазные провода, включая имеющий пробитую изоляцию, далее на корпус. Таким образом образуется контур короткого замыкания.

Защитное отключение электроустановок обеспечивается путем введения устройства, автоматически отключающего оборудование - потребитель тока при возникновении опасности поражения током. Схемы отключающих автоматических устройств весьма разнообразны. Во всех случаях система срабатывает на превышение какого-либо параметра в электрических цепях технологического оборудования (силы тока, напряжения, сопротивления изоляции).

Повышение электробезопасности достигается также путем применения изолирующих, ограждающих, предохранительных и сигнализирующих средств защиты.

Изолирующие электрозащитные средства делятся на основные и дополнительные. Основные изолирующие электрозащитные средства способны длительное время выдерживать рабочее напряжение электроустановки, и поэтому ими разрешается касаться токоведущих частей, находящихся под напряжением, и работать на этих частях. К таким средствам относятся: в электроустановках напряжением до 1000 В - диэлектрические резиновые перчатки, инструмент с изолирующими рукоятками и указатели напряжения до 1000 В (ранее назывались токоискателями); в электроустановках напряжением выше 1000 В - изолирующие штанги, изолирующие и электроизмерительные клещи, а также указатели напряжения выше 1000 В.

Дополнительные изолирующие электрозащитные средства обладают недостаточной электрической прочностью и поэтому не могут самостоятельно защищать человека от поражения током. Их назначение - усилить защитное действие основных изолирующих средств, вместе с которыми они должны применяться. К дополнительным изолирующим средствам относятся: в электроустановках напряжением до 1000 В -диэлектрические галоши, коврики и изолирующие подставки; в электроустановках напряжением выше 1000 В -диэлектрические перчатки, боты, коврики, изолирующие подставки.

Ограждающие средства защиты предназначены для временного ограждения токоведущих частей (временные переносные ограждения, щиты, ограждения-клетки, изолирующие накладки, изолирующие колпаки).

Сигнализирующие средства включают запрещающие и предупреждающие знаки безопасности, а также плакаты: запрещающие, предостерегающие, разрешающие, напоминающие. Чаще всего используется предупреждающий знак «Проход запрещен».

Предохранительные средства защиты предназначены для индивидуальной защиты работающего от световых, тепловых и механических воздействий. К ним относят: защитные очки, противогазы, специальные рукавицы и т. п.

33. Защита от статического электричества

Величина потенциалов зарядов искусственного статического электричества на ременных передачах и лентах конвейеров может достигать 40 кВ, при механической обработке пластмасс и дерева до 30 кВ, при распылении красок до 12 кВ. При соответствующих условиях происходит пробой воздушной прослойки, сопровождающийся искровым разрядом (пробивное сопротивление абсолютно сухого воздуха составляет 3000 кВ/м), что может инициировать взрыв или пожар.

Основные мероприятия, применяемые для защиты от статического электричества производственного происхождения, включают методы, исключающие или уменьшающие интенсивность генерации зарядов, и методы, устраняющие образующиеся заряды. Интенсивность генерации зарядов можно уменьшить соответствующим подбором пар трения или смешиванием материалов таким образом, что в результате трения один из смешанных материалов наводит заряд одного знака, а другой -другого. В настоящее время создан комбинированный материал из найлона и дакрона, обеспечивающий защиту от статического электричества по этому принципу.

Изменением технологического режима обработки материалов также можно добиться снижения количества генерируемых зарядов (уменьшение скоростей обработки, скоростей транспортирования и слива диэлектрических жидкостей, уменьшение сил трения).

При заполнении сыпучими веществами или жидкостями диэлектриками резервуаров на входе в них применяют релаксационные емкости, чаще всего в виде заземленного участка трубопровода увеличенного диаметра, обеспечивающего стекание всего заряда статического электричества на землю.


Подобные документы

  • Взаимодействие человека со средой его обитания, компонентами которой являются биосфера и социальная среда. Рассмотрение результатов развития техносферы в возрастающей доле преобразованных территорий земли, демографического взрыва и урбанизации населения.

    доклад [13,5 K], добавлен 14.02.2010

  • Основные факторы внешней среды, влияющие на жизнедеятельность человека. Социальные и психические факторы внешней среды. Эволюция среды обитания человека. Состояния взаимодействия человека и техносферы, характерные для жизнедеятельности человека.

    реферат [25,3 K], добавлен 05.03.2012

  • Современный мир и его влияние на окружающую среду. Состояние биосферы или техносферы. Воздействие инженерной деятельности человека на природную среду. Экологический кризис и его последствия. Защита среды обитания от естественных негативных воздействий.

    презентация [2,0 M], добавлен 11.02.2014

  • Сущность понятий курса "Безопасности жизнедеятельности человека": авария, катастрофа, биосфера, техносфера, опасность, травмоопасный фактор. Нормирование вредностей в воздухе рабочей зоны. Условия возникновения пожара, его вредные и опасные факторы.

    контрольная работа [19,5 K], добавлен 02.12.2015

  • Опасное воздействие техносферы и ее отдельных элементов, разработка систем и методов защиты. Обучение населения основам безопасности жизнедеятельности и подготовка специалистов. Оказание первой медицинской помощи. Нормативная база как правовая основа.

    реферат [15,5 K], добавлен 18.08.2009

  • Состав атмосферы, гидросферы и литосферы, источники их загрязнения. Негативные воздействия техносферы на окружающую среду. Факторы влияния на производительность труда. Факторы опасности химического, биологического и психофизиологического происхождения.

    контрольная работа [32,9 K], добавлен 07.03.2011

  • Защита человека в техносфере от негативных воздействий антропогенного и естественного происхождения и достижение комфортных условий жизнедеятельности как предмет изучения безопасности жизнедеятельности. Воздействие и нормирование негативных факторов.

    презентация [133,2 K], добавлен 03.09.2015

  • Взаимосвязь между негативными факторами бытовой, производственной и городской среды. Источники негативных факторов бытовой среды в современных условиях развитой техносферы. Характеристика и разновидности чрезвычайных ситуаций техногенного происхождения.

    контрольная работа [27,7 K], добавлен 05.01.2015

  • Среда обитания и жизнедеятельности человека. Факторы, воздействующие на человека в процессе его жизнедеятельности. Техногенные опасности в зоне действия технических систем. Классификация основных форм деятельности человека. Допустимые условия труда.

    реферат [18,3 K], добавлен 23.02.2009

  • Особенности изучения основ безопасности жизнедеятельности человека в техносфере. Сущность ключевых аспектов взаимодействия человека и техносферы. Характеристика системы безопасности человека в техносфере. Изучение проблем производственной безопасности.

    курсовая работа [52,9 K], добавлен 08.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.