Основы обеспечения комфортных условий жизнедеятельности

Физиолого-гигиенические основы труда. Основные физиологические реакции организма на физическую и умственную работу. Способы создания комфортных условий на рабочем месте. Требования к вентиляции на рабочем месте. Влияние вредных факторов на организм.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид курсовая работа
Язык русский
Дата добавления 06.05.2009
Размер файла 38,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

35

Содержание

Введение

1. Физиология труда

1.1 Физиологические основы трудовой деятельности

1.2 Физиологические основы построения режимов труда и отдыха

2. Основные физиологические реакции организма на физическую и умственную работу

3 Понятие комфортных условий трудовой деятельности

3.1 Промышленная вентиляция и требуемое состояние воздуха на рабочем месте

4. Шум, вибрация и ультразвук

4.1 Понятие шума и вибрации, их влияние на организм

4.2 Меры борьбы с шумом и вибрацией

4.3 Ультразвук и его действие на организм, меры профилактики

Заключение

Список использованной литературы

Введение

Физиология труда является частью общей физиологии человека. В задачи физиологии труда входит изучение физиологических процессов, то есть состояния и изменения жизненных функций организма человека в процессе его трудовой деятельности, и на основании этого разработка мероприятий, направленных на повышение работоспособности и общего жизненного тонуса, а также укрепления здоровья работающих.

К категории легких относятся, например, работы, связанные с ходьбой, но не требующие систематического физического напряжения или поднятия и переноски тяжестей (основные процессы швейного производства, точного приборостроения и машиностроения, полиграфической промышленности, работы контролеров, работников связи). К категории средней тяжести относятся работы, связанные с постоянной ходьбой, переноской небольших тяжестей (до 10 кг) и выполняемые стоя (основные процессы в прядильно-ткацком производстве, в механосборочных цехах, в механизированных мартеновских, прокатных, литейных, кузнечных, термических цехах).

К категории тяжелых относятся работы, связанные с систематическим физическим напряжением, а также с постоянными передвижениями и переноской значительных (свыше 10 кг) тяжестей (цехи кузнечные с ручной ковкой, литейные с ручной набивкой и заливкой опок).

Динамика работоспособности человека - это научная основа разработки рационального режима труда и отдыха. Физиологи установили, что работоспособность - величина переменная и связано это с изменениями характера протекания физиологических и психических функций в организме. Высокая работоспособность при любом виде деятельности обеспечивается только в том случае, когда трудовой ритм совпадает с естественной периодичностью суточного ритма физиологических функций организма. В связи с установившейся суточной периодикой жизнедеятельности в различные отрезки времени организм человека неодинаково реагирует на физическую и нервно-психическую нагрузку, а его работоспособность и производительность труда в течение суток подвержены определенным колебаниям. В соответствии с суточным циклом наивысший уровень работоспособности отмечается в утренние и дневные часы - с 8 до 20 часов.

Основными физиологическими реакциями организма на физическую работу являются учащение пульса и повышение кровяного давления, учащение дыхания и повышение легочной вентиляции, изменение состава крови, увеличение потоотделения. Степень изменения этих функций находится в зависимости от тяжести работы, ее продолжительности и интенсивности. Изменения постепенно нарастают, доходя до определенного уровня, при котором усиленная работа органов и систем как бы уравновешивается с потребностями организма. По прекращении работы наступает восстановительный период, когда измененные функции постепенно приходят к исходному состоянию, то есть к норме. Продолжительность восстановления различных функций неодинакова: некоторые из них (пульс, кровяное давление, частота дыхания, легочная вентиляция) восстанавливаются в первые 10 -- 15 минут отдыха, другие (состав крови и др.) -- в течение 45 -- 50 минут и более.

Условия, в которых трудится человек, влияют на результаты производства - производительность труда, качество и себестоимость выпускаемой продукции. Производительность труда повышается за счет сохранения здоровья человека, повышения уровня использования рабочего времени, продления периода активной трудовой деятельности человека.

Улучшение условий труда и его безопасности приводит к снижению производственного травматизма, профессиональных заболеваний. Что сохраняет здоровье трудящихся и одновременно приводит к уменьшению затрат на оплату льгот и компенсаций за работу в неблагоприятных условиях труда.

1. Физиология труда

Физиология труда является частью общей физиологии человека. В задачи физиологии труда входит изучение физиологических процессов, то есть состояния и изменения жизненных функций организма человека в процессе его трудовой деятельности, и на основании этого разработка мероприятий, направленных на повышение работоспособности и общего жизненного тонуса, а также укрепления здоровья работающих.

1.1 Физиологические основы трудовой деятельности

Все виды работ, выполняемых человеком, совершенствуются при участии определенных групп мышц, которые, сокращаясь, производят ту или иную работу в физическом понимании этого слова. Для выполнения ее мышцы затрачивают соответствующее количество энергии, пополнение которой происходит за счет потребления питательных веществ, поступающих постоянно с кровотоком. Этим же кровотоком от работающих мышц уносятся отработанные вещества - продукты окисления. Основным источником энергии для работающих мышц является гликоген, а процесс горения заключается в его окислении, то есть соединение с кислородом, также поступающим в кровь. Этот сложный биохимический процесс происходит посредством ряда промежуточных реакций, при участии других веществ и под влиянием так называемых ферментов, играющих роль ускорителей реакций. Конечным продуктом биохимических процессов в работающей мышце является молочная кислота, которая окисляется и удаляется кровотоком.

В состоянии покоя для работы мышц и внутренних органов человек в среднем потребляет кислорода 200-250 см/мин. Это называется основным обменом. При выполнении какой-либо физической работы окислительные процессы в организме усиливаются за счет включения в работу дополнительных групп мышц, и, следовательно, увеличивается потребление кислорода. По потреблению кислорода в единицу времени можно судить о тяжести выполняемой физической работы. Физические работы условно принято делить на три группы по степени их тяжести. В основе такого деления лежит потребление кислорода как один из доступных для измерения и объективных показателей энергетических затрат. К числу легких относятся такие работы, при которых потребление кислорода не превышает 0,5 л/мин, то есть не более чем в 2-2,5 раза выше основного обмена (в полном покое). При работах средней тяжести потребление кислорода - от 0,5 до 1,0 л/мин, то есть в 2-4 раза выше основного обмена. Тяжелые работы требуют потребления кислорода выше 1,0 л/мин. Нередко эти показатели потребления кислорода пересчитывают в энерготраты, что соответственно равно: для легкой работы - до 150 ккал/ч, для средней - 150-250 ккал/ч, для тяжелой - более 250 ккал/ч.

К категории легких относятся, например, работы, связанные с ходьбой, но не требующие систематического физического напряжения или поднятия и переноски тяжестей (основные процессы швейного производства, точного приборостроения и машиностроения, полиграфической промышленности, работы контролеров, работников связи). К категории средней тяжести относятся работы, связанные с постоянной ходьбой, переноской небольших тяжестей (до 10 кг) и выполняемые стоя (основные процессы в прядильно-ткацком производстве, в механосборочных цехах, в механизированных мартеновских, прокатных, литейных, кузнечных, термических цехах).

К категории тяжелых относятся работы, связанные с систематическим физическим напряжением, а также с постоянными передвижениями и переноской значительных (свыше 10 кг) тяжестей (цехи кузнечные с ручной ковкой, литейные с ручной набивкой и заливкой опок).

Для увеличения доставки кислорода и других питательных веществ, а также для удаления быстро накапливающейся молочной кислоты в работающих мышцах сердечно-сосудистая система увеличивает кровоток. Этот процесс идет в двух направлениях: учащения числа сердечных сокращений за единицу времени (пульса) и увеличения объема каждого сердечного сокращения.

В нормальных условиях сердце взрослого здорового человека проталкивает около семидесяти кубических сантиметров крови за каждое сокращение (ударный объем) и делает за 1 минуту 60-70 таких сокращений. При тяжелой работе количество крови, проталкиваемое сердцем за одно его сокращение, может увеличиться до 130-150 см, а частота сокращений - до 150-170 ударов в минуту, а иногда и более.

Увеличение количества крови, проталкиваемой сердцем через всю сосудистую систему за единицу времени, вызывает повышение кровяного давления в этих сосудах. При тяжелых работах кровяное максимальное давление иногда повышается до 170-180 мм рт. ст., в то время как в норме у здорового человека средних лет оно равно 120-140 мм.

Несмотря на мобилизацию, столь больших резервов сердечно-сосудистой системы, поддержание нормальной мышечной работы на должном уровне сколько-нибудь длительное время не может быть обеспечено, так как вскоре снижается насыщение крови кислородом и в мышцах ощущается его недостаток. Пополнение кислорода в подобных случаях осуществляется посредством учащения дыхания и увеличения его глубины. Так, в нормальном состоянии у взрослого человека бывает 16-20 дыхания в минуту, при этом через легкие проходит 6-8 л воздуха (легочная вентиляция). При тяжелых работах частота дыхания может увеличиться до 30-40 и более дыхания в минуту, а легочная вентиляция - до 40-60 л/мин. Вследствие усиленной работы мышц молочная кислота и другие продукты биохимических процессов постепенно накапливаются в крови и тем самым изменяют ее состав.

Так как процессы окисления в работающих мышцах сопровождаются дополнительной внутренней теплопродукцией, организм перегревается. Для поддержания постоянной температуры тела увеличивается теплоотдача во внешнюю среду главным образом путем усиления потовыделения. Испарение пота охлаждает поверхность тела. Усиленное потоотделение, в свою очередь, ведет к увеличению выделения влаги из организма, что при особо тяжелых и длительных работах может привести к нарушению его водного баланса. Для пополнения влагопотерь рабочие, выполняющие тяжелые физические работы, обычно выпивают большее количество жидкости, чем при легких работах (до 4-5 л за смену).

1.2 Физиологические основы построения режимов труда и отдыха

Разработка режима труда и отдыха основана на решении следующих вопросов:

- когда должны назначаться перерывы и сколько;

- какой продолжительности должен быть каждый;

- каково содержание отдыха.

Динамика работоспособности человека - это научная основа разработки рационального режима труда и отдыха. Физиологи установили, что работоспособность - величина переменная и связано это с изменениями характера протекания физиологических и психических функций в организме. Высокая работоспособность при любом виде деятельности обеспечивается только в том случае, когда трудовой ритм совпадает с естественной периодичностью суточного ритма физиологических функций организма. В связи с установившейся суточной периодикой жизнедеятельности в различные отрезки времени организм человека неодинаково реагирует на физическую и нервно-психическую нагрузку, а его работоспособность и производительность труда в течение суток подвержены определенным колебаниям. В соответствии с суточным циклом наивысший уровень работоспособности отмечается в утренние и дневные часы - с 8 до 20 часов. Минимальная работоспособность - в ночные часы. Особенно неблагоприятен промежуток от 1 до 3-4 часов ночи.

Работоспособность человека в течение рабочей смены характеризуется фазным развитием.

Основными фазами являются:

- фаза вырабатывания, или нарастающей работоспособности. В течение этого периода происходит перестройка физиологических функций от предшествующего вида деятельности человека к производственной. В зависимости от характера труда и индивидуальных особенностей эта фаза длится от нескольких минут до 1,5 часа;

- фаза устойчивой высокой работоспособности. Для нее характерно, что в организме человека устанавливается относительная стабильность или даже некоторое снижение напряженности физиологических функций. Это состояние сочетается с высокими трудовыми показателями (увеличение выработки, уменьшение брака, снижение затрат рабочего времени на выполнение операций, сокращение простоев оборудования, ошибочных действий). В зависимости от степени тяжести труда фаза устойчивой работоспособности может удерживаться в течение 2-2,5 и более часов;

- фаза развития утомления и связанного с этим падения работоспособности длится от нескольких минут до 1-1,5 часа и характеризуется ухудшением функционального состояния организма и технико-экономических показателей его трудовой деятельности.

Динамика работоспособности за смену графически представляет собой кривую, нарастающую в первые часы, проходящую затем на достигнутом высоком уровне и убывающую к обеденному перерыву. Описанные фазы работоспособности повторяются и после обеда. При этом фаза врабатывания протекает быстрее, а фаза устойчивой работоспособности ниже по уровню и менее длительна, чем до обеда. Во второй половине смены снижение работоспособности наступает раньше и развивается сильнее в связи с более глубоким утомлением.

Для динамики работоспособности человека на протяжении суток, недели характерна та же закономерность, что и для работоспособности в течении смены. В различное время суток организм человека по разному реагирует на физическую и нервно-психическую нагрузку. В соответствии с суточным циклом работоспособности наивысший ее уровень отмечается в утренние и дневные часы: с 8 до 12 часов первой половины дня, и с 14 до 17 часов второй. В вечерние часы работоспособность понижается, достигая своего минимума ночью.

В дневное время наименьшая работоспособность, как правило, отмечается в период между 12 и 14 часами, а в ночное время - с 3 до 4 часов.
При построении недельных режимов труда и отдыха следует исходить из того, что работоспособность человека не является стабильной величиной в течение недели, а подвержена определенным изменениям. В первые дни недели работоспособность постепенно увеличивается в связи с постепенным вхождением в работу.

Достигая наивысшего уровня на третий день, работоспособность постепенно снижается, резко падая к последнему дню рабочей недели. В зависимости от характера и степени тяжести труда колебания недельной работоспособности бывают большими или меньшими.

Основываясь на знании изменений недельной кривой работоспособности, можно решать ряд практических вопросов. Характер кривой недельной работоспособности служит обоснованием целесообразности установления рабочего периода продолжительностью не более шести дней.

При пятидневной рабочей неделе с двумя выходными днями в субботу и воскресенье характер изменений работоспособности сохраняется. Однако в связи с двухдневным перерывом в работе может происходить некоторое нарушение динамического стереотипа, и период вырабатывания в начале недели может быть более значительным.

В годовом цикле, как правило, наиболее высокая работоспособность наблюдается в середине зимы, а в жаркое время года она снижается.
Годовые режимы труда и отдыха предусматривают рациональное чередование работы с периодами длительного отдыха. Такой отдых необходим, потому что ежедневный и недельный отдых не предотвращает полностью накопление утомления. Ежегодный отпуск устанавливается в законодательном порядке. Продолжительность его зависит от тяжести труда, но не может быть менее 15 календарных дней. Отпуск продолжительностью до 24 дней целесообразно использовать единовременно, а при большей длительности - в два этапа.

В соответствии с естественным суточным ритмом природных процессов должен осуществляться и порядок чередования смен: утренняя, вечерняя, ночная. Однако, на ряде предприятий, широко использующих труд женщин, хорошо зарекомендовал себя обратный порядок чередования, который позволяет удлинить ежегодный отдых после ночной смены: бригада из ночной смены заступает на работу в вечернюю, а потом в утреннюю смену.

Разрабатывать новые режимы труда и отдыха и совершенствовать существующий, следует исходя из особенностей изменения работоспособности. Если время работы будет совпадать с периодами наивысшей работоспособности, то работник сможет выполнить максимум работы при минимальном расходовании энергии и минимальном утомлении

2 Основные физиологические реакции организма на физическую и умственную работу

Основными физиологическими реакциями организма на физическую работу являются учащение пульса и повышение кровяного давления, учащение дыхания и повышение легочной вентиляции, изменение состава крови, увеличение потоотделения. Степень изменения этих функций находится в зависимости от тяжести работы, ее продолжительности и интенсивности. Изменения постепенно нарастают, доходя до определенного уровня, при котором усиленная работа органов и систем как бы уравновешивается с потребностями организма. По прекращении работы наступает восстановительный период, когда измененные функции постепенно приходят к исходному состоянию, то есть к норме. Продолжительность восстановления различных функций неодинакова: некоторые из них (пульс, кровяное давление, частота дыхания, легочная вентиляция) восстанавливаются в первые 10 -- 15 минут отдыха, другие (состав крови и др.) -- в течение 45 -- 50 минут и более.

Некоторое запаздывание восстановления измененных функций по сравнению с окончанием работы объясняется тем, что во время мобилизации внутренних ресурсов для выполнения задания происходит обеднение кислородом и другими энергетическими продуктами неработающих тканей и органов, а также поглощение внутренних запасов самих мышечных клеток, которые за счет этих внутренних запасов некоторое время могут функционировать без потребления кислорода (так называемая анаэробная фаза работы мышцы). В мышечных клетках накапливается не окисленная молочная кислота. Для того чтобы пополнить все эти ресурсы и окислить оставшуюся молочную кислоту, организм даже по прекращении работы продолжает потреблять повышенное количество кислорода и заставляет более интенсивно трудиться соответствующие органы и системы.

В случаях, когда тяжелая или продолжительная работа предъявляет особо высокие требования к организму и мобилизация всех имеющихся у него ресурсов не обеспечивает доставку необходимого количества кислорода и других питательных веществ, наступает утомление мышцы. Этому способствует и накопление в клетке молочной кислоты, которая парализует мышцу вследствие прекращения действия ферментов. Весь сложный процесс биохимических реакций в мышечных клетках, мобилизации внутренних ресурсов для выполнения той или иной работы, восстановления измененных физиологических функций, направляется и координируется центральной нервной системой. Которая с помощью различных органов чувств -- анализаторов воспринимает многообразные раздражители -- сигналы, анализирует их и направляет необходимые импульсы в соответствующие органы и системы, которые и приводят последние в действие, адекватное полученным сигналам.

Весьма важна роль центральной нервной системы в подготовке соответствующих органов и систем и предварительной мобилизации ресурсов к предстоящему выполнению задания. Так, например, исследования газообмена у человека до начала смены и на протяжении всего рабочего времени показали, что увеличение потребления кислорода начинается уже тогда, когда рабочий только вошел в цех. Следовательно, рабочая обстановка воспринята центральной нервной системой и последней посланы импульсы, подготовившие соответствующие органы и системы к выполнению сменного задания.

Не менее важна роль центральной нервной системы в способности выполнять в течение длительного времени работу на определенном не снижающемся уровне, то есть в работоспособности человека. От того, насколько хорошо подготовлен организм, насколько полно и рационально мобилизуются внутренние энергетические ресурсы, зависит способность человека к труду той или иной тяжести и продолжительности. Исследования показывают, что работоспособность человека зависит от общей приспособленности физиологических функций к трудовой деятельности, от тренированности организма в целом и от упражнений в данном виде работ, от эмоционального состояния человека и от состояния внешней обстановки, то есть окружающей среды. Особого внимания заслуживают три последних фактора: тренированность, эмоциональное состояние и состояние внешней среды, то есть те, которые подвластны человеку, и он может на них влиять, изменять и развивать их. Одновременно с созданием благоприятных условий, с тренировкой организма создаются благоприятные условий для развития и общей приспособленности физиологических функций к выполнению физической работы. Следовательно, работоспособность -- это не врожденное и не неизменное качество человека, а приобретенное в процессе труда, выработанное самим человеком.

Отдельные мышечные группы получают нагрузку не только при перемещении каких-либо тяжестей, но и в то время, когда человек удерживает на месте тяжести, или вес собственного тела, или отдельных его частей (туловища, рук, головы). Различают два вида работы: динамическую, связанную с перемещением, движением, и статическую, связанную с затратой мышечного напряжения без совершения каких-либо движений. И тот и другой вид связан с потреблением энергии и энергетических ресурсов (кислорода), поэтому может привести к утомлению отдельных мышечных групп и организма в целом.

В этой связи необходимо остановиться на важности рабочей позы. В процессе трудовой деятельности нередко рабочий выполняет отдельные операции при вынужденном положении тела, при котором приходится удерживать на весу собственное туловище (особенно в согнутом положении), верхние или нижние конечности (в частности, когда они отведены в стороны, вперед или назад на большой угол, приближающийся к 90o), голову, например, при производстве работ над головой. Затрачиваемая энергия при этом нередко составляет немалую часть общих энерготрат, поэтому вынужденное и тем более неудобное положение тела порой, даже в случае легкой работы, может привести к быстрому утомлению, так как статическое напряжение вследствие нагрузки на одни и те же группы мышц более утомительно. Причиной относительно быстрого утомления может быть нерациональный режим труда.

Большинство выполняемых трудовых процессов в производственных условиях характеризуется разнообразием движений, при которых общая нагрузка более или менее равномерно распределяется по всем группам мышц. Чередование отдельных движений позволяет каждой группе периодически отдыхать. В работе бывают небольшие паузы (микропаузы), когда трудящийся находится на рабочем месте, но производит легкую работу с минимальным участием мышечных групп. Такие непродолжительные микропаузы следует считать весьма полезными, так как они положительно влияют на работоспособность и существенно отдаляют утомление.

При некоторых процессах подобных микропауз почти нет, и, следовательно, на протяжении всего трудового периода все участвующие труппы мышц работают непрерывно. Вполне естественно, что утомление в таких случаях наступает значительно раньше.

Все эти положения имеют существенное значение при оценке режима труда. Его можно считать рациональным, если в работе имеются периодические микропаузы, регулярно чередуются различные виды движений, а также тяжелые и легкие работы. И наоборот, режим труда не может быть отнесен к категории рациональных, если нет микропауз или они смещены по времени к нескольким небольшим периодам работы (в начале или в конце смены), если однообразные движения следуют одно за другим, если тяжелые усилия не чередуются с более легкими.

При необходимости выполнять однообразные повторяющиеся движения (на конвейере, на поточной линии) важную роль играет ритм работы, то есть частота и равномерность этих повторений. С одной стороны, выполнение равномерных однообразных движений приводит к выработке так называемого стереотипа -- привычных рефлекторных движений, которые выполняются с наименьшими энерготратами, так как отрабатываются наиболее рациональные движения, появляется тренированность, в работе участвует минимальное количество мышечных групп. С другой стороны, такие однообразные повторения утомляют ограниченную мышечную группу при относительно малой работе в целом.

Исследования работоспособности и утомляемости показали, что в течение смены, как правило, наблюдается однотипная последовательность их изменения, В начале рабочего дня работоспособность постепенно нарастает, проходит как бы период вырабатываемости; достигнув максимального подъема, она держится на этом уровне более или менее длительное время, затем происходит постепенное снижение работоспособности -- наступает период утомления. Степень и время этих изменений работоспособности различны при разных видах работ и зависят от их тяжести и ритма, Организация кратковременных перерывов в конце максимальной работоспособности удлиняла этот период, отдаляла и ослабляла утомляемость и повышала общую производительность труда.

Помимо физиологических изменений в виде утомления, различные виды физического напряжения могут вызвать и некоторые патологические явления в организме, то есть заболевания. Например, длительная работа в неудобном положении, особенно при подъеме или удерживании тяжестей, может привести к искривлению позвоночника вбок (сколиоз) или вперед (кифоз). Трудовые процессы, связанные с длительным стоянием или хождением и сопровождающиеся дополнительным напряжением, могут вызвать плоскостопие или варикозное расширение вен нижних конечностей. Постоянное напряжение (статическое) или часто повторяющиеся однообразные движения, особенно при тяжелой и интенсивной работе, нередко являются причинами нервно-мышечных заболеваний (воспаление сухожилий, нейромиалгии, неврозы, люмбаго и др.). Частые и длительные перенапряжения одних и тех же групп мышц живота могут привести к их расслаблению и образованию грыж. Напряжение органов зрения при выполнении точных зрительных работ способствует развитию профессиональной миопии -- близорукости.

В современных высокомеханизированных, автоматизированных производствах на смену тяжелому физическому труду пришли машины, управление которыми требует от рабочих значительного нервно-психического и умственного напряжения. В отличие от физического напряжения оно не проявляется изменением физиологических функций сердечно-сосудистой, дыхательной, терморегуляторной и других систем. Оно касается главным образом высшего, координирующего органа -- центральной нервной системы. Длительное напряжение клеток коры головного мозга также вызывает их утомление, которое проявляется в виде снижения работоспособности к концу дня, плохого самочувствия и т. п.

Работоспособность умственного или близкого к нему по характеру труда зависит от тех же факторов, что и при физическом труде: общего приспособления функций головного мозга к умственной работе, тренированности и упражнения, эмоционального состояния и состояния внешней среды. Причем эмоциональное состояние при умственном труде играет большую роль, чем при физическом. Утомление, наступившее в результате напряженного умственного труда, несмотря на меньшую внешнюю выраженность, исчезает значительно медленнее, то есть восстановительный период после умственной работы значительно продолжительнее, чем после физической.

3. Понятие комфортных условий трудовой деятельности

Условия, в которых трудится человек, влияют на результаты производства - производительность труда, качество и себестоимость выпускаемой продукции. Производительность труда повышается за счет сохранения здоровья человека, повышения уровня использования рабочего времени, продления периода активной трудовой деятельности человека.

Улучшение условий труда и его безопасности приводит к снижению производственного травматизма, профессиональных заболеваний. Что сохраняет здоровье трудящихся и одновременно приводит к уменьшению затрат на оплату льгот и компенсаций за работу в неблагоприятных условиях труда, на оплату последствий такой работы (временной и постоянной нетрудоспособности), на лечение, переподготовку работников производства в связи с текучестью кадров по причинам, связанным с условиями труда.

Одним из необходимых условий здорового и высокопроизводительного труда является обеспечение чистоты воздуха и нормальных метеорологических условий в рабочей зоне помещений, т. е. пространстве высотой до 2 метров над уровнем пола или площадки, где находятся рабочие места.

3.1 Промышленная вентиляция и требуемое состояние воздуха на рабочем месте

Температура воздуха на рабочем месте:

- в помещении в теплый период18-22 Сє;

- в помещении в холодный период 20-22Сє;

- на открытом воздухе в теплый период 18-22Сє;

- на открытом воздухе в холодный период 7-10 Сє;

- относительная влажность воздуха, 40-54%;

- скорость движения воздуха менее 0,2 м/с.

Требуемое состояние воздуха рабочей зоны может быть обеспечено выполнением определенных мероприятий, к основным из которых относятся:

- механизация и автоматизация производственных процессов, дистанционное управление ими;

- применение технологических процессов и оборудования, исключающих образование вредных веществ или попадания их в рабочую зону4

- защита от источников тепловых излучений;

- устройство вентиляции, кондиционирования, отопления;

- очистка воздуха от вредных веществ и промышленной пыли;

Вентиляция промышленных зданий имеет большое значение в оздоровлении условий труда. Она предназначена для удаления вредных выделений из рабочих помещений и подачи в них свежего воздуха. Из имеющихся систем вентилирования наиболее широкое применение получили аэрация промышленных зданий и механическая вентиляция; за последнее время несколько шире стало использоваться и кондиционирование воздуха,

Аэрация -- это организованный, рассчитываемый и управляемый естественный воздухообмен. С помощью аэрации можно обеспечить огромные воздухообмены в цехах, удалить из них избытки тепла и загазованный воздух, доставить свежий воздух в рабочую зону. Аэрация используется главным образом в горячих цехах.

Для поступления в цех наружного воздуха в стенах здания делаются открывающиеся проемы в виде ворот, окон с фрамугами, жалюзи, а для удаления нагретого и загазованного воздуха в крыше оборудуются аэрационные фонари в виде приподнятой кровли с боковыми открывающимися фрамугами. Аэрационный фонарь, как правило, используется одновременно и как световой, поэтому его фрамуги остекляются. В целях обеспечения наиболее эффективной работы аэрационных фонарей в настоящее время преимущественно используются так называемые не задуваемые аэрационные фонари, в которых фрамуги защищены либо специальными щитами, установленными на некотором расстоянии параллельно фонарю, по обе его стороны, либо глухими стенками соседних фонарей или парапетов.

На небольших участках с тепло- или газовыделениями естественная вытяжка может осуществляться через прямые вытяжные шахты, установленные над источниками; выделения тепла или газа. Для использования дополнительной силы ветрового напора и защиты вытяжной шахты от задувания на наружном конце ее устанавливается один из видов дефлекторов («ЦАГИ», «Шанар» и др.). Дефлекторы устанавливают на наиболее высоких участках кровли, с тем, чтобы при любом направлении ветра они находились под действием осетрового напора.

Механическая вентиляция осуществляется при помощи механических побудителей -- вентиляторов или эжекторов. Вентиляция, предназначенная для отсасывания воздуха из помещений, называется вытяжной, а для нагнетания -- приточной. Как вытяжная, так и приточная вентиляция может быть местной и общеобменной.

Местная вытяжная вентиляция предназначена для удаления тепла, газов, паров или пыли непосредственно от места их образования. Это наиболее рациональный способ удаления производственных вредностей, так как в этом случае они не распространяются по цеху. Для того чтобы повысить эффективность местной вытяжной вентиляции, необходимо максимально укрыть источники выделения вредностей и производить отсос из-под укрытия, Если полностью укрыть источник выделения вредностей невозможно, отсос следует максимально приблизить к этому источнику.

Общеобменная вытяжная вентиляция устраивается для удаления из цеха загрязненного или нагретого воздуха. Всасывающие отверстия этой вентиляции, как правило, располагаются в верхней зоне цеха, куда чаще всего поднимаются нагретый воздух, пары или газы.

Приточная вентиляция применяется для компенсации удаляемого из цеха воздуха, разбавления выделяющихся вредностей, воздушного душирования (то есть обдувания рабочего свежим воздухом), для устройства воздушно-тепловых завес и т. п. Воздух, подаваемый приточной вентиляцией, как правило, забирается снаружи. В зимнее время он подогревается специальными калориферами, а летом иногда охлаждается. Охлаждение воздуха чаще всего производится посредством орошения его водой.

Подача воздуха в цех производится через специальные насадки на концах воздуховодов -- патрубки. При подаче воздуха на рабочие места наиболее целесообразно использовать вращающиеся патрубки с изменением угла наклона направляющих лопаток. С помощью такого патрубка можно регулировать направление потока приточного воздуха в зависимости от места нахождения рабочего при выполнении той или иной операции.

При устройстве воздушно-тепловых завес у въездных проемов подогреваемый в приточной камере воздух подается через две узкие щели по обе стороны ворот по всей их высоте или снизу вверх с большой скоростью по направлению к центру и наружу. Струя теплого воздуха перекрывает всю площадь открытого проема и препятствует попаданию наружного холодного воздуха в цех. Для воздушно-тепловых завес можно использовать также нагретый воздух цеха, забирая его из верхней зоны, например над горячим оборудованием. При этом отпадает надобность его подогревать. Возможное загрязнение этого воздуха газами в большинстве случаев не представляет серьезной опасности, так как рабочие почти не бывают в зоне действия воздушно-тепловой завесы, воздух этот в основном уходит наружу, где он быстро разбавляется свежим.

В горячих цехах широко применяются переносные приточные вентиляционные установки пропеллерного типа, так называемые аэраторы. Они состоят из осевого вентилятора, укрепленного на передвижной станине, и предназначены для обдувания рабочего. Аэраторы используют воздух того участка, где они установлены, и охлаждающий эффект происходит только за счет движения воздуха.

Большие трудности представляет вентилирование кабин кранов, так как движение кабины вместе с краном на значительные расстояния вдоль цеха, а иногда и вдоль фермы крана крайне усложняет подведение к ней свежего воздуха. Подавать цеховой воздух из зоны движения кабины нецелесообразно, так как большинство кабин подвешено на значительной высоте, где воздух более нагрет и загазован.

Кондиционирование воздуха заключается в придании ему строго определенной температуры, а иногда и влажности, что производится в кондиционерах с помощью химических хладагентов (фреонов, аммиака и др.). Кондиционирование, как правило, применяется в закрытых помещениях малого объема (пультах управления, кабинах кранов и т. п.).

Для быстрого удаления из рабочих помещений воздуха, загрязненного вредными парами или газами вследствие внезапных массивных их выделений (аварийная ситуация), на участках с повышенной потенциальной опасностью подобных ситуаций предусматривается аварийная вентиляция, Она оборудуется в дополнение к основной и рассчитывается на большие объемы удаляемого воздуха. При этом аварийная вентиляция не компенсируется притоком; последний на период кратковременного включения ее осуществляется за счет подсоса из смежных помещений или снаружи. Включение аварийной вентиляции производится снаружи, а иногда при помощи автоматики, сблокированной с технологическим оборудованием, газоанализаторами.

4. Шум, вибрация и ультразвук

Шум, вибрация и ультразвук объединяются общим принципом их образования: все они являются результатом колебания тел, передаваемого непосредственно или через газообразные, жидкие и твердые среды. Отличаются они друг от друга лишь по частоте этих колебаний и различным восприятием их человеком.

Колебания с частотой от 20 до 20000 гц (герц -- единица измерения частоты, равная одному колебанию в секунду), передаваемые через газообразную среду, называются звуками и воспринимаются органами слуха человека как звуки; беспорядочное сочетание таких звуков составляет шум. Колебания ниже 20 гц называются инфразвуками, а выше 20000 гц -- ультразвуками; они органами слуха человека не воспринимаются, однако оказывают на него влияние. Некоторые же животные, например собаки, воспринимают на слух более высокие колебания, то есть ультразвук.

Колебания твердых тел или передаваемые через твердые тела (машины, строительные конструкции и т. п.) называются вибрацией. Вибрация воспринимается человеком как сотрясение при общей вибрации с частотой от 1 до 100 гц, а при локальной (местной)-- от 10 до 1000 гц (например, при работе с виброинструментом).

Четких границ между шумом, ультразвуком и вибрацией не существует, поэтому на пограничных частотах обычно имеет место воздействие на человека двух, а иногда и всех трех вышеуказанных факторов.

4.1 Понятие шума и вибрации, их влияние на организм

Шум представляет собой беспорядочное сочетание разнообразных звуков, поэтому для понимания физических основ образования и распространения шума, его восприятия человеком и влияния на организм следует рассматривать звук как составную часть всякого шума, включая и производственный.

Колебания источника звука производят попеременное сжатие и разрежение воздуха, образуя волнообразное колебание его, распространяющееся от источника звука во все стороны в виде увеличивающихся в объеме сфер. Это называется, распространением звуковой волны. По мере израсходования на колебание воздуха сообщенной источником энергии звуковая волна постепенно затухает, поэтому, чем больше энергия источника звука, тем с большей силой происходят колебания воздуха и дальше распространяется звуковая волна. От величины энергии источника звука зависит сила звука, оцениваемая звуковым давлением, которое измеряется в ньютонах на квадратный метр (Н/м2).

Звуковые волны, встретив на пути распространения любые поверхности (твердые, жидкие), передают им эти колебания. Подобным препятствием звуковой волне может служить и орган слуха, который состоит у человека из ушной раковины со слуховым проходом (наружное ухо), барабанной перепонки, соединенной с системой слуховых косточек (среднее ухо), и так называемого кортнева органа с окончаниями слухового нерва (внутреннее ухо). Звуковая волна вызывает колебания барабанной перепонки, которые, приводя в движение систёму косточек среднего уха, передаются окончаниям (рецепторам) слухового нерва, вызывая в них соответствующие нервные импульсы, посылаемые в головной мозг. Более интенсивный звук, то есть с большей энергией колебаний, воспринимается как громкий, менее интенсивный -- как тихий.

Установлено, что орган слуха человека воспринимает разность изменения звукового давления в виде кратности этого изменения, поэтому для измерения интенсивности шума используют логарифмическую шкалу в децибелах относительно порога слышимости (минимальное звуковое давление, воспринимаемое органом слуха) человека с нормальным слухом.

При повышении интенсивности звука создаваемое в звуковой волной давление на барабанную перепонку на определенном уровне может вызывать болевые ощущения. Такая интенсивность звука называется порогом болевых ощущений и находится в пределах 130 дБ.

В условиях производства, как правило, имеют место шумы различной интенсивности и спектра, которые создаются в результате работы разнообразных механизмов, агрегатов и других устройств. Они образуются вследствие быстрых вращательных движений, скольжения (трения), одиночных или повторяющихся ударов, вибрации инструментов и отдельных деталей машин, завихрений сильных воздушных или газовых потоков и т. д. Шум имеет в своем составе различные частоты, и все же каждый шум можно охарактеризовать преобладанием тех или иных частот. Условно принято весь спектр шумов делить на низкочастотные -- с частотой колебаний до 350 гц, среднечастотные -- от 350 до 800 гц и высокочастотные -- свыше 800 гц.

Помимо местного действия -- на орган слуха, шум оказывает и общее действие на организм работающих. Шум является внешним раздражителем, который воспринимается и анализируется корой головного мозга, в результате чего при интенсивном и длительно действующем шуме наступает перенапряжение центральной нервной системы, распространяющееся не только на специфические слуховые центры, но и на другие отделы головного мозга. Вследствие этого нарушается координирующая деятельность центральной нервной системы, что, в свою очередь, ведет к расстройству функций внутренних органов и систем. Например, у рабочих, длительное время подвергавшихся воздействию интенсивного шума, особенно высокочастотного, отмечаются жалобы на головные боли, головокружение, шум в ушах, а при медицинских обследованиях выявляются язвенная болезнь, гипертония, гастриты и другие хронические заболевания.

Восприятие вибрации зависит от частоты колебаний, их силы и размаха -- амплитуды. Частота вибрации, как и частота звука, измеряется в герцах, энергия -- в килограммометрах, а амплитуда колебаний -- в миллиметрах. Вибрация воспринимается лишь при непосредственном соприкосновении с вибрирующим телом или через другие твердые тела, соприкасающиеся с ним. При соприкосновении с источником колебаний, генерирующим (издающим) звуки наиболее низких частот (басовые), наряду со звуком воспринимается и сотрясение, то есть вибрация.

Колебания, передаваемые от вибрирующей поверхности, телу человека, вызывают раздражение многочисленных нервных окончаний в стенках кровеносных сосудов, мышечных и других тканях. Ответные импульсы приводят к нарушениям обычного функционального состояния некоторых внутренних органов и систем, и в первую очередь периферических нервов и кровеносных сосудов, вызывая их сокращение. Сами же нервные окончания, особенно кожные, также подвергаются изменению -- становятся менее восприимчивыми к раздражением. Все это проявляется в виде беспричинных болей в руках, особенно по ночам, онемения, ощущения «ползания мурашек», внезапного обеления пальцев, снижения всех видов кожной чувствительности (болевой, температурной, тактильной). Весь этот комплекс симптомов, характерный для воздействия вибрации, получил название вибрационной болезни. Больные вибрационной болезнью обычно жалуются на мышечную слабость и быструю утомляемость. У женщин от воздействия вибрации, помимо этого, нередко появляются нарушения функционального состояния половой сферы.

Развитие вибрационной болезни и. других неблагоприятных явлений зависит в основном от спектрального состава вибрации: чем выше частота вибрации и чем больше амплитуда и скорости колебаний, тем большую опасность представляет вибрация в отношении сроков развития и тяжести вибрационной болезни.

Способствуют развитию вибрационной болезни охлаждение тела, главным образом тех его частей, которые подвержены вибрации, мышечные напряжения, особенно статическое, шум и другие.

4.2 Меры борьбы с шумом и вибрацией

Мероприятия по борьбе с шумом и вибрацией во многом однотипны.

Прежде всего, необходимо обратить внимание на технологический процесс и оборудование, по возможности заменить операции, сопровождающиеся шумом или вибрацией, другими. В ряде случаев можно заменить ковку металла его штамповкой, клепку и чеканку -- прессованием или электросваркой, наждачную зачистку металла-- огневой, распиловку циркулярными пилами -- резанием специальными ножницами и т. д. Необходимо следить, чтобы при такой замене не создавались какие-либо дополнительные вредности, которые могут оказывать на работающих более неблагоприятное действие, чем шум и вибрация.

Устранение или сокращение шума и вибрации от вращающихся или двигающихся узлов и агрегатов достигается, прежде всего, путем точной подгонки всех деталей и отладки их работы (уменьшение до минимума допусков между соединяющимися деталями, устранение перекосов, балансировка, своевременная смазка и т. п.). Под вращающиеся или вибрирующие машины или отдельные узлы (между соударяющимися деталями) следует прокладывать пружины или амортизирующий материал (резина, войлок, пробка, мягкие пластики и т. п.). В тех случаях, где допустимо по техническим условиям, целесообразно заменить подшипники качения на подшипники скольжения, плоскоременные передачи с вшивным ремнем -- на клиновидные, редукторные передачи на безредукторные, детали и узлы с возвратно-поступательными движениями -- на вращательные.

Немаловажную роль в борьбе с шумом и вибрацией играют архитектурно-строительные и планировочные решения при проектировании и строительстве промышленных зданий. Прежде всего, необходимо наиболее шумящее и вибрирующее оборудование вынести за пределы производственных помещений, где находятся рабочие; если это оборудование требует постоянного или частого периодического наблюдения, на участке его размещения оборудуются звукоизолированные будки или комнаты для обслуживающего персонала.

Помещения с шумящим и вибрирующим оборудованием надо как можно лучше изолировать от остальных рабочих участков. Аналогичным образом целесообразно изолировать между собой и помещения или участки с шумами разной интенсивности и спектра. Стены и потолки в шумных помещениях покрываются звукопоглощающими материалами, акустической штукатуркой, мягкими драпировками, перфорированными панелями с подкладкой из шлаковаты и др.

Мощные машины и другое оборудование вращательного или ударного действия устанавливаются в нижнем этаже на специальном фундаменте, полностью отделенном от основного фундамента здания, а также пола и опорных конструкций. Подобное оборудование меньшей мощности устанавливается на несущих конструкциях здания с прокладками из амортизирующих материалов или на консолях, крепящихся на капитальных стенах. Оборудование, создающее шум, укрывается кожухами или заключается в изолированные кабины со звукопоглощающими покрытиями. Звукоизолируются также газовые или воздушные коммуникации, по которым может распространяться шум (от компрессоров, пневмоприводов, вентиляторов и т. п.).

В качестве индивидуальных защитных средств при работе в шумных помещениях используются различные противошумы (антифоны). Они изготовляются либо в виде вставляемых в наружный слуховой проход вкладышей из мягких звукопоглощающих материалов, либо в виде наушников, надеваемых на ушную раковину.

Необходимо организовать трудовой процесс таким образом, чтобы операции, сопровождающиеся шумом или вибрацией, чередовались с другими работами без этих факторов. Если организовать такое чередование невозможно, нужно предусматривать периодические кратковременные перерывы в работе с отключением шумящего или вибрирующего оборудования или удалением рабочих в другое помещение. Следует избегать значительных физических нагрузок, особенно статических напряжений, а также охлаждения рук и всего тела; во время перерывов обязательно делать физкультурные упражнения (физкультпаузы).

При приеме на работу, связанную с возможным воздействием шума или вибрации, проводятся обязательные предварительные медицинские осмотры, а в процессе работы -- периодические медосмотры раз в год.

4.3 Ультразвук и его действие на организм, меры профилактики

В промышленных условиях для получения ультразвука используются установки, состоящие из генераторов высокочастотного переменного тока и магнитострикционного преобразователя. Последний, изготовленный из магнитного материала, под действием переменного электротока изменяет свои геометрические размеры, то есть вибрирует, создавая колебания с частотой, равной частоте переменного тока. Доведя частоту переменного тока до определенного уровня, с помощью такой установки можно получить и звук и ультразвук. Эти установки не дают строго определенных частот колебаний, поэтому с их помощью не удается получить чистого ультразвука рабочей частоты; как правило, образуются колебания с частотой несколько выше и ниже основной, рабочей, то есть получается определенный диапазон колебаний. В промышленности чаще всего используются частоты, находящиеся на границе со звуковой частотой от 18 до 24 кгц. Именно поэтому в производственных условиях, где применяется ультразвук, последний сопровождается образованием шума (обычно высокочастотного).

Ультразвук способен распространяться во всех средах: в газообразной, включая и воздух, жидкой и твердой. При применении ультразвука для производственных целей создаваемые его источником колебания чаще всего передаются через жидкую среду (при очистке, обезжиривании и т. п.) или через твердую (при сверлении, резании, шлифовании и т. п.). Однако и в том и в другом случае некоторая часть энергии, генерируемой. источником ультразвука, переходит в воздушную среду, в которой также возникают ультразвуковые колебания.

Оценивается ультразвук по двум основным его параметрам: частоте колебаний и уровню звукового давления. Частота колебаний, так же как и шум и вибрация, измеряется в герцах или килогерцах (1 кгц равен 1000 гц). Интенсивность ультразвука, распространяемого в воздушной и газовой среде, так же как и шум, измеряется в децибелах. Интенсивность ультразвука, распространяемого через жидкую или твердую среду, принято выражать в единицах мощности излучаемых магнитострикционным преобразователем колебаний на единицу облучаемой поверхности -- ватт на квадратный сантиметр (вт/см2).

При распространении в жидкой среде ультразвук вызывает кавитацию этой жидкости, то есть образование в ней мельчайших пустотных пузырьков (вследствие периодического его сжатия и разрежения под действием ультразвуковых колебаний), немедленно заполняемых парами этой жидкости и растворенных в ней веществ, и их сжатие. Этот процесс сопровождается образованием шума.

Ультразвуковые колебания непосредственно у источника их образования распространяются направленно, но уже на небольшом расстоянии от источника (25 -- 50 см) эти колебания переходят в концентрические волны, заполняя все рабочее помещение ультразвуком и высокочастотным шумом.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.