Numerals of ancient people

From the number systems of Babylonian civilisation came the base of 60, that is the sexagesimal system. The Egyptians numerals hieroglyphs are little pictures representing words. The Incas had developed a method of recording numerical information - quipu.

Рубрика Иностранные языки и языкознание
Вид реферат
Язык английский
Дата добавления 04.11.2009
Размер файла 132,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таганрогский технологический институт южного федерального университета

Реферат на тему:

Numerals of ancient people

Babylonian numerals

The Babylonian civilisation in Mesopotamia replaced the Sumerian civilisation and the Akkadian civilisation. Certainly in terms of their number system the Babylonians inherited ideas from the Sumerians and from the Akkadians. From the number systems of these earlier peoples came the base of 60, that is the sexagesimal system. Yet neither the Sumerian nor the Akkadian system was a positional system and this advance by the Babylonians was undoubtedly their greatest achievement in terms of developing the number system. Some would argue that it was their biggest achievement in mathematics.

Often when told that the Babylonian number system was base 60 people's first reaction is: what a lot of special number symbols they must have had to learn. Now of course this comment is based on knowledge of our own decimal system which is a positional system with nine special symbols and a zero symbol to denote an empty place.

However, rather than have to learn 10 symbols as we do to use our decimal numbers, the Babylonians only had to learn two symbols to produce their base 60 positional system. Now although the Babylonian system was a positional base 60 system, it had some vestiges of a base 10 system within it. This is because the 59 numbers, which go into one of the places of the system, were built from a 'unit' symbol and a 'ten' symbol.

Here are the 59 symbols built from these two symbols

Now given a positional system one needs a convention concerning which end of the number represents the units. For example the decimal 12345 represents

1 104 + 2 103 + 3 102 + 4 10 + 5.

If one thinks about it this is perhaps illogical for we read from left to right so when we read the first digit we do not know its value until we have read the complete number to find out how many powers of 10 are associated with this first place. The Babylonian sexagesimal positional system places numbers with the same convention, so the right most position is for the units up to 59, the position one to the left is for 60 n where 1 n 59, etc. Now we adopt a notation where we separate the numerals by commas so, for example, 1,57,46,40 represents the sexagesimal number

1 603 + 57 602 + 46 60 + 40

which, in decimal notation is 424000.

Here is 1,57,46,40 in Babylonian numerals

Now there is a potential problem with the system. Since two is represented by two characters each representing one unit, and 61 is represented by the one character for a unit in the first place and a second identical character for a unit in the second place then the Babylonian sexagesimal numbers 1,1 and 2 have essentially the same representation. However, this was not really a problem since the spacing of the characters allowed one to tell the difference. In the symbol for 2 the two characters representing the unit touch each other and become a single symbol. In the number 1,1 there is a space between them.

A much more serious problem was the fact that there was no zero to put into an empty position. The numbers sexagesimal numbers 1 and 1,0, namely 1 and 60 in decimals, had exactly the same representation and now there was no way that spacing could help. The context made it clear, and in fact despite this appearing very unsatisfactory, it could not have been found so by the Babylonians. How do we know this? Well if they had really found that the system presented them with real ambiguities they would have solved the problem - there is little doubt that they had the skills to come up with a solution had the system been unworkable. Perhaps we should mention here that later Babylonian civilizations did invent a symbol to indicate an empty place so the lack of a zero could not have been totally satisfactory to them.

An empty place in the middle of a number likewise gave them problems. Although not a very serious comment, perhaps it is worth remarking that if we assume that all our decimal digits are equally likely in a number then there is a one in ten chance of an empty place while for the Babylonians with their sexagesimal system there was a one in sixty chance. Returning to empty places in the middle of numbers we can look at actual examples where this happens.

Here is an example from a cuneiform tablet (actually AO 17264 in the Louvre collection in Paris) in which the calculation to square 147 is carried out. In sexagesimal 147 = 2,27 and squaring gives the number 21609 = 6,0,9.

Here is the Babylonian example of 2,27 squared

Perhaps the scribe left a little more space than usual between the 6 and the 9 than he would have done had he been representing 6,9.

Now if the empty space caused a problem with integers then there was an even bigger problem with Babylonian sexagesimal fractions. The Babylonians used a system of sexagesimal fractions similar to our decimal fractions. For example if we write 0.125 then this is 1/10 + 2/100 + 5/1000 = 1/8. Of course a fraction of the form a/b, in its lowest form, can be represented as a finite decimal fraction if and only if b has no prime divisors other than 2 or 5. So 1/3 has no finite decimal fraction. Similarly the Babylonian sexagesimal fraction 0;7,30 represented 7/60 + 30/3600 which again written in our notation is 1/8.

Since 60 is divisible by the primes 2, 3 and 5 then a number of the form a/b, in its lowest form, can be represented as a finite decimal fraction if and only if b has no prime divisors other than 2, 3 or 5. More fractions can therefore be represented as finite sexagesimal fractions than can as finite decimal fractions. Some historians think that this observation has a direct bearing on why the Babylonians developed the sexagesimal system, rather than the decimal system, but this seems a little unlikely. If this were the case why not have 30 as a base? We discuss this problem in some detail below.

Now we have already suggested the notation that we will use to denote a sexagesimal number with fractional part. To illustrate 10,12,5;1,52,30 represents the number

10 602 + 12 60 + 5 + 1/60 + 52/602 + 30/603

which in our notation is 36725 1/32. This is fine but we have introduced the notation of the semicolon to show where the integer part ends and the fractional part begins. It is the "sexagesimal point" and plays an analogous role to a decimal point. However, the Babylonians has no notation to indicate where the integer part ended and the fractional part began. Hence there was a great deal of ambiguity introduced and "the context makes it clear" philosophy now seems pretty stretched. If I write 10,12,5,1,52,30 without having a notation for the "sexagesimal point" then it could mean any of:

0;10,12, 5, 1,52,30

10;12, 5, 1,52,30

10,12; 5, 1,52,30

10,12, 5; 1,52,30

10,12, 5, 1;52,30

10,12, 5, 1,52;30

10,12, 5, 1,52,30

in addition, of course, to 10, 12, 5, 1, 52, 30, 0 or 0 ; 0, 10, 12, 5, 1, 52, 30 etc.

Finally we should look at the question of why the Babylonians had a number system with a base of 60. The easy answer is that they inherited the base of 60 from the Sumerians but that is no answer at all. It only leads us to ask why the Sumerians used base 60. The first comment would be that we do not have to go back further for we can be fairly certain that the sexagesimal system originated with the Sumerians. The second point to make is that modern mathematicians were not the first to ask such questions. Theon of Alexandria tried to answer this question in the fourth century AD and many historians of mathematics have offered an opinion since then without any coming up with a really convincing answer.

Theon's answer was that 60 was the smallest number divisible by 1, 2, 3, 4, and 5 so the number of divisors was maximized. Although this is true it appears too scholarly a reason. A base of 12 would seem a more likely candidate if this were the reason, yet no major civilization seems to have come up with that base. On the other hand many measures do involve 12, for example it occurs frequently in weights, money and length subdivisions. For example in old British measures there were twelve inches in a foot, twelve pennies in a shilling etc.

Neugebauer proposed a theory based on the weights and measures that the Sumerians used. His idea basically is that a decimal counting system was modified to base 60 to allow for dividing weights and measures into thirds. Certainly we know that the system of weights and measures of the Sumerians do use 1/3 and 2/3 as basic fractions. However although Neugebauer may be correct, the counter argument would be that the system of weights and measures was a consequence of the number system rather than visa versa.

Several theories have been based on astronomical events. The suggestion that 60 is the product of the number of months in the year (moons per year) with the number of planets (Mercury, Venus, Mars, Jupiter, Saturn) again seems far fetched as a reason for base 60. That the year was thought to have 360 days was suggested as a reason for the number base of 60 by the historian of mathematics Moritz Cantor. Again the idea is not that convincing since the Sumerians certainly knew that the year was longer than 360 days. Another hypothesis concerns the fact that the sun moves through its diameter 720 times during a day and, with 12 Sumerian hours in a day, one can come up with 60.

Some theories are based on geometry. For example one theory is that an equilateral triangle was considered the fundamental geometrical building block by the Sumerians. Now an angle of an equilateral triangle is 60 so if this were divided into 10, an angle of 6 would become the basic angular unit. Now there are sixty of these basic units in a circle so again we have the proposed reason for choosing 60 as a base.

One can count up to 60 using your two hands. On your left hand there are three parts on each of four fingers (excluding the thumb). The parts are divided from each other by the joints in the fingers. Now one can count up to 60 by pointing at one of the twelve parts of the fingers of the left hand with one of the five fingers of the right hand. This gives a way of finger counting up to 60 rather than to 10.

Egyptian numerals

The Egyptians had a writing system based on hieroglyphs from around 3000 BC. Hieroglyphs are little pictures representing words.

The Egyptians had a bases 10 system of hieroglyphs for numerals. By this we mean that they has separate symbols for one unit, one ten, one hundred, one thousand, one ten thousand, one hundred thousand, and one million.

Here are the numeral hieroglyphs.

To make up the number 276, for example, fifteen symbols were required: two "hundred" symbols, seven "ten" symbols, and six "unit" symbols. The numbers appeared thus:

276 in hieroglyphs.

Here is another example:

4622 in hieroglyphs.

Note that the examples of 276 and 4622 in hieroglyphs are seen on a stone carving from Karnak, dating from around 1500 BC, and now displayed in the Louvre in Paris.

As can easily be seen, adding numeral hieroglyphs is easy. One just adds the individual symbols, but replacing ten copies of a symbol by a single symbol of the next higher value. Fractions to the ancient Egyptians were limited to unit fractions (with the exception of the frequently used 2/3 and less frequently used 3/4). A unit fraction is of the form 1/n where n is an integer and these were represented in numeral hieroglyphs by placing the symbol representing a "mouth", which meant "part", above the number. Here are some examples:

Notice that when the number contained too many symbols for the "part" sign to be placed over the whole number, as in 1/249 , then the "part" symbol was just placed over the "first part" of the number. [It was the first part for here the number is read from right to left.]

We should point out that the hieroglyphs did not remain the same throughout the two thousand or so years of the ancient Egyptian civilization. This civilization is often broken down into three distinct periods:

Old Kingdom - around 2700 BC to 2200 BC

Middle Kingdom - around 2100 BC to 1700 BC

New Kingdom - around 1600 BC to 1000 BC

Numeral hieroglyphs were somewhat different in these different periods, yet retained a broadly similar style.

Another number system, which the Egyptians used after the invention of writing on papyrus, was composed of hieratic numerals. These numerals allowed numbers to be written in a far more compact form yet using the system required many more symbols to be memorised. There were separate symbols for

1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 20, 30, 40, 50, 60, 70, 80, 90,

100, 200, 300, 400, 500, 600, 700, 800, 900,

1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000

Here are versions of the hieratic numerals

With this system numbers could be formed of a few symbols. The number 9999 had just 4 hieratic symbols instead of 36 hieroglyphs. One major difference between the hieratic numerals and our own number system was the hieratic numerals did not form a positional system so the particular numerals could be written in any order.

Here is one way the Egyptians wrote 2765 in

hieratic numerals

Here is a second way of writing 2765 in hieratic numerals with the order reversed

Like the hieroglyphs, the hieratic symbols changed over time but they underwent more changes with six distinct periods. Initially the symbols that were used were quite close to the corresponding hieroglyph but their form diverged over time. The versions we give of the hieratic numerals date from around 1800 BC. The two systems ran in parallel for around 2000 years with the hieratic symbols being used in writing on papyrus, as for example in the Rhind papyrus and the Moscow papyrus, while the hieroglyphs continued to be used when carved on stone.

Mathematics of the Incas

The civilization, which does not appear to have found a need to develop writing, is that of the Incas. The Inca empire which existed in 1532, before the Spanish conquest, was vast. It spread over an area which stretched from what is now the northern border of Ecuador to Mendoza in west-central Argentina and to the Maule River in central Chile. The Inca people numbered around 12 million but they were from many different ethnic groups and spoke about 20 different languages. The civilization had reached a high level of sophistication with a remarkable system of roads, agriculture, textile design, and administration. Of course even if writing is not required to achieve this level, counting and recording of numerical information is necessary. The Incas had developed a method of recording numerical information which did not require writing. It involved knots in strings called quipu.

The quipu was not a calculator, rather it was a storage device. Remember that the Incas had no written records and so the quipu played a major role in the administration of the Inca empire since it allowed numerical information to be kept. Let us first describe the basic quipu, with its positional number system, and then look at the ways that it was used in Inca society.

The quipu consists of strings which were knotted to represent numbers. A number was represented by knots in the string, using a positional base 10 representation. If the number 586 was to be recorded on the string then six touching knots were placed near the free end of the string, a space was left, then eight touching knots for the 10s, another space, and finally 5 touching knots for the 100s.

586 on a quipu.

For larger numbers more knot groups were used, one for each power of 10, in the same way as the digits of the number system we use here are occur in different positions to indicate the number of the corresponding power of 10 in that position.

Now it is not quite true that the same knots were used irrespective of the position as would be the case in a true positional system. There seems only one exception, namely the unit position, where different styles of knots were used from those in the other positions. In fact two different styles were used in the units position, one style if the unit were a 1 and a second style if the unit were greater than one. Both these styles differed from the standard knot used for all other positions. The system had a zero position, for this would be represented as no knots in that position. This meant that the spacing had to be highly regular so that zero positions would be clear.

There are many drawings and descriptions of quipus made by the Spanish invaders. Garcilaso de la Vega, whose mother was an Inca and whose father was Spanish, wrote:

According to their position, the knots signified units, tens, hundreds, thousands, ten thousands and, exceptionally, hundred thousands, and they are all well aligned on their different cords as the figures that an accountant sets down, column by column, in his ledger.

Now of course recording a number on a string would, in itself, not be that useful. A quipu had many strings and there had to be some way that the string carrying the record of a particular number could be identified. The primary way this was done was by the use of colour. Numbers were recorded on strings of a particular colour to identify what that number was recording. For example numbers of cattle might be recorded on green strings while numbers of sheep might be recorded on white strings. The colours each had several meanings, some of which were abstract ideas, some concrete as in the cattle and sheep example. White strings had the abstract meaning of "peace" while red strings had the abstract meaning of "war".

As well as the colour coding, another way of distinguishing the strings was to make some strings subsidiary ones, tied to the middle of a main string rather than being tied to the main horizontal cord.

Quipu with subsidiary cords.

Indian numerals

One of the important sources of information which we have about Indian numerals comes from al-Biruni. During the 1020s al-Biruni made several visits to India. Before he went there al-Biruni already knew of Indian astronomy and mathematics from Arabic translations of some Sanskrit texts. In India he made a detailed study of Hindu philosophy and he also studied several branches of Indian science and mathematics. Al-Biruni wrote 27 works on India and on different areas of the Indian sciences. In particular his account of Indian astronomy and mathematics is a valuable contribution to the study of the history of Indian science. Referring to the Indian numerals in a famous book written about 1030 he wrote:

Whilst we use letters for calculation according to their numerical value, the Indians do not use letters at all for arithmetic. And just as the shape of the letters that they use for writing is different in different regions of their country, so the numerical symbols vary.

It is reasonable to ask where the various symbols for numerals which al-Biruni saw originated. Historians trace them all back to the Brahmi numerals which came into being around the middle of the third century BC. Now these Brahmi numerals were not just symbols for the numbers between 1 and 9. The situation is much more complicated for it was not a place-value system so there were symbols for many more numbers. Also there were no special symbols for 2 and 3, both numbers being constructed from the symbol for 1.

Here is the Brahmi one, two, three.

There were separate Brahmi symbols for 4, 5, 6, 7, 8, 9 but there were also symbols for 10, 100, 1000, ... as well as 20, 30, 40, ... , 90 and 200, 300, 400, ..., 900.

The Brahmi numerals have been found in inscriptions in caves and on coins in regions near Poona, Bombay, and Uttar Pradesh. Dating these numerals tells us that they were in use over quite a long time span up to the 4th century AD. Of course different inscriptions differ somewhat in the style of the symbols.

Here is one style of the

Brahmi numerals.

We should now look both forward and backward from the appearance of the Brahmi numerals. Moving forward leads to many different forms of numerals but we shall choose to examine only the path which has led to our present day symbols. First, however, we look at a number of different theories concerning the origin of the Brahmi numerals.

There is no problem in understanding the symbols for 1, 2, and 3. However the symbols for 4, ... , 9 appear to us to have no obvious link to the numbers they represent. There have been quite a number of theories put forward by historians over many years as to the origin of these numerals. Ifrah lists a number of the hypotheses which have been put forward.

1. The Brahmi numerals came from the Indus valley culture of around 2000 BC.

2. The Brahmi numerals came from Aramaean numerals.

3. The Brahmi numerals came from the Karoshthi alphabet.

4. The Brahmi numerals came from the Brahmi alphabet.

5. The Brahmi numerals came from an earlier alphabetic numeral system, possibly due to Panini.

6. The Brahmi numerals came from Egypt.

Basically these hypotheses are of two types. One is that the numerals came from an alphabet in a similar way to the Greek numerals which were the initial letters of the names of the numbers. The second type of hypothesis is that they derive from an earlier number system of the same broad type as Roman numerals. For example the Aramaean numerals of hypothesis 2 are based on I (one) and X (four):

I, II, III, X, IX, IIX, IIIX, XX.

Ifrah examines each of the six hypotheses in turn and rejects them, although one would have to say that in some cases it is more due to lack of positive evidence rather than to negative evidence.

Ifrah proposes a theory of his own, namely that:

... the first nine Brahmi numerals constituted the vestiges of an old indigenous numerical notation, where the nine numerals were represented by the corresponding number of vertical lines ... To enable the numerals to be written rapidly, in order to save time, these groups of lines evolved in much the same manner as those of old Egyptian Pharonic numerals. Taking into account the kind of material that was written on in India over the centuries (tree bark or palm leaves) and the limitations of the tools used for writing (calamus or brush), the shape of the numerals became more and more complicated with the numerous ligatures, until the numerals no longer bore any resemblance to the original prototypes.

It is a nice theory, and indeed could be true, but there seems to be absolutely no positive evidence in its favour. The idea is that they evolved from:

One might hope for evidence such as discovering numerals somewhere on this evolutionary path. However, it would appear that we will never find convincing proof for the origin of the Brahmi numerals.

If we examine the route which led from the Brahmi numerals to our present symbols (and ignore the many other systems which evolved from the Brahmi numerals) then we next come to the Gupta symbols. The Gupta period is that during which the Gupta dynasty ruled over the Magadha state in northeastern India, and this was from the early 4th century AD to the late 6th century AD. The Gupta numerals developed from the Brahmi numerals and were spread over large areas by the Gupta empire as they conquered territory.

The Gupta numerals evolved into the Nagari numerals, sometimes called the Devanagari numerals. This form evolved from the Gupta numerals beginning around the 7th century AD and continued to develop from the 11th century onward. The name literally means the "writing of the gods" and it was the considered the most beautiful of all the forms which evolved. For example al-Biruni writes:

What we [the Arabs] use for numerals is a selection of the best and most regular figures in India.

These "most regular figures" which al-Biruni refers to are the Nagari numerals which had, by his time, been transmitted into the Arab world. The way in which the Indian numerals were spread to the rest of the world between the 7th to the 16th centuries in examined in detail in [7]. In this paper, however, Gupta claims that Indian numerals had reached Southern Europe by the end of the 5th century but his argument is based on the Geometry of Boethius which is now known to be a forgery dating from the first half of the 11th century. It would appear extremely unlikely that the Indian numerals reach Europe as early as Gupta suggests.

We now turn to the second aspect of the Indian number system which we want to examine in this article, namely the fact that it was a place-value system with the numerals standing for different values depending on their position relative to the other numerals. Although our place-value system is a direct descendant of the Indian system, we should note straight away that the Indians were not the first to develop such a system. The Babylonians had a place-value system as early as the 19th century BC but the Babylonian systems were to base 60. The Indians were the first to develop a base 10 positional system and, considering the date of the Babylonian system, it came very late indeed.

We are left, of course, with asking the question of why the Indians developed such an ingenious number system when the ancient Greeks, for example, did not. A number of theories have been put forward concerning this question. Some historians believe that the Babylonian base 60 place-value system was transmitted to the Indians via the Greeks. We have commented in the article on zero about Greek astronomers using the Babylonian base 60 place-value system with a symbol o similar to our zero. The theory here is that these ideas were transmitted to the Indians who then combined this with their own base 10 number systems which had existed in India for a very long time.

A second hypothesis is that the idea for place-value in Indian number systems came from the Chinese. In particular the Chinese had pseudo-positional number rods which, it is claimed by some, became the basis of the Indian positional system.

A third hypothesis is put forward by Joseph. His idea is that the place-value in Indian number systems is something which was developed entirely by the Indians. He has an interesting theory as to why the Indians might be pushed into such an idea. The reason, Joseph believes, is due to the Indian fascination with large numbers. Freudenthal is another historian of mathematics who supports the theory that the idea came entirely from within India.

To see clearly this early Indian fascination with large numbers, we can take a look at the Lalitavistara which is an account of the life of Gautama Buddha. It is hard to date this work since it underwent continuous development over a long period but dating it to around the first or second century AD is reasonable. In Lalitavistara Gautama, when he is a young man, is examined on mathematics. He is asked to name all the numerical ranks beyond a koti which is 107. He lists the powers of 10 up to 1053. Taking this as a first level he then carries on to a second level and gets eventually to 10421. Gautama's examiner says:-

You, not I, are the master mathematician.

It is stories such as this, and many similar ones, which convince Joseph that the fascination of the Indians with large numbers must have driven them to invent a system in which such numbers are easily expressed, namely a place-valued notatio

However, the same story in Lalitavistara convinces Kaplan (see [3]) that the Indians' ideas of numbers came from the Greeks, for to him the story is an Indian version of Archimedes' Sand-reckoner. All that we know is that the place-value system of the Indians, however it arose, was transmitted to the Arabs and later into Europe to have profound importance on the development of mathematics.

Mayan mathematics

A common culture, calendar, and mythology held the civilisation together and astronomy played an important part in the religion which underlay the whole life of the people. Of course astronomy and calendar calculations require mathematics and indeed the Maya constructed a very sophisticated number system. We do not know the date of these mathematical achievements but it seems certain that when the system was devised it contained features which were more advanced than any other in the world at the time.

The Maya number system was a base twenty system.

Here are the Mayan numerals.

Almost certainly the reason for base 20 arose from ancient people who counted on both their fingers and their toes. Although it was a base 20 system, called a vigesimal system, one can see how five plays a major role, again clearly relating to five fingers and toes. In fact it is worth noting that although the system is base 20 it only has three number symbols (perhaps the unit symbol arising from a pebble and the line symbol from a stick used in counting). Often people say how impossible it would be to have a number system to a large base since it would involve remembering so many special symbols. This shows how people are conditioned by the system they use and can only see variants of the number system in close analogy with the one with which they are familiar. Surprising and advanced features of the Mayan number system are the zero, denoted by a shell for reasons we cannot explain, and the positional nature of the system. However, the system was not a truly positional system as we shall now explain.

In a true base twenty system the first number would denote the number of units up to 19, the next would denote the number of 20's up to 19, the next the number of 400's up to 19, etc. However although the Maya number system starts this way with the units up to 19 and the 20's up to 19, it changes in the third place and this denotes the number of 360's up to 19 instead of the number of 400's. After this the system reverts to multiples of 20 so the fourth place is the number of 18 202, the next the number of 18 203 and so on. For example [8;14;3;1;12] represents

12 + 1 20 + 3 18 20 + 14 18 202 + 8 18 203 = 1253912.

As a second example [9;8;9;13;0] represents

0 + 13 20 + 9 18 20 + 8 18 202 + 9 18 203 =1357100.

Both these examples are found in the ruins of Mayan towns and we shall explain their significance below.

Now the system we have just described is used in the Dresden Codex and it is the only system for which we have any written evidence. Ifrah argues that the number system we have just introduced was the system of the Mayan priests and astronomers which they used for astronomical and calendar calculations. This is undoubtedly the case and that it was used in this way explains some of the irregularities in the system as we shall see below. It was the system used for calendars. However Ifrah also argues for a second truly base 20 system which would have been used by the merchants and was the number system which would also have been used in speech. This, he claims had a circle or dot (coming from a cocoa bean currency according to some, or a pebble used for counting according to others) as its unity, a horizontal bar for 5 and special symbols for 20, 400, 8000 etc.

Let us say a little about the Maya calendar before returning to their number systems, for the calendar was behind the structure of the number system. Of course, there was also an influence in the other direction, and the base of the number system 20 played a major role in the structure of the calendar.

The Maya had two calendars. One of these was a ritual calendar, known as the Tzolkin, composed of 260 days. It contained 13 "months" of 20 days each, the months being named after 13 gods while the twenty days were numbered from 0 to 19. The second calendar was a 365-day civil calendar called the Haab. This calendar consisted of 18 months, named after agricultural or religious events, each with 20 days (again numbered 0 to 19) and a short "month" of only 5 days that was called the Wayeb. The Wayeb was considered an unlucky period and Landa wrote in his classic text that the Maya did not wash, comb their hair or do any hard work during these five days. Anyone born during these days would have bad luck and remain poor and unhappy all their lives.

Why then was the ritual calendar based on 260 days? This is a question to which we have no satisfactory answer. One suggestion is that since the Maya lived in the tropics the sun was directly overhead twice every year. Perhaps they measured 260 days and 105 days as the successive periods between the sun being directly overhead. A second theory is that the Maya had 13 gods of the "upper world", and 20 was the number of a man, so giving each god a 20 day month gave a ritual calendar of 260 days.

At any rate having two calendars, one with 260 days and the other with 365 days, meant that the two would calendars would return to the same cycle after lcm(260, 365) = 18980 days. Now this is after 52 civil years (or 73 ritual years) and indeed the Maya had a sacred cycle consisting of 52 years. Another major player in the calendar was the planet Venus. The Mayan astronomers calculated its synodic period (after which it has returned to the same position) as 584 days. Now after only two of the 52 years cycles Venus will have made 65 revolutions and also be back to the same position. This remarkable coincidence would have meant great celebrations by the Maya every 104 years.

Now there was a third way that the Mayan people had of measuring time which was not strictly a calendar. It was an absolute timescale which was based on a creation date and time was measured forward from this. What date was the Mayan creation date? The date most often taken is 12 August 3113 BC but we should say straightaway that not all historians agree that this was the zero of this so-called "Long Count". Now one might expect that this measurement of time would either give the number of ritual calendar years since creation or the number of civil calendar years since creation. However it does neither.

The Long Count is based on a year of 360 days, or perhaps it is more accurate to say that it is just a count of days with then numbers represented in the Mayan number system. Now we see the probable reason for the departure of the number system from a true base 20 system. It was so that the system approximately represented years. Many inscriptions are found in the Mayan towns which give the date of erection in terms of this long count. Consider the two examples of Mayan numbers given above. The first [8;14;3;1;12 ] is the date given on a plate which came from the town of Tikal. It translates to

12 + 1 20 + 3 18 20 + 14 18 202 + 8 18 203

which is 1253912 days from the creation date of 12 August 3113 BC so the plate was carved in 320 AD.

The second example

[ 9;8;9;13;0 ]

is the completion date on a building in Palenque in Tabasco, near the landing site of Cortis. It translates to

0 + 13 20 + 9 18 20 + 8 18 202 + 9 18 203

which is 1357100 days from the creation date of 12 August 3113 BC so the building was completed in 603 AD.

We should note some properties (or more strictly non-properties) of the Mayan number system. The Mayans appear to have had no concept of a fraction but, as we shall see below, they were still able to make remarkably accurate astronomical measurements. Also since the Mayan numbers were not a true positional base 20 system, it fails to have the nice mathematical properties that we expect of a positional system. For example

[ 9;8;9;13;0 ] = 0 + 13 20 + 9 18 20 + 8 18 202 + 9 18 203 = 1357100

yet

[ 9;8;9;13 ] = 13 + 9 20 + 8 18 20 + 9 18 202 = 67873.

Moving all the numbers one place left would multiply the number by 20 in a true base 20 positional system yet 20 67873 = 1357460 which is not equal to 1357100. For when we multiple [ 9;8;9;13 ] by 20 we get 9 400 where in [ 9;8;9;13;0 ] we have 9 360.

We should also note that the Mayans almost certainly did not have methods of multiplication for their numbers and definitely did not use division of numbers. Yet the Mayan number system is certainly capable of being used for the operations of multiplication and division.


Подобные документы

  • The problem of category of number of nouns, Russian and English grammatical, syntactical and phonetic forms of expression. The general quantitative characteristics of words constitute the lexico-grammatical base for dividing the nounal vocabulary.

    контрольная работа [40,6 K], добавлен 25.01.2011

  • The computer systems and unique possibilities for fulfillment before unknown offenses. The main risks and threats to information systems security in the internet. Internet as a port of escape of the confidential information and its damage minimization.

    контрольная работа [19,6 K], добавлен 17.02.2011

  • The general outline of word formation in English: information about word formation as a means of the language development - appearance of a great number of new words, the growth of the vocabulary. The blending as a type of modern English word formation.

    курсовая работа [54,6 K], добавлен 18.04.2014

  • Communication process is not limited to what we say with words. There are 3 elements of communication: Words (7% of information is communicated though words), Body language (55%) and tone of voice (38%). Thus, 93% of communication is non-verbal.

    топик [4,5 K], добавлен 25.08.2006

  • General information about archaisms. The process of words aging. Analysis of ancient texts Shakespeare, Sonnet 2. "Love and duty reconcil’d" by Congreve. Archaisms in literature and mass media. Deliberate usage of archaisms. Commonly misused archaisms.

    курсовая работа [44,3 K], добавлен 20.05.2008

  • I think that people can change during their life. They grow up and change their world view and ideology. They get a lot of information during their life, they reed books, meet new people, go around different society.

    топик [2,0 K], добавлен 27.03.2006

  • The Science of Economics, Macroeconomics and Microeconomics, The Future of Economics, Economic Systems: Two Important Distinctions. Free-Market Medicine in Russia. Competitive Advantage and the Small Firm Sector. Do People Volunteer to be Unemployed.

    учебное пособие [1023,0 K], добавлен 11.12.2011

  • Background of borrowed words in the English language and their translation. The problems of adoptions in the lexical system and the contribution of individual linguistic cultures for its formation. Barbarism, foreignisms, neologisms and archaic words.

    дипломная работа [76,9 K], добавлен 12.03.2012

  • Regarding the development stages of the education system in England XIX - XXI century. The system of primary and secondary education in England. The traditional base of British higher education system of universities, polytechnic schools and colleges.

    презентация [509,1 K], добавлен 20.12.2013

  • The discovery of nouns. Introduction. Classification of nouns in English. Nouns and pronouns. Semantic vs. grammatical number. Number in specific languages. Obligatoriness of number marking. Number agreement. Types of number.

    курсовая работа [31,2 K], добавлен 21.01.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.