История создания календаря

Функции календаря каменного века. Развитие календарных единиц: сутки, неделя, месяц, год. История нашего календаря: происхождение семидневной недели и названия каждого дня, древнеримские и юлианские календари. Реформы Юлия Цезаря и папы Григория XIII.

Рубрика История и исторические личности
Вид реферат
Язык русский
Дата добавления 22.12.2011
Размер файла 38,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

История создания календаря

Введение

С самого начала своего появления человечество пыталось постичь действительность и изучить природные явления, и использовало для этого различные способы. Одним из них, который прекрасно действует и функционирует и по сей день является создание календаря.

Календарь - это неотъемлемый атрибут современной жизни, который легко можно обнаружить в любом доме или офисе. С древних времен календарь помогал людям фиксировать даты, измерять временные периоды, организовывал и упорядочивал их жизнедеятельность.

В основе любого календаря лежала периодическая смена движений небесных тел. Но в разные периоды истории различные культуры неодинаково истолковывали принципы, которые должны лежать в основе создания календаря, отсюда огромное количество видов календарей, а также многочисленные споры, которые длятся и в настоящее время.

Calendarium - это долговая книжка, расчет по которой производился в специальные дни - календы, что дословно переводится как начало месяца. Древние народы использовали свои способы фиксации исторических событий, например, римляне вели отсчет с момента основания Рима, а древние египтяне начинали летоисчисление с начала правления каждой новой династии.

Перевод из одной системы летоисчисления в другую осложняется тем, что эти системы имеют неодинаковую продолжительность года, а также разную дату его начала.

Какие календари существовали в древности и какие из них стали прародителями современного календаря? Давайте рассмотрим некоторые из них.

календарь древнеримский юлианский неделя

Календари каменного века

Временные представления начали формироваться очень давно. Невозможно определить точную дату этого момента, но можно уверенно утверждать, что уже первобытный человек каменного века проявлял интерес к солнцу, луне и звездам - объектам небесной сферы, которые легко наблюдаются невооруженным взглядом. При этом древние люди, будучи очень наблюдательными, смогли подметить связь между периодической сменой времен года, видом звездного неба и высотой солнца над горизонтом, хотя еще не осознавали причинной связи. Прежде всего, заинтересовала первых астрономов, живших в верхнем палеолите, Луна: изменение фаз естественного спутника Земли становится заметным уже через несколько дней непрерывного наблюдения. Свидетельствует об этом находка близ поселка Гонцы (Украина) - клык мамонта с насечками, которые можно интерпретировать как отрывок из лунного календаря, на котором нанесены зменения фаз Луны за четыре месяца. Датируют эту одну из первых попыток учета время 15 000 - 10 000 годами до н.э. Очень интересны браслеты из бивня мамонта, найденные в палеолитической стоянке Мезин у реки Десны близ Чернигова. Один из них состоит из пяти прилегающих одна к другой пластин, на которых в виде узора расположены группы одинаковых коротких параллельных прямых черточек, причем направление черточек в каждой группе меняется на 90є. Из 24 уцелевших групп 17 содержат по 14 черточек, 3 - по 13 и 4 - 15. Всего на пяти пластинках насчитывается примерно удвоенное число дней (фактически же - дней и ночей) в десяти лунных месяцах - около 280 уток. Американскому исследователю А.Маршаку удалось найти похожие группы царапин на древнем оружии, которое использовал уже кроманьонский человек 30тысячелетий до нас. Этот факт еще дальше в глубь веков отодвигает момент зарождения временных представлений.

В мезолите календарь, при помощи которого первобытный человек следил за Луной, был несколько усовершенствован, хотя суть его осталась прежней. Вместо системы насечек художник, живший примерно в 7-м тысячелетии до н.э., в пещере Канчал-де-Моама (Испания) тщательно зарисовал изменение фаз Луны в течение ее полного цикла. Однако зачем древнему человеку, которому приходилось быть очень практичным, дабы выжить в неблагоприятных условиях, нужны были подобные календари? Скорее всего, для ориентации в пространстве. Ведь, в конечном счете, это не были календари в современном понятии этого слова, так как в них не было точки отсчета и привязки к смене сезонов. Главной функцией таких календарей было вычисление разницы в днях между двумя событиями, а как это помогало ориентироваться в хорошо пространстве раскрывает следующий пример: когда мы не знаем точного расстояния между, например, своим домом и местом работы, вместо характеристики пути «столько-то километров», используются фразы наподобие «20 минут ходьбы» или «40 минут езды на машине», то есть вместо пространственных характеристик используются временные. Точно так же первобытный человек, который тем более не знал, что такое километр, мог измерять расстояние, как бы это абсурдно ни звучит, в днях, или в лунах.

Прогресс человечества всегда неумолимо двигался вперед. Постепенно древние люди переходили от присваивающего хозяйства, в котором они полностью зависели от даров природы, к производящему, когда уже сам человек занимался скотоводством и земледелием. Это был один из важнейших технических переворотов древности, произошедший в эпоху неолита и отсюда получившего название неолитическая революция. Это во многом определило и гигантский качок в развитии календаря каменного века. Если до сих пор, вполне хватало простого наблюдения и счета дней, то теперь стало жизненно необходимо знать время наступления различных сезонов и более-менее точную длину года.

Землепашцам нужно было знать, случайно ли наступившее потепление или же ришла пора сева; если скотоводы в поисках кормов для скота решили перегнать свои стада на десятки километров в предгорья, то нельзя было ошибаться в роках возвращения на равнину. О том, когда начинается тот или другой сезон (а в целом - новый годичный цикл), древние люди могли узнать по изменению вида звездного неба на протяжении года.

Ответ на этот вопрос можно было также получить, измеряя высоту Солнца над горизонтом в полдень или, что сделать гораздо легче, - следя за непрерывным передвижением точки восхода (и захода) Солнца к северу и югу относительно некоторого ее среднего положения. И если в каком-то месте установить ориентиры, указывающие направления на точку восхода Солнца в моменты весеннего или осеннего равноденствий, летнего и зимнего солнцестояний, то в дальнейшем оказалось бы возможным решать обратную задачу: наблюдая восход Солнца над тем или иным ориентиром, можно установить начало сезона, начало нового года.

Наиболее известным примером календаря, основанного на вышеописанном принципе, может служить Стоунхендж. В источниках очень разнообразно переводят это название: «висящий камень», «каменный сарай» и «каменная изгородь». Этот огромный археологический памятник, находящийся на Солсберийской равнине (Англия), начал строиться примерно в 2800 г. до н.э., и строительство продолжалось с перерывами до 1600 г. до н.э. До сих пор нельзя дать точного ответа, кто построил это сооружение, хотя существует множество гипотез. Приближающийся к Стоунхенджу посетитель первым делом видит две насыпи - внешнюю и внутреннюю, разделенные широким рвом. Внешний вал уже не очень заметен, и лишь по некоторым признакам можно оценить его первоначальные размеры - ширина 2,5 м и высота 0,5 - 0,8 м. Внутренний вал, принадлежащий собственно Стоунхенджу, имеет диаметр 98 м при ширине 6 м и высоте 1,8 м. В северо-восточном направлении поверхность земли ровная - это вход. Он представляет собой аллею шириной 12 м, ограниченную с двух сторон низкими валами, которая тянется примерно на 25 м. За 5 м перед входом, или на расстоянии 30 м от окружности вала, глубоко врыт огромный камень, называемый пяточным. Он имеет размеры 2,4х2,1 м при высоте 6 м, его полная масса составляет 35 т. Если приблизиться к центральной части Стоунхенджа, то можно увидеть, что оно «окольцовано» огромными сарсеновыми блоками, правда, из 30 блоков к настоящему времени осталось только 17. Диаметр окружности, по которой расположены блоки, составляет 31 м. На этих опорных блоках сверху лежали поперечные блоки; сейчас их осталось только шесть. Сарсеновое кольцо - сооружение, производящее сильное впечатление своей грандиозностью. Вертикальные блоки имеют размеры в поперечнике 2х1 м и высоту около 5,5 м; масса каждого составляет примерно 25 т. Они вкопаны в землю на глубину порядка метра. Внутри сарсенового кольца имеется еще одно кольцо, построенное из более чем 80 голубых камней массой примерно по 5 т.Еще ближе к центру находятся пять гигантских арок, каждая из которых сложена из камней в форме буквы П. Трилиты имеют разную высоту: 6; 6,5 и 7,2 м (с учетом поперечных блоков). Самый массивный камень из всех весит около 50 т. Глыбы поставлены на расстоянии 30 см друг от друга: они образуют своего рода «прицел», т.е. щель между ними выделяет строго определенное направление. И, наконец, в глубине подковы находится Алтарный камень.

Уже давно было высказано предположение о том, что Стоунхендж был не только религиозно-культовым сооружением (близи него обнаружены ямы с остатками человеческих костей), но и своеобразной астрономической обсерваторией. В 1740 г. Уильям Стюкли отметил, что главная ось комплекса, идущая по алее через пяточный камень, указывает на точку восхода Солнца в день летнего солнцестояния. Таким образом, регистрируя восход дневного светила в этой точке, которое происходит только в определенный день в году (22 июня),строители Стоунхенджа могли измерять промежутки времени между двумя летними солнцестояниями и установить на основании этого длину тропического года. Можно добавить так же, что это - один из самых точных календарей, ведь начало года определялось эмпирически (наблюдением определялся день восхода Солнца в определенной точке горизонта), а ныне действующий григорианский календарь определяет тот же самый момент математически, используя систему вставки дополнительных дней в году.

Время, через которое люди каменного века заметили бы, что измерения при помощи Стоунхенджа дают ошибку, составляет порядка двух десятков тысяч лет, а современный календарь дает ошибку в один день за 3323 лет. Хотя ради справедливости стоит отметить, что точности последнего вполне хватает для практических нужд человека и он, конечно же, более удобен.

В исследование Стоунхенджа внес значительный вклад американский астроном Джеральд Хокинс, который выявил немало разнообразных сведений об астрономических явлениях и закономерностях, заложенных в архитектуре древнего памятника. Этот ученый так же много сделал для развития такой прикладной и сравнительно молодой науки, как археоастрономия, цель которой исследование древнейших памятников с историко-астрономической точки зрения. Суть исследования, проведенного Хокинсом в 60-е гг. нашего века, состояла в следующем. По отношению к произвольно выбранной точке комплекса он определил прямоугольные координаты всех объектов Стоунхенджа. Затем он выбрал 120 пар объектов, через которые провел прямые, получив тем самым 240 направлений во все стороны. Заложив эти данные в компьютер, который определял азимуты точек пересечения прямых с горизонтом, а затем вычислял координаты на небесной сфере тел, проходящих через эти точки при восходе и заходе. Оказалось, что практически все выбранные направления указывают на точки восхода и захода Солнца и Луны в астрономически важные даты. Эти исследования окончательно подтвердили астрономическое и календарное предназначение Стоунхенджа. Попутно Хокинсу удалось выяснить предназначение лунок Обри, названных в честь одного из первых исследователей Стоунхенджа - Джона Обри, который посетил комплекс в 1666 г. и составил его полное описание, впервые начертил карту этого сооружения. Самих лунок пятьдесят шесть и расположены они на расстоянии 5 м от внутреннего вала по окружности диаметром 88 м. Хокинс решил проверить, не предсказывали ли строители Стоунхенджа лунные затмения. Число лунок Обри, равное пятидесяти шести, по мнению ученого, не случайно - оно соответствует примерно утроенному циклу в 18 лет, через который последовательность солнечных и лунных затмений повторяется в прежнем порядке. С другой стороны с периодом в 18,6 лет повторяются в фиксированных Стоунхенджем точках горизонта восходы и заходы Луны. И опять же, утроенное значение периода (18,6 лет) равно примерно 56. Это позволило Хокинсу утверждать, что Стоунхендж использовался не только как календарь, но и как таблица затмений. Позднее английский астроном Фред Хойл подтвердил правильность выводов Хокинса, разработав примерный метод использования лунок Обри для предсказаний лунных затмений.

Древнеегипетским пирамидам посвящено немало трудов. Большое внимание было уделено и изучению ориентации их по сторонам света. Оказалось, что пирамиды в Гизе ориентированы так, что две их стороны указывают на точку восхода Солнца в день весеннего равноденствия. Туда же направлен взгляд каменного Сфинкса, сооруженного рядом с пирамидами. Вполне определенно ориентированы и другие крупнейшие сооружения древних египтян. Например, ось храма Амона-Ра в Карнаке (в древних Фивах) направлена на точку восхода Солнца в самый короткий день в году. Трудно согласиться с мыслью о том, что эти и подобные им строения не использовались их зодчими для их календарных потребностей.

Занимались астрономическими наблюдениями и проблемой календаря и жрецы майя в Центральной Америке. Примерно в пятнадцати городах, построенных от 500 г. До н.э. до 300 г. н.э., обнаружены специальные площадки для наблюдателей и системы из трех храмов или стел. Этими последними и фиксировались по отношению к площадке направления на точки восхода Солнца в дни равноденствий, летнего и зимнего солнцестояний.

Император инков Пачакутеку, построил восемь башен, которые, если смотреть на них с установленного на середине площадки трона, также указывали точки восхода Солнца в дни солнцестояний и равноденствий. Вряд ли можно сомневаться в том, что эти башни играли роль указателей времени.

Говоря о древних обсерваториях и календарях, стоит упомянуть и огромные по своим размерам рисунки, обнаруженные на плоскогорье Пампа-де-Наска в южной части Перу. «Картинная галерея» в пустыне Наска была открыта в начале второй мировой войны американским профессором древней истории Полом Косоком. Он длительное время изучал древние оросительные системы Месопотамии и искал нечто подобное в южном Перу. Рисунки изображают птиц, животных, геометрические фигуры (треугольники, прямоугольники, трапеции) или же представляют собой длинные полосы, исходящие из одной точки. Эти фигуры олучены удалением верхнего слоя почвы, под которым находятся желто-белые орные породы. Возраст рисунков смогли определить радиоуглеродным методом по статкам деревянного столба, найденного рядом с одной из фигур: они относятся примерно к VI в. Считается, что тогда здесь жили индейцы культуры наска, которые поселились в этих местах еще во II в. до н.э. Размеры фигур действительно огромны: 30-метровый человек с головой совы, птица размером 110 м и такая же ящерица, спирали по 30-40 метров, две пересекающиеся 800- метровые трапеции, полосы, простирающиеся на десятки и сотни метров. Точностьизображения в сочетании с размерами, охватить которые можно только с высоты али даже обильную почву для рассуждений о внеземном происхождении рисунков. авесу над тайной о предназначении этих фигур приоткрыл уже их первооткрыватель, Косок. Он отметил, что одна из фигур точно указывает на точку захода Солнца в день зимнего солнцестояния. Затем многолетние исследования рисунков пустыни Наска провела Мария Райхе, математик из Дрезденского университета, прожившая в Перу четверть века. Она обнаружила множество линий, указывающих на точки восхода и захода Солнца в дни июньских и декабрьских солнцестояний. Например, восход светила 22 июня показан клювом и стометровой шеей птицы причудливых очертаний. Из клюва другой птицы более скромных размеров выходит целый веер линий, крайняя из которых указывает на восход светила 22 декабря.

Развитие календарных единиц

Сутки - это элементарная единица любого календаря, выделение которой основывается на чередовании дня и ночи. Казалось бы, что можно придумать проще, чем одни сутки, состоящие из 24 часов. Тем не менее, следует остановиться на некоторых исторических моментах, так как в древности иначе воспринималась столь привычная для современного человека единица времени. Счет суток ведется по числу ночей, или, точнее, ночевок.

В наше время практически во всех странах мира принято считать границей суток условный момент полночи. Также столь привычен для современного человека тот факт, что продолжительность одного дня состоят из 24 часа. Такое разделение суток зародилось в Древнем Вавилоне, жрецы которого считали, что день и ночь состоят из двенадцати часов. Выбор пал на дюжину неслучайно, ведь считать ими очень удобно: двенадцать делится без остатка на 2, 3, 4 и 6, в то время как число десять, лежащее в основе общепринятого десятеричного счета, делится только на 2 и 5.

Официально деление суток на 24 часа ввел александрийский астроном Клавдий Птолемей, живший во II в. н.э. После него подобная традиция распространилась по всему миру. При расчете двенадцати часов дневных и двенадцати ночных люди столкнулись с тем фактом, что день равен ночи только четыре раза в году, а в остальное время либо дневные часы оказывались длиннее ночных, что имеет место летом, ибо ночные часы - длиннее дневных, что имеет место зимой.

Как же проводилась деление на часы в древности? Первый час начинался с рассветом, полдень всегда был шестым часом, а закат - двенадцатым. На полпути между восходом и полуднем отмечался третий час, между полуднем и закатом - девятый. Таким образом, мерка была трехчасовая, но сами трехчасья были не равны между собой в разное время года. Так же точно и ночью шел счет на трехчасовые интервалы - стражи. Такое деление пошло еще от древних евреев, у которых раз в три часа сменялась стража у ворот Иерусалима. Христианская церковь переняла этот счет и звоном колоколов возвещала часы разной длительности зимой и летом. Хотя такая система была очень неудобной, заменить ее было нечем.

Важным шагом вперед стало изобретение механических часов, упоминание о которых впервые встречается в византийских источниках в 578 г. Широкое практическое использование механических часов в Европе относится к IX - XII вв. Обычно их устанавливали на башнях ратуш, связывая механизм часов с устройством боя. Их главными недостатками были громоздкость и неточность хода, но, тем не менее, механические часы сделали продолжительность часа постоянной и независимой от соотношения дневной и ночной части суток. Первый образец механических часов в России был установлен великим князем Василием I в 1404 г. на своем дворе за церковью св.Благовещенья.

Несмотря на распространение механических часов, в России еще очень долго об окончании дня и ночи возвещали колокольным звоном, барабанным боем, звуками рожка - так называемая «отдача дневных и ночных часов». Только в 1700г. Петр I постановил проводить часобитье в полночь и полдень.

Неделя - это период времени в 7 суток, существующий в большинстве календарных систем мира. Обычай измерять время семидневной неделей пришел к нам из Древнего Вавилона и, по-видимому, связан с изменением фаз Луны. В самом деле, продолжительность цикла изменения фаз Луны составляет около 28 суток и его можно разбить на 4 части по семь дней: первая четверть - увеличение Луны от узкого серпа, носящего название неомения, до половины полного диска; вторая четверть - дальнейший рост Луны до полнолуния, когда виден весь диск естественного спутника Земли; третья четверть - уменьшение лунного диска до половины; четвертая четверть - дальнейшее уменьшение до новолуния, когда Луна абсолютно не видна.

Но наблюдения за звездным небом дали еще одно подтверждение священного значения числа семь. Древневавилонские астрономы обнаружили, что, кроме неподвижных звезд, на небе видны и семь подвижных светил, которые позже были названы планетами (от греческого слова «блуждающий»). Считалось, что эти светила обращаются вокруг Земли и что их расстояния от нее возрастают в таком порядке: Луна, Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн.

В Древнем Вавилоне возникла астрология - наука о влиянии планет на судьбы отдельных людей и целых народов. Древневавилонские астрологи считали, что каждый час суток находится под покровительством определенной планеты, которая как бы «управляет» им. Счет часов был начат с субботы: первым ее часом «управлял» Сатурн, вторым - Юпитер, третьим - Марс и т.д., седьмым - Луна. Затем весь цикл снова повторялся. В итоге получилось, что первым часом следующего дня, воскресенья, «управляло» Солнце, первый час третьего дня доставался Луне, четвертый день - Марсу, пятый - Меркурию, шестой - Юпитеру и седьмой - Венере. Планета, властвовавшая над первым часом суток, покровительствовала всему дню, и день получал ее название.

Такая система была перенята древними римлянами, только названия планет отождествлялись с именами богов. Именно они управляли днями недели, которые получили их имена. Затем, несколько видоизменившись, римские названия перекочевали в календари многих народов Западной Европы - французов, итальянцев, испанцев и других. «Планетарные» названия дней недели также в английском и скандинавском языках, только названия в них произведены от имени языческих богов германо-скандинавской мифологии, хотя «блуждающие» небесные тела представители этих народов в настоящее время называют их латинскими именами.

Во многих языках мира некоторые дни недели пронумерованы. Так, в греческом языке понедельник называется «Вторая», вторник - «Третья», среда - «Четвертая», четверг - «Пятая» (день по-гречески женского рода).

Пронумерованы дни недели в китайском и японском календарях, у народов Литвы, Латвии, Эстонии. Номером первым обозначен здесь наш понедельник, но в грузинском, армянском, арабском языках понедельнику соответствует день с номером 2, вторнику - день с номером 3 и т.д. Подобная традиция нумерации дней берет начало в Древнем Вавилоне. День Сатурна у Вавилонян считался несчастливым; в этот день предписывалось не заниматься никакими делами, и сам он получил название «шаббат» - покой. При этом его перенесли в конец недели. Во многих странах день отдыха перенесен, но счет по-прежнему ведется от субботы. У некоторых народов нумерация получилась очень любопытной. Так, в грузинском языке (почти как в пословице «семь пятниц на неделе) оказалось пять суббот. Кроме просто субботы - шабати, существует «вторая суббота» (оршабати) - понедельник, «третья суббота» (самшабати) - вторник, «четвертая суббота» (отхшабати) - среда, «пятая суббота» (хутшабати) - четверг. Пятница и оскресенье называются соответственно «параскеви» и «квира».

В славянских языках, а также в венгерском, счет дней недели, отраженный в их названиях, ведется не от субботы, а от «воскресенья». В языке-прародителе нынешних славянских воскресенье называлось «неделей», и это название сохранилось в современных языках, кроме русского, в котором после принятия Русью христианства сначала первый день празднования пасхи, а с XVI в. праздничный день любой недели стал называться воскресеньем, а неделей семидневный период.

Месяц - промежуток времени, близкий к периоду обращения Луны вокруг Земли, хотя современный григорианский календарь никак не согласован с изменением фаз Луны.

Первоначально в месяц не входило определенное количество дней - это был период, в который укладывалось отмеченное природное или хозяйственное явление. У некоторых народов Западной Сибири год насчитывает 13 месяцев, продолжительность которых различна и зависит от внешних природных признаков, по которым они устанавливались.

Поскольку удобство счета требует целого числа дней в месяце, а различные варианты лунного цикла, перечисленные ниже, составляют 27,2-29,6 суток и в целых сутках исчислены быть не могут, календари издавна стремились компенсировать неточность переменной продолжительностью месяцев и/или введением дополнительных дней.

Месяцы в астрономии

Синодический месяц

Синодический (от др.-греч. уэнпдпт «соединение, сближение») месяц -- промежуток времени между двумя последовательными одинаковыми фазами Луны (например, новолуниями). Продолжительность непостоянна; среднее значение составляет 29,5305882 средних солнечных суток (29 суток 12 часов 44 минуты 2,82 секунды), действительная длительность синодического месяца отличается от среднего, отклонение -- в пределах 13 часов.

Сидерический (звёздный) месяц

Промежуток времени между двумя последовательными возвращениями Луны, при её видимом месячном движении, в одно и то же (относительно звёзд) место небесной сферы. Продолжительность составляет 27,3216610 суток (27 суток 7 часов 43 минуты 11,51 секунды).

Тропический месяц

Период обращения Луны вокруг Земли, отсчитываемый относительно той же долготы. Равен 27,3215817 средних солнечных суток (27 суток 7 часов 43 минуты 4,66 секунды). Тропический месяц получается немного короче Сидерического месяца из-за явления прецессии точки весеннего равноденствия. За месяц точка весеннего равноденствия успевает немного продвинуться навстречу движению Луны.

Аномалистический месяц

Промежуток времени между двумя последовательными прохождениями Луны через перигей в её движении вокруг Земли. Продолжительность в начале 1900 года составляла 27,554551 средних солнечных суток (27 суток 13 часов 18 минут 33,16 секунд), убывает на 0,095 сек за 100 лет.

Драконический месяц

Промежуток времени между двумя последовательными прохождениями Луны через один и тот же (восходящий или нисходящий) узел орбиты в её движении вокруг Земли. Продолжительность в начале 1900 года составляла 27,2122204 средних солнечных суток (27 суток 5 часов 5 минут 35,84 секунды), увеличивается на 0,0035 сек за 100 лет.

Год по лунному календарю составляет всегда 354,367 суток, поэтому начало года каждый раз отступает назад на 11-12 дней, пока через 33 года не возвращается к начальной дате.

Лунный календарь из-за своей неточности совершенно не пригоден для хозяйственной деятельности человека, постепенно назрела необходимость придерживаться продолжительности года, близкой к земледельческому циклу.

Одним из первых государств, в котором около III тыс. до н.э. при счете времени удалось сочетать смену фаз Луны и времен года, был Древний Вавилон. Древневавилонский календарный год состоял из 12 месяцев, названия которых был в основном связаны с особенностями быта. Месяц начинался в тот вечер, когда впервые вскоре после захода Солнца на небе был виден новый серп Луны, то есть продолжительность месяца была в прямой зависимости от изменения фаз естественного спутника Земли. Новшеством по сравнению с лунным календарем стала вставка дополнительного 13-го месяца, которая не позволяла «гулять» началу года по сезонам и при этом не приводила к рассогласованию с фазами Луны.

Одним из важнейших достижений египетской культуры стал солнечный календарь. Главная особенность последнего состоит в том, что он не зависит от изменения фаз луны, а в основе его лежит движение Солнца относительно звезд. Одной из главных задач календаря в Древнем Египте было предсказание момента разлива Нила, важного для сельского хозяйства, поэтому неточные лунные и лунно-солнечные календари для этого были совершенно не пригодны. Разлив Нила совпадал по времени с первым восходом Сириуса после 70-суточного периода его невидимости - это позволило оценить промежуток времени между ежегодными разливами и установить длину года, равной 365,25 суток - это значение примерно составляет периоду обращения Земли вокруг Солнца. Это обеспечивало древнеегипетскому календарю необходимую точность работ, хотя было достигнуто отказом от привязки к фазам Луны.

Развитие календаря строителей пирамид имело большое значение, так как григорианская календарная система, широко используемая сейчас в мире, своими корнями уходит в Древний Египет и является в какой-то мере усовершенствованным вариантом древнеегипетской.

Впервые начало года было соотнесено с 1-м января реформой Юлия Цезаря в 45 г. до н.э., однако общепризнанной мировой традицией это стало нескоро. Начало года с 1 января отмечается в документах Священной Римской империи с XIII-XIV вв., в Испании с 1556 г., в Дании и Швеции - с 1559 г., во Франции - с 1563 г., в Нидерландах - с 1575 г., в Шотландии - с 1600 г., в Германии - с 1691 г., в Венеции - с 1797 г. В документах папской канцелярии начало года совмещено с 1 января начиная с 1691 г.

История нашего календаря

Календарь древних римлян

Сегодня все народы мира пользуются календарем, практически унаследованным от древних римлян, а само слово «календарь» произошло от латинских слов «caleo» - провозглашать и «calendarium» - долговая книга. Первое напоминает о том, что в древнем Риме начало каждого месяца провозглашалось особо, второе - что первого числа месяца там было принято уплачивать проценты по долгам. Но если в своем нынешнем виде этот календарь почти идеально соответствует годичному движению Земли вокруг Солнца, то о его первоначально варианте можно сказать, что хуже было некуда.

Сначала римский год состоял из 10 месяцев, которые обозначались порядковыми номерами: первый, второй, третий и т.д. Год начинался с весны - периода, близкого к весеннему равноденствию. Позже первые четыре месяцы были переименованы. Самый первый месяц года был назван мартиусом (martius) - в честь Марса. Второй месяц получил название априлис (aprilis), которое происходит от латинского aperire - «раскрывать», так как в этом месяце раскрываются почки на деревьях, или от слова apricus -«согреваемый Солнцем». Он был посвящен богине красоты Венере. Третий месяц в честь богини земли Майи стал называться майус (majus). Четвертый месяц был переименован в юниус (junius) и посвящен богине неба Юноне, покровительнице женщин, супруге Юпитера.Остальные шесть месяцев года продолжали сохранять свои числовые названия:

квинтилис (quintilis) - пятый; секстилис (sextilis) -шестой;

септембер (september) - седьмой; октобер (october) - восьмой;

новембер (november) - девятый; децембер (december) - десятый.

Четыре месяца года (мартиус, майус, квинтилис и октобер) имели каждый по 31 дню, а остальные месяцы состояли из 30 дней. Поэтому первоначально римский календарный год имел 304 дня.

В VII в. до н.э. римляне произвели реформу своего календаря и добавили к году еще 2 месяца - одиннадцатый и двенадцатый. Первый из этих месяцев - януариус - был назван в честь двуликого бога Януса, который считался богом небесного свода, открывавшим ворота Солнцу в начале дня и закрывавшим их в его конце. Еще же добавленный месяца - фебрариус - был посвящен богу подземного царства Фебруусу. Само же его название роисходит от слова februare - «очищать», и связано с обрядом очищения.

Год в календаре римлян после реформы стал состоять из 355 дней, и в связи с добавлением дополнительно 51 дня пришлось менять длину месяцев: от тех 6 месяцев, каждый из которых раньше состоял из 30 дней (априлис, юниус, секстилис, септембер, новембер, децембер) отняли по одному дню. Это позволило образовать два последних месяца с количеством дней: януариус - 29, фебрариус - 28.

Таким образом, год, содержащий 355 дней, делился на 12 месяцев. Число дней в месяцах наглядно показывает следующая таблица:

февраль следовали после декабря. Месяцы римского календаря носили следующие названия:Название Примечание

латинское русское

Martius март

Aprilis апрель

Maius май

Junius июнь

Quintilis, позже Julius июль

Sextilis, позже Augustus август

September сентябрь

October октябрь

November ноябрь

December декабрь

Januarius январь

Februarius февраль

Такова была общая структура римского календаря в середине I в. до н.э. Он представлял собой весьма сложную и неудобную систему счисления времени. Установленная продолжительность года в 355 дней очень близко подходила к продолжительности лунного года, состоящего из 12 лунных месяцев. Такое совпадение не является случайным. Оно объясняется тем, что римляне в то время привязывали календарь к изменению фаз Луны. Начало каждого месяца определялось всякий раз по первому появлению лунного серпа после новолуния, и по приказу жрецов каждый раз глашатаи оповещали римлян о начале нового месяца или года, что было большим недостатком древнеримского календаря.

Большие сложности вызывало также то, что римский год был более чем на 10 дней короче тропического года. С каждым годом календарные числа все менее соответствовали явлениями природы.

При этом римляне из каких-то суеверных побуждений не вставляли целого месяца отдельно, а в каждом втором году между 24 и 24 февраля «вклинивали» попеременно 22 или 23 дня. В итоге число дней в римском календаре чередовалось в таком порядке: 355 дней; 377 (355+22) дней; 355 дней; 378 (355+23) дней. Вставные дни получили название месяца Мерцедония, хотя древние писатели называли просто вставочным месяцем - интеркалярием (intercalis). Само слов «мерцедоний»происходит от «merces edis» - «плата за труд»: это был месяц, в котором производились расчеты арендаторов с владельцами имущества.

В результате вставок каждое четырехлетие состояло из двух простых годов и двух удлиненных. Средняя продолжительность года в таком четырехлетнем периоде составляла 366,25 дня, то есть была на целые сутки больше, чем в действительности.

Чтобы избегнуть расхождения между календарными числами и явлениями природы, приходилось время от времени увеличивать или уменьшать длину добавочных месяцев. Все эти исправления и изменения в календаре, а также общее наблюдение за его правильностью были поручены верховному жрецу. Право изменять продолжительность добавочного месяца с 191 г. до н.э. принадлежала только понтификам, во главе которых стоял верховный жрец. Но ни часто злоупотребляли своей властью, удлиняя годы и тем самым сроки пребывания на выборных должностях своих друзей и укорачивая эти сроки для врагов или тех, кто отказывался дать взятку. Так как в начале каждого года проводилась уплата долгов и налогов, то нетрудно представить, как твердо с помощью календаря держали жрецы в своих руках всю хозяйственную и политическую жизнь в древнем Риме.

Со временем календарь был так запутан, что праздник жатвы приходилось отмечать зимой.

Реформа Юлия Цезаря

Хаотичность римского календаря стала столь значительной, что неотложная реформа его превратилась в острую социальную проблему.

Так была проведена реформа в 46 г. до н.э. Юлием Цезарем (100 -44 гг. до н.э.). До этого Цезарь побывал в Египте, познакомился с египетским солнечным календарем и даже сам составил несколько не дошедших до нас трактатов по астрономии.

Разработку нового календаря осуществила группа александрийских астрономов во главе с Созигеном. В основу календаря, получившего позже название юлианского, положен солнечный цикл, продолжительность которого была принята равной 365, 25 суток. Но в календарном году может быть лишь целое число суток, поэтому предписывалось считать в трех из каждых четырех годов по 365 дней, в четвертом - 366 дней.

Как прежде целый месяц Мерцедоний, так и теперь этот один день решили «упрятать» между 24 и 25 февраля. Дополненный год стали называть annusbissextus, откуда и пошло наше слово високосный.

Юлий Цезарь упорядочил также число дней в месяцах по такому принципу: нечетный месяц имеет 31 день, четный - 30. Февраль же в простом году должен был иметь 29, а в високосном - 30 дней.

К моменту реформы календарь (и связанные с ним праздники) ушел вперед от смены времен года на 90 дней, так что 1 января календарного года должно было выпасть на 3 октября. В связи с этим в последнем году старого календаря были вставлены три месяца: мерцедоний из 23 дней и два безымянных месяца (33 и 34 дня) между новембером и децембером. Кроме того, Юлий Цезарь решил начать счет дней в новом году с новолуния, которое как раз пришлось на первое января.

В новом календаре почти на каждый день года было дано указание, какая звезда или созвездие имеет свой первый утренний восход или заход после периода невидимости. Например, в ноябре отмечалось: 2-го - захода Арктура, 7-го - заход Плеяд и Ориона и т.д. Тем самым календарь тесно связывался с годичным движением Солнца по эклиптике и, следовательно, с циклом земледельческих работ, начала которых приурочивались к определенному положению созвездий на вечернем или утреннем небе.

Счет по юлианскому календарю был начат с первого января 45 г. до н.э. На этот день, с которого, уже начиная с 153 г. до н.э., вступали в свою должность вновь избранные римские консулы, и было перенесено начало года. Таким образом, Юлий Цезарь является автором широко распространенной традиции начинать отсчет нового года с первого января.

В благодарность за реформу, а также учитывая выдающиеся военные заслуги Юлия Цезаря, римский сенат переименовал месяц квинитилис (в этом месяце Цезарь родился) в юлиус. Вскоре, однако, римские жрецы то ли по неграмотности, то ли с целью скомпрометировать календарь, вновь запутали его, объявляя високосным каждый третий год календаря. В итоге с 44 до 9 гг. до н.э. было введено 12 високосных годов вместо 9.

Эту ошибку исправил император Август (63 г. До н.э. - 14 г. н.э.): на протяжении 16 лет - с 9 г. до н.э. по 8 г. н.э. - високосных годов не было. Попутно он способствовал распространению в Римской империи семидневной недели, которая заменила собой использовавшиеся до этого девятидневные циклы - нундиды. В связи с этим сенат, учитывая большие военные победы и в благодарность за исправление календаря, переименовал месяц секстилис в месяц августус. Но продолжительность этого месяца составляла 30 дней. Римляне считали неудобным, чтобы в месяце, посвященном Августу, оказалось меньше дней, чем в месяце, посвященном Юлию Цезарю. Тогда отняли от февраля еще один день и добавили его к августусу. Так февраль остался с 28 или 29 днями.

Теперь получилось, что юлиус, августус и септебер содержат по 31 дню. Это опять не устраивало суеверных римлян. Чтобы не было подряд трех месяцев по 31 дню, решили один день септембера передать октоберу. Одновременно перенесли одни день новембера на децембер. Тем самым было нарушено введенное Цезарем правильное чередование долгих и коротких месяцев, а первое полугодие в простом году оказалось на четыре дня короче второго.

Стоит отметить, что и после Августа некоторые императоры стремились увековечить свое имя в календаре. Так, во время правления Тиберия (14 - 37 гг. н.э.) сенат переименовал месяц Септембер в Тибериус, при Антонии Пие (138 - 161 гг.) -тот же месяц - в Антониус, при Аврелии Коммоде (176 - 192 гг.) - в Коммодус. Октобер во времена Домициана (81 -96 гг.) получил название Домицианус. Но это переименования не прижились.

Римская календарная система широко распространилась в Западной Европе и использовалась практически без изменений вплоть до XVI века. С принятием христианства на Руси также стали пользоваться юлианским календарем, который постепенно вытеснил древнерусский.

Реформа папы Григория XIII

Реформа папы Григория XIII. В конце III в. н.э. весеннее равноденствие приходилось на 21 марта. Никейский собор, проходивший в 325 г. В городе Никее (теперь это г.Извик в Турции) закрепил эту дату, решив, что весеннее равноденствие всегда будет приходиться на это число. Тем не менее, средняя продолжительность года в юлианском календаре на 0,0078 суток или на 11 мин 14 с больше тропического года. В результате за каждые 128 лет накапливалась ошибка в целые сутки: момент прохождения Солнца через точку весеннего равноденствия передвигался за это время на одни сутки назад - от марта к февралю. В свою очередь все праздники, связанные с определенными датами календаря, передвигались «вперед»: весенние - на лето, летние - на осень и т.д.

К концу XVI века весеннее равноденствие сдвинулось назад на 10 суток и приходилось на 11 марта. Таким образом, если полнолуние в XVI в. имело место между 11 и 21 марта, то согласно церковным правилам оно весенним не считалось, и пасха праздновалась лишь через 30 дней, после следующего полнолуния. В результате этот типично весенний праздник передвигался в сторону лета, что не могло оставаться не замеченным. Так как даты весеннего равноденствия пасхальных полнолуний, принятые в качестве основы для расчета пасхи, уже не соответствовали реальным астрономических явлениям, проблема календарной реформы обсуждалась католической церковью на Базельском (1437 г.), Латеранском (1512 -1517 гг.) и Тридентском (1545 -1563 гг.) соборах.

Реформу календаря осуществил папа Григорий XIII на основе проекта итальянского врача и математика Луиджи Лилио. В специальной булле «Inter gravissimas» («Среди важнейших.») от 24 февраля 1582 г. папа говорит следующее: «Было заботою нашею не только восстановить равноденствие на издревле назначенном ему месте, от которого со времени Никейского собора оно отступило на десять дней приблизительно, и луне вернуть ее место, от которого она на четыре и пять дней отходит, но и установить также способ и правила, которыми будет достигнуто, чтобы в будущем равноденствие и луна со своих мест никуда не сдвигались».

Угрожая отлучением от церкви всякому, кто откажется принять календарную реформу, папа Григорий XIII в своей булле предписал, что после 4 октября 1582 г. следует 15, а не 5 октября. Так весеннее равноденствие было передвинуто на 21 марта, на свое прежнее место. А чтобы ошибка не накапливалась в дальнейшем, было решено из каждых 400 лет выбрасывать трое суток. Принято считать простыми те столетия, число сотен которых не делится без остатка на 4. В силу этого были не високосными 1700, 1800 и 1900 гг., а 2000 г. Будет високосным. Расхождение в одни сутки григорианского календаря с астрономическим временем накапливаются не за 128 лет, а 3323.

Такая календарная система получила наименование григорианской или «нового стиля». В противовес ей за юлианским календарем укрепилось название «старого стиля».

Календарная реформа 1582 г. не была сразу же единодушно принята и вызвала бурю протестов и ожесточенную полемику. Против нее высказались почти все университеты Западной Европы, причем особенно категорично Парижский и Венский. Многие ученые того времени утверждали, что григорианский календарь астрономически не обоснован и является лишь искажением юлианского. В ответ на папскую буллу появился целый поток памфлетов, анонимных писем, слухов о близком «конце света». Особенно содействовали их распространению протестанты, считавшие, что «лучше разойтись с Солнцем, чем сойтись с папой». Тем не менее, страны, в которых были сильны позиции католической церкви, практически сразу перешли на новый стиль, а протестантских странах реформа была проведена с опозданием на 50 - 100 лет. Одной из последних стран, принявшей григорианский календарь в 1928 г., стал Египет.

Календарь будущего

Сегодня наш календарь с астрономической точки зрения является достаточно точным и, по существу, не требует никаких изменений. И все же о реформе его говорят уже десятилетиями. При этом имеют в виду не изменение типа календаря, не введение новых приемов счета високосных годов. Речь идет исключительно о перегруппировании дней в году с тем, чтобы уравнять длину месяцев, кварталов, полугодий, ввести такой порядок счета дней в году, при котором новый год приходился бы на один и тот же день недели, например, на воскресенье.

В самом деле, наши календарные месяцы имеют продолжительность в 28, 29, 30, 31 день; длина квартала меняется от 90 до 92 дней, а первое полугодие на три- четыре дня короче второго. Вследствие этого усложняется работа плановых и финансовых органов. Неудобным является и то, что неделя начинается в одном месяце или квартале, а заканчивается в другом. Поскольку же год содержит 365 дней, то он заканчивается тем же днем, с которого начинался, а каждый новый год начинается с другого дня.

На протяжении последних 160 лет выдвигались всевозможные проекты реформы календаря. В 1923 г. при Лиге Наций был создан специальный комитет по вопросам календарной реформы. После второй мировой войны этот вопрос был передан в руки Экономического и Социального Совета ООН.

Хотя проектов существует очень много, выбирать приходится только из двух: 13-месячный календарь или 12-месячный - только они отвечают критерию практической реализации. Первый из них был предложен в 1849 г. Французским философом Огюстом Контом (1798 - 1857). В этом календаре каждый месяц начинается в воскресенье и заканчивается в субботу. Один день в году не имеет названия и вставляется после субботы последнего, XIII месяца, перед Новым годом, как дополнительный день отдыха. В високосном году такой же день отдыха вставляется также после субботы VI месяца.

Однако 13-месячный календарь имел бы ряд существенных недостатков хотя бы потому, что при делении года на кварталы пришлось бы делить и месяцы. Поэтому главное внимание уделяется другому варианту календаря, предложенному в 1888 году французским астрономом Гюставом Армелином. Согласно этому проекту календарный год состоит из 12 месяцев и делится на 4 квартала по 91 дню в каждом. Первый месяц квартала имеет 31 день, два остальных - по 30. Первое число года и квартала приходится на воскресенье, каждый квартал заканчивается субботой и имеет 13 недель. В каждом месяце 26 рабочих дней. В простом году один день, как Международный праздник мира и дружбы народов, вставляется после 30 декабря, в високосном году праздничный день високосного года вставляется еще после 30 июня. Вводить же календарь Армелина удобно вводить с того года, в котором 1 января приходится на воскресенье.

Проект этого календаря был одобрен Советским Союзом, Индией, Францией, Югославией и рядом других государств. Однако Генеральная Ассамблея ООН откладывала его окончательное рассмотрение и утверждение, а сейчас проблема вечного календаря будущего признана неактуальной и решение ее отложено на неопределенный срок. Скорее всего, ныне действующий и признанный большинством стран григорианский календарь просуществует без изменений еще очень долго.

Заключение

История календаря, берущая свое начало в глубине тысячелетий, - это неотъемлемая часть истории цивилизации человеческого общества. По мере накопления знаний об окружающем мире и все большим развитием производительных сил происходило усовершенствование календаря. Простой подсчет дней и наблюдения за Луной в каменном веке постепенно развиваются в законченную календарную систему, которая у каждого народа, хотя и отличается своими специфическими чертами, имеет схожую структуру.

Условно григорианский календарь можно считать вершиной развития календаря. Пройдя долгий путь развития от примитивного лунного календаря древних римлян через несколько коренных реформ, он на данный момент является одним из самых точных и, что более важно, признан большинством стран мира, использующие его в международных отношениях. Популярности его, несомненно, способствовали и обширные завоевания древних римлян, и широкое распространение христианства по всему миру, и относительная простота подсчета дней.

Человечество настолько сжилось с григорианским календарем, что даже перестало замечать некоторые его недостатки. После Второй Мировой войны деятельность по его реформированию замерла, а введение единого календаря отложено на неопределенный срок.

Список используемой литературы

1. В.В.Цыбульский «Календари и хронология стран мира», М.,

«Просвещение», 1982

2. Н.Николов, В.Харлампиев «Звездочеты древности», М., «Мир», 1991

3. Н.Моисеева «Время в нас и время вне нас», Л., «Лениздат», 1994

4. Н.В.Володомонов «Календарь: прошлое, настоящее, будущее», М.,

«Наука», 1987

5. И.А.Климишин «Календарь и хронология» М., «Наука», 1985

6. А.П.Пронштейн, В.Я.Кияшко «Хронология: учебное пособие для

исторических вузов», М., «Высшая школа», 1981

7. С.И.Селешников «История календаря и его предстоящая реформа», Л.,

«Лениздат», 1959

8. С.Куликов «Нить времен: малая энциклопедия времени с заметками на

полях газет», М., «Наука», 1991

9. О.Р.Бородин «Человек и время: возникновение современной

хронологии», М., «Зание», 1991

10. Л.С.Хренов, И.Я.Голуб. «Время и календарь», М., «Наука», 1989

11. Е.К.Дулуман «Календари, летоисчисление и дата рождения Иисуса Христа» (

http://www.lgg.ru/~atheism/DulAth1.html).

12. В.Губанов «Почему Юлианский календарь точнее Григорианского»//«Жизнь

вечная», № 9 (12), 1995 г. (

http://www.orthodoxy.ru/tropinka/Kalendar/pocemu_u.htm)

13. И.Г.Менькова «Наше время истекло»// «Московский журнал», № 3, 1999 г. (http://www.rusk.ru/Rus_magazine/Mosk_jour/MosJour3/mj3_2.htm)

14. С.В.Цыба «Древнерусское времяисчисление в «Повести временных лет»

Размещено на Allbest.ru


Подобные документы

  • История календаря как неотъемлемая часть истории цивилизации человеческого общества. Формирование первых временных представлений. Развитие календарных единиц. Путь развития григорианского календаря от примитивного лунного календаря древних римлян.

    презентация [1,2 M], добавлен 08.12.2013

  • Краткая история происхождения названия "календарь". Солнечный год как основа современного календаря, который составляет 365 дней. Рождество Христово - главная точка отсчета времени по современному календарю. Историческая лента времени, ее структура.

    презентация [378,9 K], добавлен 17.02.2013

  • Реконструкция древнего славянского календаря. Описание основных праздников древних славян: День Ильи Муромца, День памяти княгини Ольги, День богини Карны-Плакальщицы. Анализ народного календаря примет. Особенности народной крестьянской культуры.

    доклад [51,4 K], добавлен 10.04.2012

  • Кризис римской республики. Начало политической деятельности и монархические тенденции в период правления Цезаря. Внешняя политика и реформы. Объединение римского государства. Римская империя в конце правления Юлия Цезаря. Оценка его системы управления.

    реферат [27,4 K], добавлен 26.07.2009

  • Начало политической карьеры Гая Юлия Цезаря. Деятельность Цезаря в должности эдила и претора. Причины возникновения триумвирата. Деятельность Цезаря в должности консула. Оформление институтов власти, социальная политика и итоги диктатуры Цезаря.

    курсовая работа [64,1 K], добавлен 10.09.2013

  • Понятие "языковая картина мира". Древняя картина мира, отраженная в календарях индоевропейцев. Исторические корни европейского календаря. Год у англосаксов. Календарь у древних германцев. Основные праздники, обычаи и обряды на Руси и у древних славян.

    курсовая работа [64,2 K], добавлен 26.05.2013

  • Основные типы наиболее распространенных календарных систем (лунная, лунно-солнечная, солнечная), принципы их построения. Особенности счета времени в древних государствах. Характеристика юлианского и григорианского календарей. Проекты Всемирного календаря.

    контрольная работа [39,5 K], добавлен 19.06.2013

  • Начало работ по восходу и заходу отдельных звезд и их групп в Древних Греции и Риме. Связь календаря с годичным изменением вида звездного неба. Месяцы и вставные дни. Важная роль земледельческих работ - сева, сбора урожая. Древние названия месяцев.

    краткое изложение [10,7 K], добавлен 12.03.2009

  • Происхождение и детство Цезаря, обстоятельства вхождения на престол. Возвращение в Рим и участие в политической борьбе. Выборы великого понтифика. Создание триумвирата и его деятельность. Консульство и проконсульство. Гражданская война и Диктатура.

    курсовая работа [123,5 K], добавлен 24.12.2014

  • Изучение биографии античных авторов, произведения которых являются источником по проблеме диктатуры Гая Юлия Цезаря. Диктатура Цезаря в историографии. Должность диктатора в Риме до Цезаря, появление этого должностного лица в системе римских магистратур.

    дипломная работа [55,1 K], добавлен 25.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.