Альберт Эйнштейн
Ранние годы жизни, начало научной деятельности Альберта Эйнштейна. Его научные теоретические исследования в области физики, изобретения и открытия. Борьба с нацизмом, личная позиция, философские, религиозные взгляды и политические убеждения ученого.
Рубрика | История и исторические личности |
Вид | реферат |
Язык | русский |
Дата добавления | 13.05.2011 |
Размер файла | 98,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Ранние годы
Альберт Эйнштейн родился 14 марта 1879 года в южно-германском городе Ульме, в небогатой еврейской семье. Его родители поженились за три года до рождения сына, 8 августа 1876 года. Отец, Герман Эйнштейн (1847--1902), был в это время совладельцем небольшого предприятия по производству перьевой набивки для матрасов и перин. Мать, Паулина Эйнштейн (урожд. Кох, 1858--1920), происходила из семьи состоятельного торговца кукурузой Юлиуса Дерцбахера (в 1842 году сменил фамилию на Кох) и Йетты Бернхаймер. Летом 1880 года семья переселилась в Мюнхен, где Герман Эйнштейн вместе с братом Якобом основал небольшую фирму по торговле электрическим оборудованием. В Мюнхене родилась младшая сестра Эйнштейна Мария (Майя, 1881--1951).
Начальное образование Альберт Эйнштейн получил в местной католической школе. Около 12 лет пережил состояние глубокой религиозности, однако вскоре чтение научно-популярных книг сделало его вольнодумцем и навсегда породило скептическое отношение к авторитетам. Из детских впечатлений Эйнштейн позже вспоминал как наиболее сильные: компас, «Начала» Евклида и (около 1889 года) «Критику чистого разума» Иммануила Канта. Кроме того, по инициативе матери он с шести лет начал заниматься игрой на скрипке. Увлечение музыкой сохранялось у Эйнштейна на протяжении всей жизни. Уже находясь в США в Принстоне, в 1934 году Альберт Эйнштейн дал благотворительный концерт, где исполнял на скрипке произведения Моцарта в пользу эмигрировавших из нацистской Германии учёных и деятелей культуры.
В гимназии он не был в числе первых учеников (исключение составляли математика и латынь). Укоренившаяся система механического заучивания материала учащимися (которая, как он считал, наносит вред самому духу учёбы и творческому мышлению), а также авторитарное отношение учителей к ученикам вызывало у Альберта Эйнштейна неприятие, поэтому он часто вступал в споры со своими преподавателями.
В 1894 году Эйнштейны переехали из Мюнхена в итальянский город Павию, близ Милана, куда братья Герман и Якоб перевели свою фирму. Сам Альберт оставался с родственниками в Мюнхене ещё некоторое время, чтобы окончить все шесть классов гимназии. Так и не получив аттестата зрелости, в 1895 году он присоединился к своей семье в Павии.
Осенью 1895 года Альберт Эйнштейн прибыл в Швейцарию, чтобы сдать вступительные экзамены в Высшее техническое училище (Политехникум) в Цюрихе и стать преподавателем физики. Блестяще проявив себя на экзамене по математике, он в то же время провалил экзамены по ботанике и французскому языку, что не позволило ему поступить в Цюрихский Политехникум. Однако директор училища посоветовал молодому человеку поступить в выпускной класс школы в Аарау (Швейцария), чтобы получить аттестат и повторить поступление.
В кантональной школе Аарау Альберт Эйнштейн посвящал своё свободное время изучению электромагнитной теории Максвелла. В сентябре 1896 года он успешно сдал все выпускные экзамены в школе, за исключением экзамена по французскому языку, и получил аттестат, а в октябре 1896 года был принят в Политехникум на педагогический факультет.[5] Здесь он подружился с однокурсником, математиком Марселем Гроссманом (1878--1936), а также познакомился с сербской студенткой факультета медицины Милевой Марич (на 4 года старше его), впоследствии ставшей его женой. В этом же году Эйнштейн отказался от германского гражданства. Чтобы получить швейцарское гражданство, требовалось уплатить 1 000 швейцарских франков, однако бедственное материальное положение семьи позволило ему сделать это только спустя 5 лет. Предприятие отца в этом году окончательно разорилось, родители Эйнштейна переехали в Милан, где Герман Эйнштейн, уже без брата, открыл фирму по торговле электрооборудованием.
Стиль и методика преподавания в Политехникуме существенно отличались от закостеневшей и авторитарной прусской школы, поэтому дальнейшее обучение давалось юноше легче. У него были первоклассные преподаватели, в том числе замечательный геометр Герман Минковский (его лекции Эйнштейн часто пропускал, о чём потом искренне сожалел) и аналитик Адольф Гурвиц.
Начало научной деятельности
В 1900 году Эйнштейн закончил Политехникум, получив диплом преподавателя математики и физики. Экзамены он сдал успешно, но не блестяще. Многие профессора высоко оценивали способности студента Эйнштейна, но никто не захотел помочь ему продолжить научную карьеру. Сам Эйнштейн позже вспоминал:[6]
Я был третируем моими профессорами, которые не любили меня из-за моей независимости и закрыли мне путь в науку.
Хотя в следующем, 1901 году, Эйнштейн получил гражданство Швейцарии, но вплоть до весны 1902 года не мог найти постоянное место работы -- даже школьным учителем. Вследствие отсутствия заработка он буквально голодал, не принимая пищу несколько дней подряд. Это стало причиной болезни печени, от которой учёный страдал до конца жизни.
Несмотря на лишения, преследовавшие его в 1900--1902 гг., Эйнштейн находил время для дальнейшего изучения физики. В 1901 г. берлинские «Анналы физики» опубликовали его первую статью «Следствия теории капиллярности» (Folgerungen aus den Capillaritatserscheinungen), посвящённую анализу сил притяжения между атомами жидкостей на основании теории капиллярности.
Преодолеть трудности помог бывший однокурсник Марсель Гроссман, рекомендовавший Эйнштейна на должность эксперта III класса в Федеральное Бюро патентования изобретений (Берн) с окладом 3 500 франков в год (в годы студенчества он жил на 100 франков в месяц[7]).
Эйнштейн работал в Бюро патентов с июля 1902 по октябрь 1909, занимаясь преимущественно экспертной оценкой заявок на изобретения. В 1903 году он стал постоянным работником Бюро. Характер работы позволял Эйнштейну посвящать свободное время исследованиям в области теоретической физики.
В октябре 1902 г. Эйнштейн получил известие из Италии о болезни отца; Герман Эйнштейн умер спустя несколько дней после приезда сына.
6 января 1903 года Эйнштейн женился на двадцатисемилетней Милеве Марич. У них родились трое детей.[8]
1905 -- «Год чудес»
1905 год вошёл в историю физики как «Год чудес» (лат. Annus Mirabilis).[9] В этом году «Анналы физики» -- ведущий физический журнал Германии -- опубликовал три выдающиеся статьи Эйнштейна, положившие начало новой научной революции:
Специальная теория относительности
В течение всего XIX века материальным носителем электромагнитных явлений считалась гипотетическая среда -- эфир. Однако к началу XX века выяснилось, что свойства этой среды трудно согласовать с классической физикой. С одной стороны, аберрация света наталкивала на мысль, что эфир абсолютно неподвижен, с другой -- опыт Физо свидетельствовал в пользу гипотезы, что эфир частично увлекается движущейся материей. Опыты Майкельсона (1881), однако, показали, что никакого «эфирного ветра» не существует.
В 1892 году Лоренц и (независимо от него) Джордж Фитцджеральд предположили, что эфир неподвижен, а длина любого тела сокращается в направлении его движения. Оставался, однако, открытым вопрос, почему длина сокращается в точности в такой пропорции, чтобы компенсировать «эфирный ветер» и не дать обнаружить существование эфира. Одновременно изучался вопрос, при каких преобразованиях координат уравнения Максвелла инвариантны. Правильные формулы впервые выписали Лармор (1900) и Пуанкаре (1905), последний доказал их групповые свойства и предложил назвать преобразованиями Лоренца.
Пуанкаре также дал обобщённую формулировку принципа относительности, охватывающего и электродинамику. Тем не менее он продолжал признавать эфир, хотя придерживался мнения, что его никогда не удастся обнаружить.[11] В докладе на физическом конгрессе (1900) Пуанкаре впервые высказывает мысль, что одновременность событий не абсолютна, а представляет собой условное соглашение («конвенцию»). Было высказано также предположение о предельности скорости света. Таким образом, в начале XX века существовали две несовместимые кинематики: классическая, с преобразованиями Галилея, и электромагнитная, с преобразованиями Лоренца.
Эйнштейн, размышляя на эти темы в значительной степени независимо, предположил, что первая есть приближённый случай второй для малых скоростей, а то, что считалось свойствами эфира, есть на деле проявление объективных свойств пространства и времени.[12] Эйнштейн пришёл к выводу, что нелепо привлекать понятие эфира только для того, чтобы доказать невозможность его наблюдения, и что корень проблемы лежит не в динамике, а глубже -- в кинематике. В упомянутой выше основополагающей статье «К электродинамике движущихся тел» он предложил два постулата: всеобщий принцип относительности и постоянство скорости света; из них без труда выводятся лоренцево сокращение, формулы преобразования Лоренца, относительность одновременности, ненужность эфира, новая формула сложения скоростей, возрастание инерции со скоростью и т. д.[13] В другой его статье, которая вышла в конце года, появилась и формула E = mc2, определяющая связь массы и энергии.
Часть учёных сразу приняли эту теорию, которая позднее получила название «специальная теория относительности» (СТО); Планк (1906) и сам Эйнштейн (1907) построили релятивистскую динамику и термодинамику. Бывший учитель Эйнштейна, Минковский, в 1907 году представил математическую модель кинематики теории относительности в виде геометрии четырёхмерного неевклидова мира и разработал теорию инвариантов этого мира (первые результаты в этом направлении опубликовал Пуанкаре в 1905 году).
Однако немало учёных сочли «новую физику» чересчур революционной. Она отменяла эфир, абсолютное пространство и абсолютное время, ревизовала механику Ньютона, которая 200 лет служила опорой физики и неизменно подтверждалась наблюдениями. Время в теории относительности течёт по-разному в разных системах отсчёта, инерция и длина зависят от скорости, движение быстрее света невозможно, возникает «парадокс близнецов» -- все эти необычные следствия были неприемлемы для консервативной части научного сообщества. Дело осложнялось также тем, что СТО не предсказывала поначалу никаких новых наблюдаемых эффектов, а опыты Вальтера Кауфманна (1905--1909) многие истолковывали как опровержение краеугольного камня СТО -- принципа относительности (этот аспект окончательно прояснился, в пользу СТО, только в 1914--1916 годах).[14] Некоторые физики уже после 1905 года пытались разработать альтернативные теории (например, Ритц в 1908 году), однако позже выяснилось неустранимое расхождение этих теорий с экспериментом.[15]
Многие видные физики остались верными классической механике и концепции эфира, среди них Лоренц, Дж. Дж. Томсон, Ленард, Лодж, Нернст, Вин.[15] При этом некоторые из них (например, сам Лоренц) не отвергали результатов специальной теории относительности, однако интерпретировали их в духе теории Лоренца, предпочитая смотреть на пространственно-временную концепцию Эйнштейна-Минковского как на чисто математический приём.
Решающим аргументом в пользу истинности СТО стали опыты по проверке Общей теории относительности (см. ниже). Со временем постепенно накапливались и опытные подтверждения самой СТО. На ней основаны квантовая теория поля, теория ускорителей, она учитывается при проектировании и работе спутниковых систем навигации (здесь оказались нужны даже поправки общей теории относительности)[16] и т. д.
История квантовой механики
Для разрешения проблемы, вошедшей в историю под названием «Ультрафиолетовой катастрофы», и соответствующего согласования теории с экспериментом Макс Планк предположил (1900), что поглощение света веществом происходит дискретно (неделимыми порциями), и энергия поглощаемой порции зависит от частоты света. Некоторое время эту гипотезу даже сам её автор рассматривал как условный математический приём, однако Эйнштейн во второй из вышеупомянутых статей предложил далеко идущее её обобщение и с успехом применил для объяснения свойств фотоэффекта. Эйнштейн выдвинул тезис, что не только процесс поглощения, но и само электромагнитное излучение дискретно; позднее эти порции (кванты) получили название фотонов. Этот тезис позволил ему объяснить две загадки фотоэффекта: почему фототок возникал не при всякой частоте света, а только начиная с определённого порога, зависящего только от вида металла, а энергия и скорость вылетающих электронов зависели не от интенсивности света, а только от его частоты. Теория фотоэффекта Эйнштейна с высокой точностью соответствовала опытным данным, что позднее подтвердили эксперименты Милликена (1916).
Первоначально эти взгляды встретили непонимание большинства физиков, даже Планка Эйнштейну пришлось убеждать в реальности квантов.[17] Постепенно, однако, накопились опытные данные, убедившие скептиков в дискретности электромагнитной энергии. Последнюю точку в споре поставил эффект Комптона (1923).
В 1907 году Эйнштейн опубликовал квантовую теорию теплоёмкости (старая теория при низких температурах сильно расходилась с экспериментом). Позже (1912) Дебай, Борн и Карман уточнили теорию теплоёмкости Эйнштейна, и было достигнуто отличное согласие с опытом.[18]
Броуновское движение
В 1827 году Роберт Броун наблюдал под микроскопом и впоследствии описал хаотическое движение цветочной пыльцы, плававшей в воде.[19] Эйнштейн, на основе молекулярной теории, разработал статистико-математическую модель подобного движения, причём на основании его модели можно было, помимо прочего, с хорошей точностью оценить размер молекул и их количество в единице объёма. Одновременно к аналогичным выводам пришёл Смолуховский, чья статья была опубликована на несколько месяцев позже, чем эйнштейновская. Свои работы по статистической механике, под названием «Новое определение размеров молекул», Эйнштейн представил в Политехникум в качестве диссертации и в том же 1905 году получил звание доктора философии (эквивалент кандидата естественных наук) по физике. В следующем году Эйнштейн развил свою теорию в новой статье «К теории броуновского движения», и в дальнейшем неоднократно возвращался к этой теме.
Вскоре (1908) измерения Перрена полностью подтвердили адекватность модели Эйнштейна, что стало первым экспериментальным доказательством молекулярно-кинетической теории, подвергавшейся в те годы активным атакам со стороны позитивистов.
Макс Борн писал (1949):[20] «Я думаю, что эти исследования Эйнштейна больше, чем все другие работы, убеждают физиков в реальности атомов и молекул, в справедливости теории теплоты и фундаментальной роли вероятности в законах природы». Работы Эйнштейна по статистической физике цитируются даже чаще, чем его работы по теории относительности.[21] Выведенная им формула для коэффициента диффузии и его связи с дисперсией координат оказалась применимой в самом общем классе задач: марковские процессы диффузии, электродинамика и т. п.[21]
Позднее, в статье «К квантовой теории излучения» (1917) Эйнштейн, исходя из статистических соображений, впервые предположил существование нового вида излучения, происходящего под воздействием внешнего электромагнитного поля («индуцированное излучение»). В начале 1950-х годов был предложен способ усиления света и радиоволн, основанный на использовании индуцированного излучения, а в последующие годы оно легло в основу теории лазеров.
Берн -- Цюрих -- Прага -- Цюрих -- Берлин (1905--1914)
Работы 1905 года принесли Эйнштейну, хотя и не сразу, всемирную славу. 30 апреля 1905 он направил в университет Цюриха текст своей докторской диссертации на тему «Новое определение размеров молекул». Рецензентами были профессора Кляйнер и Буркхард. 15 января 1906 года он получил степень доктора наук по физике. Он переписывается и встречается с самыми знаменитыми физиками мира, а Планк в Берлине включает теорию относительности в свой учебный курс. В письмах его называют «г-н профессор», однако ещё четыре года (до октября 1909 года) Эйнштейн продолжает службу в Бюро патентов; в 1906 году его повысили в должности (он стал экспертом II класса) и прибавили оклад. В октябре 1908 года Эйнштейна пригласили читать факультатив в Бернский университет, однако без всякой оплаты. В 1909 году он побывал на съезде натуралистов в Зальцбурге, где собралась элита немецкой физики, и впервые встретился с Планком; за 3 года переписки они быстро стали близкими друзьями и сохранили эту дружбу до конца жизни.
После съезда Эйнштейн наконец получил оплачиваемую должность экстраординарного профессора в Цюрихском университете (декабрь 1909), где преподавал геометрию его старый друг Марсель Гроссман. Оплата была небольшой, особенно для семьи с двумя детьми, и в 1911 году Эйнштейн без колебаний принял приглашение возглавить кафедру физики в пражском Немецком университете. В этот период Эйнштейн продолжает публикацию серии статей по термодинамике, теории относительности и квантовой теории. В Праге он активизирует исследования по теории тяготения, поставив целью создать релятивистскую теорию гравитации и осуществить давнюю мечту физиков -- исключить из этой области ньютоновское дальнодействие.
В 1911 году Эйнштейн участвовал в Первом Сольвеевском конгрессе (Брюссель), посвящённом квантовой физике. Там произошла его единственная встреча с Пуанкаре, который продолжал отвергать теорию относительности, хотя лично к Эйнштейну относился с большим уважением.
Спустя год Эйнштейн вернулся в Цюрих, где стал профессором родного Политехникума и читал там лекции по физике. В 1913 году он посетил Конгресс естествоиспытателей в Вене, навестил там 75-летнего Эрнста Маха; когда-то критика Махом ньютоновской механики произвела на Эйнштейна огромное впечатление и идейно подготовила к новациям теории относительности.
В конце 1913 года, по рекомендации Планка и Нернста, Эйнштейн получил приглашение возглавить создаваемый в Берлине физический исследовательский институт; он зачислен также профессором Берлинского университета. Помимо близости к другу-Планку эта должность имела то преимущество, что не обязывала отвлекаться на преподавание. Он принял приглашение, и в предвоенный 1914 год убеждённый пацифист Эйнштейн прибыл в Берлин. Милева с детьми осталась в Цюрихе, их семья распалась. В феврале 1919 года они официально развелись.[23]
Общая теория относительности (1915)
Ещё Декарт объявил, что все процессы во Вселенной объясняются локальным взаимодействием одного вида материи с другим, и с точки зрения науки этот тезис близкодействия был естественным. Однако ньютоновская теория всемирного тяготения резко противоречила тезису близкодействия -- в ней сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. На протяжении двух веков делались попытки исправить положение и избавиться от мистического дальнодействия, наполнить теорию тяготения реальным физическим содержанием -- тем более что после Максвелла гравитация осталась единственным в физике пристанищем дальнодействия. Особенно неудовлетворительной стала ситуация после утверждения специальной теории относительности, так как теория Ньютона не была лоренц-ковариантной. Однако до Эйнштейна исправить положение никому не удалось.
Основная идея Эйнштейна была проста: материальным носителем тяготения является само пространство (точнее, пространство-время). Тот факт, что гравитацию можно рассматривать как проявление свойств геометрии четырёхмерного неевклидова пространства, без привлечения дополнительных понятий, есть следствие того, что все тела в поле тяготения получают одинаковое ускорение («принцип эквивалентности» Эйнштейна). Четырёхмерное пространство-время при таком подходе оказывается не «плоской и безразличной сценой» для материальных процессов, у него имеются физические атрибуты, и в первую очередь -- метрика и кривизна, которые влияют на эти процессы и сами зависят от них. Если специальная теория относительности -- это теория неискривлённого пространства, то общая теория относительности, по замыслу Эйнштейна, должна была рассмотреть более общий случай, пространство-время с переменной метрикой (псевдориманово многообразие). Причиной искривления пространства-времени является присутствие материи, и чем больше её энергия, тем искривление сильнее. Ньютоновская же теория тяготения представляет собой приближение новой теории, которое получается, если учитывать только «искривление времени», то есть изменение временномй компоненты метрики, (пространство в этом приближении евклидово). Распространение возмущений гравитации, то есть изменений метрики при движении тяготеющих масс, происходит с конечной скоростью. Дальнодействие с этого момента исчезает из физики.
Математическое оформление этих идей было достаточно трудоёмким и заняло несколько лет (1907--1915). Эйнштейну пришлось овладеть тензорным анализом и создать его четырёхмерное псевдориманово обобщение; в этом ему помогли консультации и совместная работа сначала с Марселем Гроссманом, ставшим соавтором первых статей Эйнштейна по тензорной теории гравитации, а затем и с «королём математиков» тех лет, Давидом Гильбертом. В 1915 г. главные уравнения общей теории относительности Эйнштейна (ОТО), обобщающие ньютоновские, были опубликованы почти одновременно в статьях Эйнштейна и Гильберта.
Новая теория тяготения предсказала два ранее неизвестных физических эффекта, вполне подтверждённые наблюдениями, а также точно и полностью объяснила вековое смещение перигелия Меркурия, долгое время приводившее в недоумение астрономов. После этого теория относительности стала практически общепризнанным фундаментом современной физики. Кроме астрофизики, ОТО нашла практическое применение, как уже упоминалось выше, в системах глобального позиционирования (Global Positioning Systems, GPS), где расчёты координат производятся с очень существенными релятивистскими поправками.[26]
Берлин (1915--1933)
В 1915 году в разговоре с нидерландским физиком Вандером де Хаазом Эйнштейн предложил схему и расчёт опыта, который после успешной реализации получил название «эффект Эйнштейна-де Хааза». Результат опыта воодушевил Нильса Бора, двумя годами ранее создавшего планетарную модель атома, поскольку подтвердил, что внутри атомов существуют круговые электронные токи, причём электроны на своих орбитах не излучают. Именно эти положения Бор и положил в основу своей модели. Кроме того, обнаружилось, что суммарный магнитный момент получается вдвое больше ожидаемого; причина этого разъяснилась, когда был открыт спин -- собственный момент импульса электрона.
По окончании войны Эйнштейн продолжал работу в прежних областях физики, а также занимался новыми областями -- релятивистской космологией и «Единой теорией поля», которая, по его замыслу, должна была объединить гравитацию, электромагнетизм и (желательно) теорию микромира. Первая статья по космологии, «Космологические соображения к общей теории относительности», появилась в 1917 году. После этого Эйнштейн пережил загадочное «нашествие болезней» -- кроме серьёзных проблем с печенью, обнаружилась язва желудка, затем желтуха и общая слабость. Несколько месяцев он не вставал с постели, но продолжал активно работать. Только в 1920 году болезни отступили.
В июне 1919 года Эйнштейн женился на своей двоюродной сестре со стороны матери Эльзе Лёвенталь (урождённой Эйнштейн, 1876--1936) и удочерил двух её детей. В конце года к ним переехала его тяжелобольная мать Паулина; она скончалась в феврале 1920 года. Судя по письмам, Эйнштейн тяжело переживал её смерть.
Осенью 1919 года английская экспедиция в момент затмения обнаружила предсказанное Эйнштейном отклонение света в поле тяготения Солнца. При этом измеренное значение соответствовало не ньютоновскому, а эйнштейновскому закону тяготения. Сенсационную новость перепечатали газеты всей Европы, хотя суть новой теории чаще всего излагалась в беззастенчиво искажённом виде[27]. Слава Эйнштейна достигла небывалых высот.
В мае 1920 года Эйнштейн, вместе с другими членами Берлинской академии наук, был приведен к присяге как государственный служащий и по закону стал считаться гражданином Германии.[28] Однако швейцарское гражданство он сохранил до конца жизни.[29] В 1920-е годы, получая отовсюду приглашения, он много путешествовал по Европе (по швейцарскому паспорту), читал лекции для учёных, студентов и для любознательной публики. Навестил и США, где в честь именитого гостя была принята специальная приветственная резолюция Конгресса (1921). В конце 1922 года посетил Индию, где имел продолжительное общение с Тагором, и Китай. Зиму Эйнштейн встретил в Японии. В 1923 году выступил в Иерусалиме, где намечалось вскоре (1925) открыть Еврейский университет.
Эйнштейна неоднократно номинировали на Нобелевскую премию по физике, однако члены Нобелевского комитета долгое время не решались присудить премию автору столь революционных теорий. В конце концов был найден дипломатичный выход: премия за 1921 год была присуждена Эйнштейну (в самом конце 1922 года) за теорию фотоэффекта, то есть за наиболее бесспорную и хорошо проверенную в эксперименте работу; впрочем, текст решения содержал нейтральное добавление: «… и за другие работы в области теоретической физики».
Естественно, традиционную Нобелевскую речь (1923) Эйнштейн посвятил теории относительности.[31]
В 1924 году молодой индийский физик Шатьендранат Бозе в кратком письме обратился к Эйнштейну с просьбой помочь в публикации статьи, в которой выдвигал предположение, положенное в основу современной квантовой статистики. Бозе предложил рассматривать свет в качестве газа из фотонов. Эйнштейн пришёл к выводу, что эту же статистику можно использовать для атомов и молекул в целом. В 1925 году Эйнштейн опубликовал статью Бозе в немецком переводе, а затем собственную статью, в которой излагал обобщённую модель Бозе, применимую к системам тождественных частиц с целым спином, называемых бозонами. На основании данной квантовой статистики, известной ныне как статистика Бозе -- Эйнштейна, оба физика ещё в середине 1920-х годов теоретически обосновали существование пятого агрегатного состояния вещества -- конденсата Бозе -- Эйнштейна.
Суть «конденсата» Бозе -- Эйнштейна состоит в переходе большого числа частиц идеального бозе-газа в состояние с нулевым импульсом при температурах, приближающихся к абсолютному нулю, когда длина волны де Бройля теплового движения частиц и среднее расстояние между этими частицами сводятся к одному порядку. Начиная с 1995 года, когда первый подобный конденсат был получен в университете Колорадо, учёные практически доказали возможность существования конденсатов Бозе -- Эйнштейна из водорода, лития, натрия, рубидия и гелия.
Как личность огромного и всеобщего авторитета, Эйнштейна постоянно привлекали в эти годы к разного рода политическим акциям, где он выступал за социальную справедливость, за интернационализм и сотрудничество между странами (см. ниже). В 1923 году Эйнштейн участвовал в организации общества культурных связей «Друзья новой России». Неоднократно призывал к разоружению и объединению Европы, к отмене обязательной воинской службы.
В 1928 году Эйнштейн проводил в последний путь Лоренца, с которым очень подружился в его последние годы. Именно Лоренц выдвинул кандидатуру Эйнштейна на Нобелевскую премию в 1920 году и поддержал её в следующем году.
В 1929 году мир шумно отметил 50-летие Эйнштейна. Юбиляр не принял участия в торжествах и скрылся на своей вилле близ Потсдама, где с увлечением выращивал розы. Здесь он принимал друзей -- деятелей науки, Тагора, Эммануила Ласкера, Чарли Чаплина и других.
В 1931 году Эйнштейн снова побывал в США. В Пасадене его очень тепло встретил Майкельсон, которому оставалось жить четыре месяца. Вернувшись летом в Берлин, Эйнштейн в выступлении перед Физическим обществом почтил память замечательного экспериментатора, заложившего первый камень фундамента теории относительности.
Помимо теоретических исследований, Эйнштейну принадлежат и несколько изобретений, в том числе:
· измеритель очень малых напряжений (совместно с Конрадом Габихтом);
· устройство, автоматически определяющее время экспозиции при фотосъёмке;[32]
· оригинальный слуховой аппарат;
· бесшумный холодильник (совместно с Силардом)[33];
· гирокомпас[34].
Примерно до 1926 года Эйнштейн работал в очень многих областях физики, от космологических моделей до исследования причин речных извилин. Далее он, за редким исключением, сосредотачивает усилия на квантовых проблемах и Единой теории поля.
Интерпретация квантовой механики
Рождение квантовой механики происходило при активном участии Эйнштейна. Публикуя свои основополагающие работы, Шрёдингер признал (1926), что на него оказали большое влияние «краткие, но бесконечно дальновидные замечания Эйнштейна».[35]
В 1927 году на Пятом Сольвеевском конгрессе Эйнштейн решительно выступил против «копенгагенской интерпретации» Макса Борна и Нильса Бора, трактующей математическую модель квантовой механики как существенно вероятностную. Эйнштейн заявил, что сторонники этой интерпретации «из нужды делают добродетель», а вероятностный характер свидетельствует лишь о том, что наше знание физической сущности микропроцессов неполно. Он ехидно заметил: «Бог не играет в кости» (нем. Der Herrgott wurfelt nicht), на что Нильс Бор возразил: «Эйнштейн, не указывай Богу, что ему делать». Эйнштейн принимал «копенгагенскую интерпретацию» лишь как временный, незавершённый вариант, который по мере прогресса физики должен быть заменён полной теорией микромира. Он и сам предпринимал попытки создать детерминистическую нелинейную теорию, приближённым следствием которой оказалась бы квантовая механика.
Принстон (1933--1945). Борьба с нацизмом
По мере нарастания экономического кризиса в Веймарской Германии усиливалась политическая нестабильность, содействовавшая усилению радикально-националистических и антисемитских настроений. Участились оскорбления и угрозы в адрес Эйнштейна, в одной из листовок даже предлагалась крупная награда (50 000 марок) за его голову. После прихода к власти нацистов все труды Эйнштейна были либо приписаны «арийским» физикам, либо объявлены искажением истинной науки. Ленард, возглавивший группу «Немецкая физика», провозглашал:[42] «Наиболее важный пример опасного влияния еврейских кругов на изучение природы представляет Эйнштейн со своими теориями и математической болтовнёй, составленной из старых сведений и произвольных добавок… Мы должны понять, что недостойно немца быть духовным последователем еврея». Во всех научных кругах Германии развернулась бескомпромиссная расовая чистка.
В 1933 году Эйнштейну пришлось покинуть Германию, к которой он был очень привязан, навсегда. Вместе с семьёй он выехал в Соединённые Штаты Америки с гостевыми визами. В скором времени в знак протеста против преступлений нацизма он отказался от немецкого гражданства и членства в Прусской и Баварской академиях наук.
После переезда в США Альберт Эйнштейн получил должность профессора физики в недавно созданном Институте перспективных исследований (Принстон, штат Нью-Джерси). Старший сын, Ганс-Альберт (1904--1973), вскоре последовал за ним (1938); впоследствии он стал признанным специалистом по гидравлике и профессором Калифорнийского университета (1947). Младший сын Эйнштейна, Эдуард (1910--1965), около 1930 года заболел тяжёлой формой шизофрении и закончил свои дни в цюрихской психиатрической лечебнице. Двоюродная сестра Эйнштейна, Лина, погибла в Освенциме, другая сестра, Берта Дрейфус, умерла в концлагере Терезиенштадт.[43]
В США Эйнштейн мгновенно превратился в одного из самых известных и уважаемых людей страны, получив репутацию гениальнейшего учёного в истории, а также олицетворения образа «рассеянного профессора» и интеллектуальных возможностей человека вообще. В январе следующего, 1934 года он был приглашён в Белый дом к президенту Франклину Рузвельту, имел с ним сердечную беседу и даже провёл там ночь. Ежедневно Эйнштейн получал сотни писем разнообразного содержания, на которые (даже на детские) старался ответить. Будучи естествоиспытателем с мировым именем, он оставался доступным, скромным, нетребовательным и приветливым человеком.
В декабре 1936 года от болезни сердца умерла Эльза; тремя месяцами ранее в Цюрихе скончался Марсель Гроссман. Одиночество Эйнштейна скрашивали сестра Майя, падчерица Марго (дочь Эльзы от первого брака), секретарь Эллен Дюкас и кот Тигр. К удивлению американцев, Эйнштейн так и не обзавёлся автомобилем и телевизором. Майя после инсульта в 1946 году была частично парализована, и каждый вечер Эйнштейн читал книги своей любимой сестре.
В августе 1939 года Эйнштейн подписался под письмом, написанным по инициативе физика-эмигранта из Венгрии Лео Силарда на имя президента США Франклина Делано Рузвельта. Письмо обращало внимание президента на возможность того, что нацистская Германия обзаведётся атомной бомбой. После нескольких месяцев размышлений Рузвельт решил серьёзно отнестись к этой угрозе и открыл собственный проект по созданию атомного оружия. Сам Эйнштейн в этих работах участия не принимал. Позже он сожалел о подписанном им письме, понимая, что для нового руководителя США Гарри Трумэна ядерная энергия служит инструментом устрашения. В дальнейшем он критиковал разработку ядерного оружия, его применение в Японии и испытания на атолле Бикини (1954), а свою причастность к ускорению работ над американской ядерной программой считал величайшей трагедией своей жизни. Широкую известность получили его афоризмы: «Мы выиграли войну, но не мир»; «Если третья мировая война будет вестись атомными бомбами, то четвёртая -- камнями и палками».
Во время войны Эйнштейн консультировал Военно-морские силы США и способствовал решению различных технических проблем.
Принстон (1945--1955). Борьба за мир. Единая теория поля
В послевоенные годы Эйнштейн стал одним из основателей Пагуошского движения учёных за мир. Хотя его первая конференция проводилась уже после смерти Эйнштейна (1957), но инициатива созвания такого движения была выражена в получившем широкую известность Манифесте Рассела -- Эйнштейна (написанном совместно с Бертраном Расселом), предупреждавшем также об опасности создания и применения водородной бомбы. В рамках этого движения Эйнштейн, бывший его председателем, совместно с Альбертом Швейцером, Бертраном Расселом, Фредериком Жолио-Кюри и другими всемирно известными деятелями науки вёл борьбу против гонки вооружений, создания ядерного и термоядерного оружия. Эйнштейн призывал также, во имя предотвращения новой войны, к созданию всемирного правительства, за что удостоился резкой критики в советской печати (1947).[45] [46]
До конца жизни Эйнштейн продолжал работу над исследованием проблем космологии, но главные усилия он направил на создание единой теории поля. Ему помогали в этом профессиональные математики, в том числе (в Принстоне) Джон Кемени. Формально некоторые успехи в этом направлении были -- он разработал даже две версии единой теории поля. Обе модели были математически изящны, из них вытекала не только общая теория относительности, но и вся электродинамика Максвелла -- однако они не давали никаких новых физических следствий. А чистая математика, в отрыве от физики, Эйнштейна никогда не интересовала, и он забраковал обе модели. Сначала (1929) Эйнштейн пытался развить идеи Калуцы и Клейна -- мир имеет пять измерений, причём пятое имеет микроразмеры и поэтому невидимо. Получить с её помощью новые физически интересные результаты не удалось, и многомерная теория была вскоре оставлена (чтобы позже возродиться в теории суперструн). Вторая версия Единой теории (1950) основывалась на предположении, что пространство-время имеет не только кривизну, но и кручение; она тоже органично включала ОТО и теорию Максвелла, однако найти окончательную редакцию уравнений, которая описывала бы не только макромир, но и микромир, так и не удалось. А без этого теория оставалась не более чем математической надстройкой над зданием, которое в этой надстройке совершенно не нуждалось.[48]
Вейль вспоминал, что Эйнштейн как-то сказал ему:[49] «Умозрительно, без руководящего наглядного физического принципа, физику нельзя конструировать».
В 1955 году здоровье Эйнштейна резко ухудшилось. Он написал завещание и сказал друзьям: «Свою задачу на земле я выполнил». Последним его трудом стало незаконченное воззвание с призывом предотвратить ядерную войну.
Его падчерица Марго вспоминала о последней встрече с Эйнштейном в больнице:
Он говорил с глубоким спокойствием, о врачах даже с лёгким юмором, и ждал своей кончины, как предстоящего «явления природы». Насколько бесстрашным он был при жизни, настолько тихим и умиротворённым он встретил смерть. Без всякой сентиментальности и без сожалений он покинул этот мир.
Учёный, перевернувший представления человечества о Вселенной, Альберт Эйнштейн умер 18 апреля 1955 года в 1 час 25 минут, на 77-м году жизни в Принстоне от аневризмы аорты. Перед смертью он произнёс несколько слов по-немецки, но американская медсестра не смогла их потом воспроизвести. Не воспринимая никаких форм культа личности, он запретил пышное погребение с громкими церемониями, для чего пожелал, чтобы место и время захоронения не разглашались. 19 апреля 1955 года без широкой огласки состоялись похороны великого учёного, на которых присутствовало всего 12 самых близких друзей. Его тело было сожжено в крематории Юинг-Семетери (Ewing Cemetery), а пепел развеян по ветру.
· Одно из исторических совпадений: если Ньютон родился в год смерти Галилея, как бы перенимая у него научную эстафету, то Эйнштейн родился в год смерти Максвелла.
· Когда Эйнштейна простодушно спрашивали, где находится его лаборатория, он, улыбаясь, показывал авторучку.
· Широко известная фотография с высунутым языком была сделана благодаря назойливости журналистов и фотографов, когда один из последних в очередной раз попросил Эйнштейна «улыбнуться в камеру».
· Другой вопрос, который ему часто задавали: как это ему удалось создать теорию относительности? Полушутя, полувсерьёз он отвечал:[52]
Почему именно я создал теорию относительности? Когда я задаю себе такой вопрос, мне кажется, что причина в следующем. Нормальный взрослый человек вообще не задумывается над проблемой пространства и времени. По его мнению, он уже думал об этой проблеме в детстве. Я же развивался интеллектуально так медленно, что пространство и время занимали мои мысли, когда я стал уже взрослым. Естественно, я мог глубже проникать в проблему, чем ребенок с нормальными наклонностями.
· Как-то в Германии Эйнштейн принял участие в благотворительном концерте. Местный журналист, восхищённый его исполнением, спросил у соседки: «Кто это играет?» и получил ответ: «Как, вы не узнали? Это же сам Эйнштейн!» -- «Ах, да, конечно!» На следующий день в газете появилась заметка о выступлении великого музыканта, несравненного виртуоза-скрипача, Альберта Эйнштейна. «Великий музыкант» пришёл в восторг, вырезал заметку и с гордостью показывал знакомым: «Вы думаете, я учёный? Я знаменитый скрипач, вот кто я на самом деле!»
· В 1932 году американская «Женская патриотическая корпорация» потребовала не пускать Эйнштейна в США, так как он известный смутьян и коммунист. Визу всё же выдали, а Эйнштейн огорчённо написал в газете: «Никогда ещё я не получал от прекрасного пола такого энергичного отказа, а если и получал, то не от стольких сразу».[54]
Личная позиция
Близкие знакомые описывают Эйнштейна как человека общительного, дружелюбного, жизнерадостного, остроумного, с превосходным чувством юмора, отмечают его доброту, всегдашнюю готовность помочь, полное отсутствие снобизма, покоряющее человеческое обаяние.
Эйнштейн страстно любил музыку, особенно сочинения XVIII века. В разные годы среди предпочитаемых им композиторов были Бах, Моцарт, Шуман, Гайдн и Шуберт, а в последние годы -- Брамс.[38] Хорошо играл на скрипке, с которой нигде не расставался. Из художественной литературы с восхищением отзывался о прозе Льва Толстого, Достоевского,[56] Диккенса, пьесах Брехта. Увлекался также филателией, садоводством, плаванием на яхте (даже написал статью о теории управления яхтой). В частной жизни был неприхотлив, в конце жизни неизменно появлялся в любимом тёплом свитере.
Несмотря на свой колоссальный научный авторитет, он не страдал излишним самомнением, охотно допускал, что может ошибаться, и если это случалось, публично признавал своё заблуждение. Так произошло, например, в 1922 году, когда он раскритиковал статью Александра Фридмана, предсказавшего расширение Вселенной. Получив затем письмо от Фридмана с разъяснением спорных деталей, Эйнштейн в том же журнале сообщил, что был неправ, а результаты Фридмана ценны и «проливают новый свет» на возможные модели космологической динамики.
Несправедливость, угнетение, ложь всегда вызывали его гневную реакцию. Из письма сестре Майе (1935):[38]
Самым ненавистным словом в немецком языке для него было Zwang -- насилие, принуждение.[57]
Лечащий врач Эйнштейна, Густав Букки, рассказывал[58], что Эйнштейн терпеть не мог позировать художнику, но стоило тому признаться, что рассчитывает благодаря его портрету выбраться из нужды, как Эйнштейн тут же соглашался и терпеливо высиживал перед ним долгие часы.
В конце жизни Эйнштейн кратко сформулировал свою систему ценностей:[59] «Идеалами, освещавшими мой путь и сообщавшими мне смелость и мужество, были добро, красота и истина».
эйнштейн ученый физика
Политические убеждения
Альберт Эйнштейн был убеждённым демократическим социалистом, гуманистом, пацифистом и антифашистом. Авторитет Эйнштейна, достигнутый благодаря его революционным открытиям в физике, позволял учёному активно влиять на общественно-политические преобразования в мире.
В эссе под названием «Почему социализм?» («Why Socialism?»), изданном в качестве статьи в крупнейшем марксистском журнале США «Monthly Review (англ.)»[60], Альберт Эйнштейн изложил своё вимдение социалистических преобразований. В частности, учёный обосновал нежизнеспособность экономической анархии капиталистических отношений, являющихся причиной социальной несправедливости, а главным пороком капитализма называл «пренебрежение человеческой личностью». Осуждая отчуждение человека при капитализме, стремление к наживе и приобретательству, Эйнштейн отмечал, что демократическое общество само по себе не может ограничить своеволие капиталистической олигархии, и обеспечение прав человека становится возможным только в условиях плановой экономики. Следует отметить, что статья была написана в разгар маккартистской «охоты на ведьм» и выражала гражданскую позицию учёного.
Эйнштейн выступал за построение демократического социализма, который соединил бы социальную защиту населения и планирование экономики с демократическим режимом и уважением к правам человека. Он не одобрял тоталитарные методы построения социалистического общества, наблюдавшиеся в СССР; в письме советским учёным (1948) Эйнштейн указал на такие негативные черты советского строя, как всемогущество бюрократии, тенденцию превратить советскую власть в «своего рода церковь и клеймить как предателей и мерзких злодеев всех, кто к ней не принадлежит». В 1938 году Эйнштейн написал Сталину и другим руководителям СССР несколько писем, в которых просил гуманно отнестись к репрессированным в СССР иностранным физикам-эмигрантам. В частности, Эйнштейн беспокоился о судьбе Фрица Нётера, брата Эмми Нётер, который надеялся найти в СССР убежище, но в 1937 году был арестован и вскоре расстрелян. При этом Эйнштейн всегда оставался сторонником сближения и сотрудничества западных демократий и социалистического лагеря.
В обоснование своей антивоенной позиции Эйнштейн писал:
Мой пацифизм -- это инстинктивное чувство, которое владеет мной потому, что убийство человека отвратительно. Моё отношение исходит не из какой-либо умозрительной теории, а основано на глубочайшей антипатии к любому виду жестокости и ненависти.
Он отвергал национализм в любых его проявлениях и называл его «корью человечества».
В годы войны Эйнштейн, временно отказавшись от своего принципиального пацифизма, принимал активное участие в борьбе с фашизмом, а его племянник, анархо-синдикалист Карл Эйнштейн, воевал на стороне Испанской республики на фронтах Гражданской войны в Испании. После войны Эйнштейн поддерживал ненасильственные средства борьбы за права народных масс, особо отмечая заслуги Махатмы Ганди: «Я считаю воззрения Ганди наиболее выдающимися из всех политиков-наших современников. Мы должны стараться совершать поступки в этом духе: не использовать насилие для борьбы за наши права». Вместе с Джулианом Хаксли, Т.Манном и Джоном Дьюи входил в консультативный совет Первого гуманистического общества Нью-Йорка (First Humanist Society of New York).
Он активно содействовал борьбе негритянского населения США за гражданские права, будучи на протяжении двух десятилетий близким другом известного и в СССР темнокожего певца и актёра Поля Робсона. Узнав, что престарелый Уильям Дюбуа объявлен «коммунистическим шпионом», Эйнштейн потребовал вызвать его в качестве свидетеля защиты, и дело вскоре было закрыто. Решительно осудил «дело Оппенгеймера», которого в 1953 году обвинили в «коммунистических симпатиях» и отстранили от секретных работ. В 1946 году Эйнштейн был в числе активистов, сотрудничавших в деле открытия светского еврейского университета на базе Миддлсекского университета (англ.), однако, когда его предложение назначить президентом вуза британского экономиста-лейбориста Гарольда Ласки было отвергнуто (как человека, якобы «чуждого американским принципам демократии»), физик отозвал свою поддержку и позже, когда заведение было открыто в качестве университета Луиса Брандейса, отказался от почётной степени в нём.
Из-за своей «левизны» учёный часто подвергался нападкам со стороны правоконсервативных кругов в США. Ещё в 1932 году организация «Вумэн Пэтриот Корпорэйшн» обратилась в Госдепартамент с письмом, требовавшим не допускать Эйнштейна в США, утверждая, что «сам Сталин не связан с таким множеством анархо-коммунистических групп», как он. Во время разгула маккартизма ФБР располагало личным делом «неблагонадёжного» Эйнштейна, состоявшим из 1427 страниц. В частности, он обвинялся в том, что «проповедует доктрину, направленную на установление анархии». Архивы ФБР также свидетельствуют о том, что физик был объектом пристального внимания со стороны спецслужб, поскольку на протяжении 1937--1955 годов Эйнштейн «состоял или был спонсором и почётным членом в 34 коммунистических фронтах», являлся почётным председателем трёх подобных организаций, и среди его близких друзей были лица, «сочувствующие коммунистической идеологии».
Встревоженный быстрым ростом антисемитизма в Германии, Эйнштейн поддержал призыв сионистского движения создать еврейский национальный очаг в Палестине и выступил на эту тему с рядом статей и речей. Особенно активное содействие с его стороны получила идея открыть Еврейский университет в Иерусалиме (1925). Он пояснил свою позицию:[66]
Вплоть до недавнего времени я жил в Швейцарии, и пока был там, я не сознавал своего еврейства… Когда я приехал в Германию, я впервые узнал, что я еврей, причем сделать это открытие помогли мне больше неевреи, чем евреи… Тогда я понял, что лишь совместное дело, которое будет дорого всем евреям в мире, может привести к возрождению народа… Если бы нам не приходилось жить среди нетерпимых, бездушных и жестоких людей, я бы первый отверг национализм в пользу универсальной человечности.
Последовательный интернационалист, он выступал в защиту прав всех угнетённых народов -- евреев, индийцев, американских негров и др. Эйнштейн приветствовал создание государства Израиль (1947). Он писал Паулю Эренфесту в 1921 году: «Сионизм являет собою поистине новый еврейский идеал и может вернуть еврейскому народу радость существования». Уже после Холокоста он заметил: «Сионизм не защитил германское еврейство от уничтожения. Но тем, кто выжил, сионизм дал внутренние силы перенести бедствие с достоинством, не утратив здорового самоуважения».[38] В 1952 году к Эйнштейну даже поступило предложение стать вторым президентом Израиля, от которого учёный вежливо отказался, сославшись на отсутствие опыта подобной работы. Все свои письма и рукописи (и даже копирайт на коммерческое использование своего образа и имени) Эйнштейн завещал Еврейскому университету в Иерусалиме. [67]
Философия
Эйнштейн всегда интересовался философией науки и оставил ряд глубоких исследований на эту тему. Юбилейный сборник 1949 года к его 70-летию назывался (надо полагать, с его ведома и согласия) «Альберт Эйнштейн. Философ-учёный». Наиболее близким к себе по мировосприятию философом Эйнштейн считал Спинозу. Рационализм у них обоих был всеохватывающим и распространялся не только на сферу науки, но также на этику и другие аспекты человеческой жизни: гуманизм, интернационализм, свободолюбие и др. хороши не только сами по себе, но и потому, что они наиболее разумны. Законы природы объективно существуют, и они постижимы по той причине, что они образуют мировую гармонию, разумную и эстетически привлекательную одновременно. В этом главная причина неприятия Эйнштейном «копенгагенской интерпретации» квантовой механики, которая, по его мнению, вносила в картину мира иррациональный элемент, хаотическую дисгармонию.
Философия Эйнштейна была основана на совершенно иных принципах. В своей автобиографии (1949) он писал:
Там, вовне, был этот большой мир, существующий независимо от нас, людей, и стоящий перед нами как огромная вечная загадка, доступная, однако, по крайней мере отчасти, нашему восприятию и нашему разуму. Изучение этого мира манило как освобождение, и я скоро убедился, что многие из тех, кого я научился ценить и уважать, нашли свою внутреннюю свободу и уверенность, отдавшись целиком этому занятию. Мысленный охват в рамках доступных нам возможностей этого внеличного мира представлялся мне, наполовину сознательно, наполовину бессознательно, как высшая цель… Предубеждение этих учёных [позитивистов] против атомной теории можно, несомненно, отнести за счет их позитивистской философской установки. Это интересный пример того, как философские предубеждения мешают правильной интерпретации фактов даже учёным со смелым мышлением и с тонкой интуицией.
В той же автобиографии Эйнштейн чётко формулирует два критерия истины в физике: теория должна иметь «внешнее оправдание» и «внутреннее совершенство». Первое означает, что теория должна согласовываться с опытом, а второе -- что она должна из минимальных предпосылок раскрывать максимально глубокие закономерности универсальной и разумной гармонии законов природы. Эстетические качества теории (оригинальная красота, естественность, изящество) тем самым становятся немаловажными физическими достоинствами.
Подобные документы
Жизнь и деятельность великого ученого Альберта Эйнштейна. Первые исследования ученого по молекулярной физике. Основные постулаты общей теории относительности. Распространение идей квантовой теории на физические процессы, не связанные с излучением.
реферат [26,8 K], добавлен 03.12.2010Краткая биография и первые шаги к признанию Альберта Эйнштейна. Годы работы великого ученого в Патентном бюро. Знаменитые теории Эйнштейна: броуновское движение, кванты и фотоэффект, теория относительности. Калейдоскоп его изобретений и экспериментов.
реферат [42,4 K], добавлен 25.07.2010Альберт Эйнштейн, талантливый ученый и физик, создатель теории относительности и один из создателей квантовой теории и статистической физики, его биография. Работы Эйнштейна, получение Нобелевской премии. Теория относительности, ее "знаменитые" парадоксы.
реферат [27,1 K], добавлен 27.05.2009Рождение Альберта Эйнштейна в баварском городе Ульме. Первое знакомство с микроскопом, компасом и телескопом. Учёба в мюнхенской гимназии. Переезд в Швейцарию, первый брак. Год чудес 1905. Всемирное признание, Нобелевская премия, бегство в Америку.
презентация [298,9 K], добавлен 20.05.2011Развитие науки в XIX веке, послужившее основой для последующего технического прогресса. Биографические данные и научные открытия великих ученых, проводивших исследования в области физики, химии, астрономии, фармацевтики, биологии, медицины, генетики.
презентация [1,2 M], добавлен 15.05.2012Хронология жизни и научной деятельности М.В. Ломоносова, причины его ухода из дома. Нелегкие годы учебы в Москве, дальнейшее обучение в Петербурге и Германии. Книги и открытия русского ученого, его обращение к потомкам. Памятники Михаилу Васильевичу.
презентация [1,1 M], добавлен 14.11.2012Ибн Сина (Авиценна) как систематизатор и пропагандист научного знания своего времени в Иране, его вклад в мировую науку. Философские взгляды ученого, его трактовка понятий познания и воспитания. Значение "Канона врачебной науки" для европейской медицины.
реферат [8,8 K], добавлен 07.06.2009Жизненный путь Андрея Дмитриевича Сахарова. Научная работа и открытия ученого. Термоядерное оружие. Правозащитная деятельность и последние годы жизни ученого. Значение деятельности А.Д. Сахарова - ученого, педагога, правозащитника для человечества.
реферат [41,1 K], добавлен 08.12.2008Выдающиеся научные открытия XIX века в области физики, биологии, физиологии человека, психологии, географии, медицины и в других науках. Научные достижения Ж.Б. Ламарка, Н.И. Пирогова, Н.И. Лобачевского, А.Г. Столетова, А.П. Бородина, Ф.А. Бредихина.
презентация [234,0 K], добавлен 05.05.2014Ранние годы жизни Михаила Васильевича Ломоносова, формирование его мировоззрения. Основные достижения ученого-практика в области естествознания (химии, астрономии, опто-механики, приборостроении) и гуманитарных наук (риторики, грамматики, истории).
курсовая работа [57,2 K], добавлен 10.06.2010