Галилео Галилей

Жизненный путь и основные факты биографии Галилео Галилея. Годы обучения и работы в Пизанском и Падуанском университетах, научные исследования и написание трактатов "Механика" и "Звездный вестник". Достижения ученого в механике, астрономии и математике.

Рубрика История и исторические личности
Вид контрольная работа
Язык русский
Дата добавления 22.11.2010
Размер файла 25,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Жизнь Галилео Галилея

2. Научные достижения

Список литературы

1. Жизнь Галилео Галилея

галилей трактат астрономия математика

Галилей родился в 1564 году в итальянском городе Пиза, в семье родовитого, но обедневшего дворянина Винченцо Галилея, видного теоретика музыки и лютниста. Полное имя Галилео Галилея: Галилео ди Винченцо Бонайути де Галилей.

О детстве Галилея известно немного. С ранних лет мальчика влекло к искусству; через всю жизнь он пронёс любовь к музыке и рисованию, которыми владел в совершенстве. В зрелые годы лучшие художники Флоренции -- Чиголи, Бронзино и др. -- советовались с ним в вопросах перспективы и композиции; Чиголи даже утверждал, что именно Галилею он обязан своей славой. По сочинениям Галилея можно сделать также вывод о наличии у него замечательного литературного таланта.

Начальное образование Галилей получил в расположенном неподалёку монастыре Валломброза. Мальчик очень любил учиться и стал одним из лучших учеников в классе. Он взвешивал возможность стать священником, но отец был против.

В 1581 году 17-летний Галилей по настоянию отца поступил в Пизанский университет изучать медицину. В университете Галилей посещал также лекции по геометрии (ранее он с математикой был совершенно не знаком) и настолько увлёкся этой наукой, что отец стал опасаться, как бы это не помешало изучению медицины.

Галилей пробыл студентом неполных три года, за это время он успел основательно ознакомиться с сочинениями античных философов и математиков и заработал среди преподавателей репутацию неукротимого спорщика. Уже тогда он считал себя вправе иметь собственное мнение по всем научным вопросам, не считаясь с традиционными авторитетами. В эти годы он познакомился с теорией Коперника. Астрономические проблемы тогда живо обсуждались, особенно в связи с только что проведённой календарной реформой. В связи с ухудшившимся финансовым положением отца в 1585 году Галилей возвращается во Флоренцию.

В 1589 году Галилей вернулся в Пизанский университет, теперь уже профессором математики. Там он начал проводить самостоятельные исследования по механике и математике. В 1590 году Галилей написал трактат "О движении".

В 1592 году Галилей получил место в престижном и богатом Падуанском университете (Венецианская республика), где преподавал астрономию, механику и математику. Годы пребывания в Падуе -- наиболее плодотворный период научной деятельности Галилея. Вскоре он стал самым знаменитым профессором этого города. В эти годы он написал трактат "Механика", который вызвал некоторый интерес и был переиздан во французском переводе.

Поводом к новому этапу в научных исследованиях Галилея послужило появление в 1604 году новой звезды, называемой сейчас сверхновой Кеплера. Это пробуждает всеобщий интерес к астрономии, и Галилей выступает с циклом частных лекций. Узнав об изобретении в Голландии зрительной трубы, Галилей в 1609 году конструирует собственноручно первый телескоп и направляет его в небо. Свои первые открытия с телескопом Галилей описал в сочинении "Звёздный вестник", изданном во Флоренции в 1610 году. Книга имела сенсационный успех по всей Европе, даже коронованные особы спешили заказать себе телескоп. Наступает всеобщее признание Галилео Галилея.

В 1610 году Галилей переезжает во Флоренцию. В этот период он работает при дворе герцога Козимо II Медичи, обучая сыновей тосканского герцога. Формально он также зачислен профессором Пизанского университета, но освобождён от утомительной обязанности чтения лекций.

Галилей продолжает научные исследования. Свои достижения учёный зачастую излагал в задиристо-полемическом стиле, чем нажил немало новых врагов (в частности, среди иезуитов).

Рост влияния Галилея, независимость его мышления и резкая оппозиционность по отношению к учению Аристотеля способствовали формированию агрессивного кружка его противников, состоящего из профессоров-перипатетиков и некоторых церковных деятелей. Особенно возмущали недоброжелателей Галилея его пропаганда гелиоцентрической системы мира, поскольку, по их мнению, вращение Земли противоречило текстам Псалмов.

В 1613 году Галилей выпустил книгу "Письма о солнечных пятнах", в которой открыто высказался в пользу системы Коперника. 25 февраля 1615 года римская инквизиция начала первое дело против Галилея по обвинению в ереси. Она поясняет, что церковь не возражает против трактовки коперниканства как удобного математического приёма, но принятие его как реальности означало бы признание того, что прежнее, традиционное толкование библейского текста было ошибочным. А это, в свою очередь, пошатнёт авторитет церкви. 5 марта 1616 года Рим официально определяет гелиоцентризм как опасную ересь. Книга Коперника была включена в Индекс запрещённых книг "до её исправления".

В начале 1632 года книга "Диалог о двух главнейших системах мира -- птолемеевой и коперниковой" вышла в свет. Книга написана в форме диалога между тремя любителями науки: коперниканцем Сальвиати, нейтральным участником Сагредо и Симпличио, приверженцем Аристотеля и Птолемея. Хотя в книге нет авторских выводов, сила аргументов в пользу системы Коперника говорит сама за себя. Немаловажно также, что книга написана не на учёной латыни, а на итальянском языке. Галилей надеялся, что Папа отнесётся к его уловке так же снисходительно, однако просчитался. В довершение всего он сам безрассудно рассылает 30 экземпляров своей книги влиятельным духовным лицам в Риме. Впоследствии, Галилей был осуждён к тюремному заключению на срок, который установит Папа. Его объявили не еретиком, а "сильно заподозренным в ереси"; такая формулировка также была тяжким обвинением, однако спасала от костра. Папа не стал долго держать Галилея в тюрьме. Ему было разрешено отправиться на родину, и он поселился в Арчетри. Галилей провёл остаток жизни под домашним арестом и под постоянным надзором инквизиции.

2. Научные достижения

Механика

Физика и механика в те годы изучались по сочинениям Аристотеля, которые содержали метафизические рассуждения о "первопричинах" природных процессов. В частности, Аристотель утверждал:

· Скорость падения пропорциональна весу тела.

· Движение происходит, пока действует "побудительная причина" (сила), и в отсутствие силы прекращается.

Находясь в Падуанском университете, Галилей изучал инерцию и свободное падение тел. В частности, он заметил, что ускорение свободного падения не зависит от веса тела, таким образом опровергнув первое утверждение Аристотеля.

В своих книгах Галилей сформулировал правильные законы падения: скорость нарастает пропорционально времени, а путь -- пропорционально квадрату времени. В соответствии со своим научным методом он тут же привёл опытные данные, подтверждающие открытые им законы. Более того, Галилей рассмотрел и обобщённую задачу: исследовать поведение падающего тела с ненулевой горизонтальной начальной скоростью. Он совершенно правильно предположил, что полёт такого тела будет представлять собой суперпозицию (наложение) двух "простых движений": равномерного горизонтального движения по инерции и равноускоренного вертикального падения. Галилей доказал, что указанное, а также любое брошенное под углом к горизонту тело летит по параболе. В истории науки это первая решённая задача динамики. В заключение исследования Галилей доказал, что максимальная дальность полёта брошенного тела достигается для угла броска 45° (ранее это предположение высказал Тарталья, который, однако, не смог его строго обосновать). На основе своей модели Галилей (ещё в Венеции) составил первые артиллерийские таблицы.

Галилей опроверг и второй из приведённых законов Аристотеля, сформулировав первый закон механики (закон инерции): при отсутствии внешних сил тело либо покоится, либо равномерно движется. То, что мы называем инерцией, Галилей поэтически назвал "неистребимо запечатлённое движение". Правда, он допускал свободное движение не только по прямой, но и по окружности .

Галилей является одним из основоположников принципа относительности в классической механике, который также был позже назван в его честь. В "Диалоге о двух системах мира" Галилей сформулировал принцип относительности следующим образом: ,,Для предметов, захваченных равномерным движением, это последнее как бы не существует и проявляет своё действие только на вещах, не принимающих в нём участия".

Эти открытия Галилея, кроме всего прочего, позволили ему опровергнуть многие доводы противников гелиоцентрической системы мира, утверждавших, что вращение Земли заметно сказалось бы на явлениях, происходящих на её поверхности. Например, по мнению геоцентристов, поверхность вращающейся Земли за время падения любого тела уходила бы из-под этого тела, смещаясь на десятки или даже сотни метров. Галилей уверенно предсказал: "Будут безрезультатны любые опыты, которые должны были бы указывать более против, чем за вращение Земли".

Галилей опубликовал исследование колебаний маятника и заявил, что период колебаний не зависит от их амплитуды (это приблизительно верно для малых амплитуд). Он также обнаружил, что периоды колебаний маятника соотносятся как квадратные корни из его длины. Результаты Галилея привлекли внимание Гюйгенса, который изобрёл часы с маятниковым регулятором (1657); с этого момента появилась возможность точных измерений в экспериментальной физике.

Многие рассуждения Галилея представляют собой наброски открытых много позднее физических законов. Например, в "Диалоге" он сообщает, что вертикальная скорость шара, катящегося по поверхности сложного рельефа, зависит только от его текущей высоты, и иллюстрирует этот факт несколькими мысленными экспериментами; сейчас мы бы сформулировали этот вывод как закон сохранения энергии в поле тяжести. Аналогично он объясняет (теоретически незатухающие) качания маятника.

В статике Галилей ввёл фундаментальное понятие момента силы.

Астрономия

В 1609 году Галилей самостоятельно построил свой первый телескоп с выпуклым объективом и вогнутым окуляром. Труба давала приблизительно трёхкратное увеличение. Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза. Отметим, что термин телескоп ввёл в науку именно Галилей (сам термин предложил ему Федерико Чези, основатель "Академии деи Линчеи"). Ряд телескопических открытий Галилея способствовали утверждению гелиоцентрической системы мира, которую Галилей активно пропагандировал, и опровержению взглядов геоцентристов Аристотеля и Птолемея.

Первые телескопические наблюдения небесных тел Галилей провёл 7 января 1610 года. Эти наблюдения показали, что Луна, подобно Земле, имеет сложный рельеф -- покрыта горами и кратерами. Известный с древних времен пепельный свет Луны Галилей объяснил как результат попадания на наш естественный спутник солнечного света, отражённого Землёй. Всё это опровергало учение Аристотеля о противоположности "земного" и "небесного": Земля стала телом принципиально той же природы, что и небесные светила, а это, в свою очередь, служило косвенным доводом в пользу системы Коперника: если другие планеты движутся, то естественно предположить, что движется и Земля. Галилей обнаружил также либрацию Луны и довольно точно оценил высоту лунных гор. У Юпитера обнаружились собственные луны -- четыре спутника. Тем самым Галилей опроверг один из доводов противников гелиоцентризма: Земля не может вращаться вокруг Солнца, поскольку вокруг неё самой вращается Луна. Ведь Юпитер заведомо должен был вращаться либо вокруг Земли (как в геоцентрической системе), либо вокруг Солнца (как в гелиоцентрической). Полтора года наблюдений позволили Галилею оценить период обращения этих спутников (1612), хотя приемлемая точность оценки была достигнута только в эпоху Ньютона. Галилей предложил использовать наблюдения затмений спутников Юпитера для решения важнейшей проблемы определения долготы на море. Сам он не смог разработать реализацию подобного подхода, хотя работал над ней до конца жизни; первым успеха добился Кассини (1681), однако из-за трудностей наблюдений на море метод Галилея применялся в основном сухопутными экспедициями, а после изобретения морского хронометра (середина XVIII века) проблема была закрыта.

Галилей открыл также солнечные пятна. Существование пятен и их постоянная изменчивость опровергали тезис Аристотеля о совершенстве небес. По результатам их наблюдений Галилей сделал вывод, что Солнце вращается вокруг своей оси, оценил период этого вращения и положение оси Солнца.

Галилей установил, что Венера меняет фазы. С одной стороны, это доказывало, что она светит отражённым светом Солнца (насчёт чего в астрономии предшествующего периода не было ясности). С другой стороны, порядок смены фаз соответствовал гелиоцентрической системе: в теории Птолемея Венера как "нижняя" планета была всегда ближе к Земле, чем Солнце, и "полновенерие" было невозможно.

Галилей отметил также странные "придатки" у Сатурна, но открытию кольца помешали слабость телескопа и поворот кольца, скрывший его от земного наблюдателя. Полвека спустя кольцо Сатурна открыл и описал Гюйгенс, в распоряжении которого был 92-кратный телескоп.

Галилей показал, что при наблюдении в телескоп планеты видны как диски, видимые размеры которых в различных конфигурациях меняются в таком соотношении, какое следует из теории Коперника. Однако диаметр звёзд при наблюдениях с телескопом не увеличивается. Это опровергало оценки видимого и реального размера звезд, которые использовались некоторыми астрономами как аргумент против гелиоцентрической системы.

Млечный путь, который невооружённым глазом выглядит как сплошное сияние, распался на отдельные звёзды (что подтвердило догадку Демокрита), и стало видно громадное количество неизвестных ранее звёзд.

В "Диалоге о двух системах мира" Галилей подробно обосновал (устами персонажа Сальвиати), почему он предпочитает систему Коперника, а не Птолемея:

· Венера и Меркурий никогда не оказываются в противостоянии, то есть в стороне неба, противоположной Солнцу. Это означает, что они вращаются вокруг Солнца, и их орбита проходит между Солнцем и Землёй.

· У Марса противостояния бывают. Кроме того, Галилей не выявил у Марса фаз, заметно отличных от полной освещённости видимого диска. Отсюда и из анализа изменений яркости при движении Марса Галилей сделал вывод, что эта планета тоже вращается вокруг Солнца, но в данном случае Земля находится внутри её орбиты. Аналогичные выводы он сделал для Юпитера и Сатурна.

Таким образом, осталось выбрать между двумя системами мира: Солнце (с планетами) вращается вокруг Земли или Земля вращается вокруг Солнца. Наблюдаемая картина движений планет в обоих случаях одна и та же, это гарантирует принцип относительности, сформулированный самим Галилеем. Поэтому для выбора нужны дополнительные доводы, в числе которых Галилей приводит большую простоту и естественность модели Коперника. Будучи пламенным сторонником Коперника, Галилей, однако, отверг систему Кеплера с эллиптическими орбитами планет.

Галилей разъяснил, отчего земная ось не поворачивается при обращении Земли вокруг Солнца, для объяснения этого явления Коперник ввёл специальное "третье движение" Земли. Галилей показал на опыте, что ось свободно движущегося волчка сохраняет своё направление сама собой ("Письма к Инголи"):

Подобное явление очевидным образом обнаруживается у всякого тела, находящегося в свободно подвешенном состоянии, как я показывал многим; да и вы сами можете в этом убедиться, положив плавающий деревянный шар в сосуд с водою, который вы возьмете в руки, и затем, вытянув их, начнете вращаться вокруг самого себя; вы увидите, как этот шар будет поворачиваться вокруг себя в сторону, обратную вашему вращению; он закончит свой полный оборот в то же самое время, как вы закончите ваш.

Вместе с тем, Галилей сделал серьёзную ошибку, полагая, что явление приливов доказывает вращение Земли вокруг оси. Впрочем, он приводит и другие серьёзные аргументы в пользу суточного вращения Земли:

· Трудно согласиться с тем, что вся Вселенная совершает суточный оборот вокруг Земли (особенно учитывая колоссальные расстояния до звёзд); более естественно объяснить наблюдаемую картину вращением одной Земли. Синхронное участие планет в суточном вращении нарушало бы также наблюдаемую закономерность, согласно которой, чем дальше планета от Солнца, тем медленнее она движется.

· Даже у огромного Солнца обнаружено осевое вращение.

Галилей описывает здесь же мысленный эксперимент, который мог бы доказать вращение Земли: пушечный снаряд или падающее тело за время падения немного отклоняются от вертикали; однако приведенный им расчёт показывает, что это отклонение ничтожно. Он сделал верное замечание, что вращение Земли должно влиять на динамику ветров. Все эти эффекты были обнаружены много позже.

Математика

К теории вероятности относится его исследование об исходах при бросании игральных костей. В его "Рассуждении об игре в кости", время написания неизвестно, опубликовано в 1718 году) проведён довольно полный анализ этой задачи.

В "Беседах о двух новых науках" он сформулировал "парадокс Галилея": натуральных чисел столько же, сколько их квадратов, хотя большая часть чисел не являются квадратами. Это подтолкнуло в дальнейшем к исследованию природы бесконечных множеств и их классификации; завершился процесс созданием теории множеств.

Другие достижения

Галилей изобрёл:

· Гидростатические весы для определения удельного веса твёрдых тел. Галилей описал их конструкцию в трактате "La bilancetta" (1586).

· Первый термометр, ещё без шкалы (1592).

· Пропорциональный циркуль, используемый в чертёжном деле (1606).

· Микроскоп, плохого качества (1612); с его помощью Галилей изучал насекомых.

Галилей занимался также оптикой, акустикой, теорией цвета и магнетизма, гидростатикой, сопротивлением материалов, проблемами фортификации. Провёл эксперимент по измерению скорости света, которую считал конечной (без успеха). Он первым опытным путём измерил плотность воздуха, которую Аристотель считал равной 1/10 плотности воды; эксперимент Галилея дал значение 1/400, что намного ближе к истинному значению (около 1/770). Ясно сформулировал закон неуничтожимости вещества.

Список литературы

1. http://ru.wikipedia.org/wiki/Галилей

2. http://works.tarefer.ru/32/100238/index.html

Размещено на Allbest.ru


Подобные документы

  • Формирование взглядов Галилея в свете истории. Схоластическое учение о природе. Великий итальянский ученый Галилео Галилей как основоположник экспериментально-математического метода исследования природы. Философское значение законов механики.

    реферат [26,4 K], добавлен 26.02.2009

  • Основные факты биографии Фалеса Милетского - древнегреческого философа и математика, представителя ионической натурфилософии и основателя ионийской школы, с которой начинается история европейской науки. Открытия ученого в астрономии, геометрии, физике.

    презентация [3,3 M], добавлен 24.02.2014

  • Детство и юность ученого Шокана Уалиханова, потомка древнего известного султанского рода. Годы учебы в Омске, достижения и назначение адъютантом генерал-губернатора Западной Сибири. Научные исследования Шокана Уалиханова, его место в истории Казахстана.

    презентация [233,5 K], добавлен 07.12.2014

  • Детство великого русского ученого Михаила Васильевича Ломоносова. Путь в Москву. Учеба в "Спасских школах", Славяно-греко-латинской Академии. Изучение истории, физики, механики в Германии. Основание Московского университета. Последние годы жизни ученого.

    презентация [647,3 K], добавлен 27.02.2012

  • Жизненный путь Андрея Дмитриевича Сахарова. Научная работа и открытия ученого. Термоядерное оружие. Правозащитная деятельность и последние годы жизни ученого. Значение деятельности А.Д. Сахарова - ученого, педагога, правозащитника для человечества.

    реферат [41,1 K], добавлен 08.12.2008

  • Ранние годы жизни Михаила Васильевича Ломоносова, формирование его мировоззрения. Основные достижения ученого-практика в области естествознания (химии, астрономии, опто-механики, приборостроении) и гуманитарных наук (риторики, грамматики, истории).

    курсовая работа [57,2 K], добавлен 10.06.2010

  • Функции науки: описательная, систематизирующая, объяснительная, производственно-практическая, прогностическая, мировоззренческая. Творцы открытий в эпоху Средневековья: Роджер Бэкон, Гутенберг, Коперник, Тихо Браге, Галилео Галилей, Ньютон и да Винчи.

    реферат [34,3 K], добавлен 10.05.2014

  • Семья и деятельность Рене Декарта. Обзор его основных трудов, достижения в механике и физике, размышления о Боге и философские труды. Работа ученого в области математики. Его исследования в области общей психологии (принципы рефлекторной деятельности).

    презентация [1,7 M], добавлен 14.05.2012

  • Детство и годы учебы Макара Евсевьевича Евсевьева в Казанской учительской инородческой семинарии. Исследования ученого в области филологии. Деятельность по созданию и развитию национальной школы. Общественная, научная и педагогическая деятельность.

    дипломная работа [70,6 K], добавлен 25.06.2012

  • Детство и юность Ивана Петровича Павлова. Любовь к труду и самодисциплина как истоки его будущих достижений. Путь в науку через безденежье и ряд препятствий. Выдающиеся успехи в области физиологии, признание деятельности ученого в годы советской власти.

    реферат [43,3 K], добавлен 05.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.