Вещественный состав земной коры

Характеристика и особенности ранних этапов формирования земной коры. Выявление химических изменений в земной коре, исследование минералогического состава земной коры. Классификация горных пород, основные критерии в изучении строения земной коры.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 11.12.2020
Размер файла 191,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вещественный состав земной коры

Содержание

Введение

Глава 1. Ранние этапы формирования земной коры

Глава 2.Вещественный состав земной коры

2.1 Химический и состав земной коры

2.2 Минералогический состав земной коры

2.3 Горные породы

Заключение

Список литературы

Введение

Непосредственному наблюдению доступны лишь верхние горизонты земной коры, которые формировались последние несколько миллиардов лет. Все этапы развития земной коры ознаменовались определёнными формированиями различных типов земной коры: континентальной и океанической. Земную кору - верхнюю твердую оболочку Земли слагают различные генетические типы горных пород (магматические, осадочные и метаморфические), состоящие из определенного сочетания минералов, в состав которых входят различные химические элементы. Изучая такую иерархию - химические элементы > минералы > горные породы, можно судить о строении земной коры в различных структурных зонах.

На первых этапах геофизических исследований выделялись два основных типа земной коры: ) континентальный и 2) океанский, резко отличающиеся друг от друга строением и мощностью слагающих пород.

В последующем стали выделять два переходных типа: 1) субконтинентальный и 2) субокеанский.

Это и является основным критерием в изучении строения земной коры. Наиболее глубокие буровые скважины проникают в толщу Землю пока не более чем на 7-12 км. Шахты лишь в единичных случаях достигают глубин порядка 2 км. Таким образом, непосредственному изучению в самом благоприятном случае доступна лишь тонкая поверхностная оболочка земного шара толщиною не более 0,1% от радиуса Земли. Проникновение в более глубокие части земного шара пока является нереальным. Поэтому было необходимо изыскать косвенные методы, с помощью которых можно было бы судить о составе и строении глубин Земли. С этой целью было предложено несколько путей: сейсмический метод и гравиметрический методы исследования. Целью работы является изучение строения, минералогического и петрографического составов земной коры. Для достижения цели были поставлены следующие задачи: 1) Изучение общих сведений о строении земной коры; 2) Изучение минералогического и петрографического составов земной коры.

Глава 1. Ранние этапы формирования земной коры

Катархейский этап (5,0 - 4,5 млрд. лет) ознаменовался формированием первичной океанической коры. В течение этого этапа в результате деятельности многочисленных вулканов и трещинных излияний образовалась первичная базальтовая оболочка Земли. Эта оболочка, по мнению ученых, была похожа на современную кору Луны. Однако этот наиболее ранний земной ландшафт уже тогда существенно отличался от лунного. Земля на этом этапе приобрела и затем, в отличие от Луны, сохранила водную и газовую оболочки.

Водная оболочка первоначально могла покрывать всю поверхность Земли, кроме вулканических архипелагов, т. е. создавалась картина, похожая на современную центральную часть Тихого океана. При этом первичный океан напоминал современные океаны, но отличался меньшей глубиной - порядка 1,5-2 км. Однако древнейшая базальтовая оболочка после своего образования подверглась сильным изменениям. На первичный базальтовый слой давила весьма значительная нагрузка более молодых образований, а снизу из мантии на него воздействовал тепловой поток, а также внедрялись газообразные и жидкие вещества. В ходе этих процессов метаморфизма и должны были образоваться сильно измененные породы - гранулиты.

Первичная базальтовая оболочка Земли могла сохраниться от последующего уничтожения в пределах современных древних платформ, где ей может соответствовать самый глубокий слой земной коры или даже верхняя часть мантии. Окончательно природа этого слоя может быть установлена лишь с помощью глубинного бурения.

Архейский этап (4,5 - 4,0-3,5 млрд. лет). В этот промежуток времени формируется первичная континентальная кора. Некоторые исследователи считают древнейшими породами земной коры сильно метаморфизированные основные вулканические породы типа так называемой кивотинской серии, залегающие близ озера Верхнего в пределах Канадского щита. Но уже несколько лет назад стало выясняться, что во многих районах земного шара в щитах древних платформ ниже пород, аналогичных кивотинской серии, залегают граниты и гнейсы возрастом 3,5 млрд. лет. Есть основания полагать, что эти гранитогнейсовые породы, или гранитоиды, распространены в пределах всех древних платформ. Видимо, в это время процессы гранитизации охватили всю планету. Откуда взялись эти древнейшие гранитоиды, пока не вполне ясно.

Таковы наиболее ранние этапы развития земной коры, о которых можно лишь высказать более или менее правдоподобные предположения; следующие этапы устанавливаются лучше, достовернее.

Позднеархейский - раннепротерозойский этап (3,5 - 2,0 млрд. лет).На этом этапе продолжалось наращивание земной коры: на ее поверхности со временем накапливались мощные вулканические и осадочные толщи. За время течения этапа процессы резкого изменения пород, т. е. метаморфизма и гранитизации, а также образование складчатости проявились дважды - на рубежах около 2,6 и 2,0 млрд. лет назад; это дает основание выделить два подэтапа: позднеархейский и раннепротерозойский.

Втечение первого подэтапа в результате главным образом подводных извержений накапливались мощные толщи вулканических пород преимущественно базальтового состава. Наряду с ними накапливаются и осадочные толщи, нередко со значительным содержанием кварца. Мощность осадочных толщ, например, на Канадском щите местами огромна - она достигает 6-9 км. Следовательно, уже на данной стадии развития коры существовали и разрушались достаточно крупные ее поднятия, сложенные гранитогнейсовыми породами.

Однако, как показывают исследования, проведенные в последнее время, в архее намечаются глубинные разломы и более жесткие структуры с осадками и лавами разного состава. В результате процессов складчатости, метаморфизма и гранитизации обширные площади, поднявшиеся над уровнем океана, объединились в первичные материки, или протоконтиненты.

Однако в начале раннепротерозойского подэтапа объединение сменилось раздроблением коры, при этом обособились относительно устойчивые глыбы земной коры. Эти глыбы (иногда их называют протоплатформами) включают и более древние жесткие ядра из пород гранитогнейсового состава. Большинство будущих древних платформ возникло в результате слияния ряда таких глыб, или массивов, разделенных узкими (в десятки километров), но длинными прогибами. Наряду с узкими прогибами существовали и более широкие подвижные пояса, сохранившие свою подвижность и на следующих этапах геологической истории.

Но высоких гор, от разрушения которых образуется обломочный материал, на месте геосинклиналей того времени еще не возникло. Раннепротерозойское время закончилось новой эпохой складчатости, метаморфизма и гранитизации.Первичный гранитогнейсовый слой еще раз увеличился таким образом; его формирование в пределах современных древних платформ на этом по существу закончилось.

Отметим, что тектонические процессы в раннем протерозое сопровождались выносом из мантии и более глубоких горизонтов коры значительных количеств естественнорадиоактивных элементов - урана, тория, калия, которые концентрировались в гранитоидах и в обломочных толщах.

Конец раннего протерозоя - 2 млрд. лет до н. э. - оказался очень важным рубежом в тектонической истории Земли. К этому времени в основном закончились процессы изменения общего характера развития литосферы, начавшиеся на рубеже 2,5 млрд. лет, поэтому ранний протерозой можно считать переходным этапом в развитии земной коры.

Среднепротерозойский этап (2,0-1,4 млрд. лет). Этот этап, в течение которого продолжалось развитие континентальной коры, относительно плохо «документирован» осадками и потому с трудом поддается расшифровке. Как постепенно проясняется в последние годы, эволюция коры на протяжении этого периода подразделялась, видимо, на два подэтапа.

В течение первого подэтапа (2-1,7 млрд. лет), соответствующего среднему протерозою, еще «доживали» отдельные геосинклинальные системы, заложенные в раннем протерозое, а также развивались узкие прогибы. земная кора минералогический горный

Этот процесс завершился новой эпохой складчатости, вулканизма и движений коры в интервале примерно 1,7-1,6 млрд. лет, при этом формировались толщи из излившихся и глубинных (интрузивных) пород, включающие кислые лавы и граниты типа рапакиви. (Эти красные граниты выступают, в частности, в Выборгском массиве на Карельском перешейке; ими облицованы набережные, и из них высечены постаменты многих памятников в Ленинграде.)

Эти очаги магматизма в пределах самой земной коры свидетельствуют о ее разогреве (вплоть до нижней части гранитного слоя) под воздействием все еще высокого теплового потока из глубоких недр. Благодаря частичному плавлению гранитного слоя и насыщению его щелочными растворами повышалась однородность фундамента будущих древних платформ.

На втором подэтапе (1,7-1,4 млрд. лет) на площади современных континентов преобладали поднятия, в ходе которых к началу позднего протерозоя, вероятно, сформировался огромный континентальный платформенный, массив - «Большая Земля», занимавший все континентальное полушарие Земли. Предположение о его существовании теперь подтверждается данными радиогеохронометрии. Таким образом каждый этап формирования земной коры является важным для развития всей планеты. Катархейский этап (5,0-4,5 млрд. лет) ознаменовался формированием первичной океанической коры, архейский этап (4,5-4,0-3,5 млрд. лет) - формированием первичной континентальной коры. Во все последующие этапы шло глобальное формирование земной коры вплоть до современности.

Глава 2 Вещественный состав земной коры

2.1 Химический и состав земной коры

Земную кору - верхнюю твердую оболочку Земли слагают различные генетические типы горных пород (магматические, осадочные и метаморфические), состоящие из определенного сочетания минералов, в состав которых входят различные химические элементы. Изучая такую иерархию - химические элементы > минералы > горные породы, можно судить о строении земной коры в различных структурных зонах. Ниже рассматриваются все указанные части вещественного состава земной коры.

Химические изменения в земной коре определяются преимущественно геохимической историей главных породообразующих элементов, содержание которых составляет свыше 1%. Вычисления среднего химического состава земной коры проводились многими исследователями как за рубежом (Ф. Кларк, Г. С. Вашингтон, В. М. Гольдшмидт, Ф.Тейлор, В. Мейсон и др.), так и в Советском Союзе (В.И.Вернадский, А. Е. Ферсман, А. П. Виноградов, А. А. Ярошевский и др.) (таблица 1). Сопоставляя приведенные данные, видно, что земная кора больше чем на 98% сложена О, Si, Al, Fe, Mg, Ca, Na, К, при этом свыше 80% составляют кислород, кремний и алюминий, в отличие от среднего состава Земли, где содержание их резко уменьшается. Особенно высоко содержание кислорода, поэтому В. М. Гольдшмидт называет земную кору оксисферой, или кислородной оболочкой Земли (рисунок 2.1).

Таблица 1 - Распространение главнейших элементов в земной коре (в процентах, %)

2.2 Минералогический состав земной коры

Минералами называются природные химические соединения или отдельные химические элементы, возникшие в результате физико-химических процессов, происходящих в Земле. В земной коре минералы находятся преимущественно в кристаллическом состоянии, и лишь незначительная часть - в аморфном.

Количество известных в настоящее время минералов превышает 2000. Их можно группировать по разным признакам. В основе принятой в настоящее время классификации минералов лежат химический состав и структура. Большое внимание уделяется также генезису (греч. "генезис" - происхождение), что позволяет познавать закономерности распространения минералов в земной коре. Наиболее широко распространенные минералы, принадлежащие к классам: самородных элементов, сульфидов, галоидных соединений, оксидов и гидроксидов, карбонатов, сульфатов, фосфатов и силикатов: Классы самородных элементов и сульфидов. Минералы этих классов не относятся к породообразующим, но многие из них являются ценными полезными ископаемыми: сера, графит, галенит, сфалерит, пирит; 2. Класс галоидных соединений. К нему относятся минералы, представляющие соли фтористо-, бромисто-, хлористо-, йодистоводородных кислот. Наиболее распространенными минералами этого класса являются хлориды, образующиеся главным образом при испарении вод поверхностных бассейнов. Известны выделения хлоридов и из вулканических газов. Сюда относятся: галит, сильвин, флюорит; Класс оксидов и гидроксидов. По количеству входящих в него минералов занимает одно из первых мест: на его долю приходится около 17% всей массы земной коры. Из них около 12,5% составляют оксиды кремния и 3,9% - оксиды железа. Минералы этого класса образуются как в эндогенных, так и в экзогенных условиях: кварц, халцедон, опал, гематит, магнетит, лимонит, боксит. Класс карбонатов объединяет большое число минералов, для которых характерна реакция с соляной кислотой, сопровождающаяся выделением углекислого газа. Интенсивность реакции помогает различать минералы - карбонаты, близкие по многим свойствам. Они часто светлоокрашенные, со стеклянным блеском; твердостью 3 - 4,5; спайностью, совершенной в трех направлениях, параллельных граням ромбоэдра. Рассматриваемые ниже минералы кристаллизуются в тригональной подсингонии. Образование карбонатов связано главным образом с поверхностными химическими и биохимическими процессами, а также с метаморфическими и гидротермальными: кальцит, доломит, сидерит. Минералы класса сульфатов осаждаются в поверхностных водоемах, образуются при окислении сульфидов и серы в зонах выветривания, реже связаны с вулканической деятельностью: ангидрит, гипс. Класс фосфатов. Наиболее распространенным минералом является апатит. В поверхностных условиях возникает скрытокристаллический минерал того же состава - фосфорит; . Класс силикатов. Минералы этого класса широко распространены в земной коре (свыше 78%). Они образуются преимущественно в эндогенных условиях, будучи связаны с различными проявлениями магматизма и с метаморфическими процессами. Лишь немногие из них возникают в экзогенных условиях. Многие минералы этого класса являются породообразующими магматических и метаморфических горных пород, реже осадочных: оливин, гиперстен, авгит, роговая обманка, слюды, биотит, мусковит, тальк, каолинит, глауконит.

2.3 Горные породы

Горные породы представляют естественные минеральные агрегаты, образующиеся в земной коре или на ее поверхности в ходе различных геологических процессов.

Основную массу горных пород слагают породообразующие минералы, состав и строение которых отражают условия образования пород. Кроме этих минералов в породах могут присутствовать и другие, более редкие (акцессорные) минералы, состав и количество которых в породах непостоянны. Если горная порода представляет агрегат одного минерала, она называется мономинеральной. К таким породам относятся, например, мраморы, кварциты. Первые представляют агрегат кристаллических зерен кальцита, вторые - кварца. Если в породу входит несколько минералов, она называется полиминеральной. В качестве примера таких пород можно назвать граниты, состоящие из кварца, калиевого полевого шпата, кислого плагиоклаза, а также темноцветных - биотита, роговой обманки, реже авгита.

В основу классификации горных пород положен генетический признак. По происхождению выделяют:

1) магматические, или изверженные, горные породы, связанные с застыванием в различных условиях силикатного расплава - магмы и лавы;

2) осадочные горные породы, образующиеся на поверхности в результате деятельности различных экзогенных факторов;

3) метаморфические горные породы, возникающие при переработке магматических, осадочных, а также ранее образованных метаморфических пород в глубинных условиях при воздействии высоких температур и давления, а также различных жидких и газообразных веществ (флюидов), поднимающихся с глубины.

Магматические горные породы наряду с метаморфическими слагают основную массу земной коры, однако, на современной поверхности материков области их распространения сравнительно невелики. В земной коре они образуют тела разнообразной формы и размеров, так называемые структурные формы, состав и строение которых зависят от химического состава исходной для данной породы магмы и условий ее застывания. В основе классификации магматических горных пород лежит их химический состав. Учитывается, прежде всего, содержание оксида кремния, по которому магматические породы условно делят на четыре группы кислотности: ультраосновные породы, содержащие более 45% кремнезема (SiO2), основные - 45-52, средние - 52-65 и кислые - более 65%. Химический состав может быть определен лишь при лабораторных исследованиях. Однако минеральный состав отражает химический и может быть использован для выяснения группы кислотности. Породообразующими минералами магматических пород являются минералы класса силикатов: кварц, полевые шпаты, слюды, амфиболы, пироксены, которые в сумме составляют около 93% всех входящих в магматические породы минералов, затем оливин, фельдшпатоиды, некоторые другие силикаты и около 1% минералов других классов. Вспомнив химический состав этих минералов, нетрудно убедиться, что в более основных породах должны преобладать цветные (темноцветные), менее богатые кремнеземом железисто-магнезиальные (мафические, или фемические) минералы, а в кислых - преимущественно светлые. Такое соотношение цветных и светлых минералов обусловливает, светлую окраску кислых пород, более темную основных и черную ультраосновных.

Осадочные горные породы Осадочные горные породы. На поверхности Земли в результате действия различных экзогенных факторов образуются осадки, которые в дальнейшем уплотняются, претерпевают различные физико-химические изменения - диагенез, и превращаются в осадочные горные породы. Осадочные породы тонким чехлом покрывают около 75% поверхности континентов. Многие из них являются полезными ископаемыми, другие - содержат таковые.

Среди осадочных пород выделяют три группы:

1. обломочные породы, возникающие в результате механического разрушения каких-либо пород и накопления образовавшихся обломков;

2. глинистые породы, являющиеся продуктом преимущественно химического разрушения пород и накопления возникших при этом глинистых минералов;

3. химические (хемогенные) и органогенные породы, образовавшиеся в результате химических и биологических процессов.

Наиболее распространенные осадочные горные породы - обломочные породы. По величине обломков обломочные породы делятся на: грубообломочные породы (псефитовые), состоящие из обломков более 2 - 5 мм в поперечнике; среднеобломочные или песчаные породы (псаммитовые), состоящие из обломков от 2 до 0,05 мм в поперечнике, и мелкообломочные, или пылеватые породы (алевритовые), состоящие из обломков от 0,05 до 0,005 мм в поперечнике. В пределах каждого типа породы подразделяются по окатанности обломков, а также в зависимости от того, представляют ли эти обломки рыхлые скопления или скреплены (сцементированы) каким-либо цементом.

2.Глинистые породы. Наиболее распространенными осадочными породами являются глинистые, на долю которых приходится больше 50% от объема всех осадочных пород. Глинистые породы в основном состоят из мельчайших (меньше 0,02 мм) кристаллических (реже аморфных) зерен глинистых минералов. Кроме того, в их состав входят столь же мелкие зерна хлоритов, окислов и гидроокислов алюминия, глауконита, опала и других минералов, являющихся продуктами химического разрушения различных пород и отчасти глинистых минералов. Третья составляющая глинистых пород - разнообразные обломки размерами меньше 0,01 мм (0,005 мм). По степени литифицированности среди глинистых пород выделяют глины, - легко размокающие породы и аргиллиты - сильно уплотненные, потерявшие способность размокать глины.

3. Химические и органогенные породы образуются преимущественно в водных бассейнах. Структура химических (хемогенных) пород определяется агрегатным состоянием минералов, их слагающих - кристаллическим или аморфным и размерами кристаллических зерен, структура органогенных пород - состоянием слагающих их органических остатков и принадлежностью организмов к тем или иным группам. Классификация хемогенных и органогенных горных пород обычно производится по химическому составу слагающих их минералов. На долю карбонатных пород в осадочной оболочке Земли приходится около 14%. Главный породообразующий минерал этих пород - кальцит, в меньшей степени - доломит. Соответственно, наиболее распространенными среди карбонатных пород являются известняки - мономинеральные породы, состоящие из кальцита. Известняки бывают химического и органогенного (биогенного) происхождения. Первые образуются при выпадении кальцита из вод морей, озер, подземных вод. Химические и органогенные породы: известняки, доломиты, кремнистые породы, кальцит, диатомиты и радиоляриты, трепелы и опоки, кремни, каменная соль, Каустобиолиты (греч. "каустоо" - горючий, "биос" - жизнь) образуются из растительных и животных остатков, преобразованных под влиянием различных геологических факторов. Эти породы обладают горючими свойствами, чем и обусловлено их важное практическое значение. К ним относятся породы ряда углей (торф, ископаемые угли), горючие сланцы, нефть и газы.

Метаморфические горные породы - результат преобразования пород разного генезиса, приводящего к изменению первичной структуры, текстуры и минерального состава в соответствии с новой физико-химической обстановкой. Главными факторами (агентами) метаморфизма являются эндогенное тепло, всестороннее (петростатическое) давление, химическое воздействие газов и флюидов. Постепенность нарастания интенсивности факторов метаморфизма позволяет наблюдать все переходы от первично осадочных или магматических пород к образующимся по ним метаморфическим породам. Метаморфические породы обладают полнокристаллической структурой. Размеры кристаллических зерен, как правило, увеличиваются по мере роста температур метаморфизма.

Заключение

Каждый этап формирования земной коры является важным для развития всей планеты. Катархейский этап (5,0 - 4,5 млрд. лет) ознаменовался формированием первичной океанической коры, архейский этап (4,5-4,0-3,5 млрд. лет) - формированием первичной континентальной коры. Во все последующие этапы шло глобальное формирование земной коры вплоть до современности. Земную кору - верхнюю твердую оболочку Земли слагают различные генетические типы горных пород (магматические, осадочные и метаморфические), состоящие из определенного сочетания минералов, в состав которых входят различные химические элементы. Изучая такую иерархию - химические элементы > минералы > горные породы, можно судить о строении земной коры в различных структурных зонах. Земная кора больше чем на 98% сложена О, Si, Al, Fe, Mg, Ca, Na, К, при этом свыше 80% составляют кислород, кремний и алюминий, в отличие от среднего состава Земли, где содержание их резко уменьшается.

Земная кора только кажется неподвижной, абсолютно устойчивой. На самом же деле она совершает непрерывные и разнообразные движения. Некоторые из них происходят очень медленно и не воспринимаются органами чувств человека, другие, например, землетрясения, носят обвальный, разрушительный характер.

Список литературы

1. Короновский, Н.В. Якушова, А.Ф. Общая геология / Н.В. Ко

2. роновский, А.Ф. Якушова. - Москва, 1991.

2. Курс общей геологии/ под редакцией Серпухов В.И. (и др.). - М.: Недра, 1976. - 535с.

3.Хаин В.Е., Михайлов А.Е. Общая геотектоника. М., 1985.

Курс общей геологии/ под редакцией Серпухов В.И. (и др.). - М.: Недра, 1976. - 535с.

Размещено на Allbest.ru


Подобные документы

  • Описательная характеристика этапов формирования земной коры и изучение её минералогического и петрографического составов. Особенности строения горных пород и природа движения земной коры. Складкообразование, разрывы и столкновения континентальных плит.

    курсовая работа [3,2 M], добавлен 30.08.2013

  • Основные типы земной коры и её составляющие. Составление скоростных колонок для основных структурных элементов материков. Определение тектонических структур земной коры. Описание синеклиз, антеклиз и авлакоген. Минеральный состав коры и горных пород.

    курсовая работа [2,0 M], добавлен 23.01.2014

  • Классификация, состав и степень распространения минералов и горных пород в вещественном составе земной коры. Генезис магматических, метаморфических и осадочных пород. Океанические и континентальные блоки земной коры, анализ их структурных элементов.

    дипломная работа [690,1 K], добавлен 11.11.2009

  • Вещественный состав Земной коры: главные типы химических соединений, пространственное распределение минеральных видов. Распространенность металлов в земной коре. Геологические процессы, минералообразование, возникновение месторождений полезных ископаемых.

    презентация [873,9 K], добавлен 19.10.2014

  • Происхождение и развитие микроконтинентов, поднятий земной коры особого типа. Отличие коры океанов от коры материков. Раздвиговая теория образования океанов. Позднесинклинальная стадия развития. Типы разломов земной коры, классификация глубинных разломов.

    контрольная работа [26,1 K], добавлен 15.12.2009

  • Понятие и характеристика основных источников напряжений внутри земной коры, степень их вклада в общее поле напряжений. Процессы, вызываемые состоянием напряжения в земной коре и мантии, методы их исследования и изучения в сейсмоактивных регионах.

    реферат [24,5 K], добавлен 27.06.2010

  • Химический состав земной коры и Земли. Весовые кларки наиболее распространенных химических элементов. Формы залегания магматических горных пород. Геологическая деятельность озер и болот. Образование магматических пород. Разрывные движения земной коры.

    контрольная работа [26,2 K], добавлен 26.02.2011

  • Расположение складчатых областей Земной коры. Строение платформы, пассивной и активной континентальной окраины. Структура антиклизы и синеклизы, авлакогены. Горно-складчатые области или геосинклинальные пояса. Структурные элементы океанической коры.

    презентация [3,8 M], добавлен 19.10.2014

  • Наружные оболочки Земли: твердая земная кора, жидкая гидросфера и газовая атмосфера, их связь между собой. Относительное содержание химических элементов в земной коре и их распределение. Кларки химических элементов гранитного слоя коры континентов.

    реферат [46,6 K], добавлен 16.08.2009

  • Методики определения возраста горных пород, закономерности развития земной коры во времени и в пространстве. Основные этапы развития исторической геологии. Определение строения и закономерностей развития земной коры, тектонических движений и структур.

    реферат [22,2 K], добавлен 24.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.