Коллоиды почвы и поглотительная способность

Понятие и значение поглотительной способности как одного из главнейших свойств почвы, критерии оценки данного показателя. Почвенные коллоиды: классификация, типы. Регулирование состава обменных катионов в почвах, их кислотность, щелочность, и буферность.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 29.03.2018
Размер файла 125,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Коллоиды почвы и поглотительная способность

1. Поглотительная способность почвы

поглотительный почва коллоид кислотность

Одним из главнейших свойств почвы является ее поглотительная способность. Почва способна поглощать газы, пары воды и ряд веществ, растворенных в воде. Это свойство было известно давно, задолго до оформления почвоведения в самостоятельную науку.

Наиболее существенный вклад в разработку учения о поглотительной способности почв уже в XX в. внес крупнейший русский почвовед К.К. Гедройц.

Поглотительная способность почвы - одно из ее важнейших свойств, в значительной степени определяющее плодородие почвы и характер процессов почвообразования. Она обеспечивает регулирует питательный режим почвы, способствует накоплений многих элементов минерального питания растений, регулируй реакцию почвы, ее водно-физические свойства.

Поглотительная способность - это способность почвы задерживать соединения или части их, находящиеся в растворенном состоянии, а также коллоидально распыленные частички минерального и органического вещества, живые микроорганизмы и грубые суспензии.

Поглотительная способность обусловлена наличием почвенного поглощающего комплекса (ППК), основную часть которого составляет совокупность минеральных, органических и органо-минеральных соединений высокой степени дисперсности, нерастворимых в воде и способных поглощать и обменивать поглощенные ионы.

Виды поглотительной способности

В зависимости от характера поглощения К.К. Гедройц выделил пять видов поглотительной способности: механическую, физическую, физико-химическую (обменную или коллоидно-химическую), химическую и биологическую.

Механическая поглотительная способность - это свойство почвы задерживать из растворов взмученные частицы твердого вещества. При фильтрации суспензии через почву частицы взвесей задерживаются в тонких и извилистых порах почвы.

Механическое поглощение зависит от гранулометрического состава почв и от их сложения.

Песчаные почвы, обладающие рыхлым сложением и крупной пористостью, слабее поглощают частицы взвесей, чем глинистые.

Одна и та же почва в разной степени уплотнения будет по-разному поглощать взвеси. Уплотненная почва поглощает сильнее, чем рыхлая.

Механическое поглощение - важное свойство почв. Потоки весенних талых вод обычно несут большое количество взмученных почвенных частиц; но, фильтруясь через почвы, они очищаются, и мелкозем, задержанный почвой, предохраняется от выноса в реки и моря.

При этом происходит уменьшение размеров почвенных пор, что приводит к снижению скорости фильтрации суспензий и усилению проявления механического поглощения.

Биологическая поглотительная способность почв обусловлена жизнедеятельностью растений и почвенных микроорганизмов. Растения в процессе своего развития избирательно поглощают из почвенного раствора необходимые им химические элементы, переводят их в органические соединения и в таком виде закрепляют в почве.

В результате этого поверхностные горизонты почв, где максимально концентрируется корневая система, систематически обогащаются не только органическим веществом, но и зольными элементами питания и азотом.

Биологическая поглотительная способность может быть как положительной, так и отрицательной.

Положительным является связывание нитратов, не усвоенных растениями. На примере нитратов обнаруживается и отрицательное проявление биологического поглощения. Если внести в почву солому, то проявится азотное голодание растений, так как солома вызывает сильное размножение микробов, разлагающих клетчатку и отнимающих нитраты у высших растений.

Вообще биологическая поглотительная способность характеризуется высокой избирательной способностью почвенной биоты и корневой системы растений к элементам питания.

Химическая поглотительная способность (хемосорбция) в почвах связана с образованием в результате химических реакций нерастворимых или труднорастворимых соединений, выпадающих из раствора в осадок и их закрепление в почве.

Например, при внесении в почву фосфорного удобрения анион фосфорной кислоты при наличии в почвенном растворе катионов кальция или железа может выпасть в осадок в виде солей три-кальцийфосфата или фосфата железа.

Физическая поглотительная способность

Физическая поглотительная способность - способность почвы поглощать из раствора целые молекулы растворенных минеральных и органических веществ и молекул воды.

Физическая поглотительная способность почвы зависит от гранулометрического, минералогического состава, а также гумусности почв.

Песчаные и малогумусные почвы обладают пониженной адсорбционной способностью в сравнении с глинистыми и высокогумусными.

С увеличением содержания гидратов железа и алюминия, как и минералов монтмориллонитовой группы, активность почв к поглощению повышается.

Физико-химическая поглотительная способность (полярная адсорбция). Физико-химическая (обменная) поглотительная способность, или коллоидно-химическая адсорбция, обусловлена наличием на поверхности коллоида электрического заряда.

Так как в почве преобладают отрицательно заряженные коллоиды (ацидоиды), то сильнее выражена способность почвы к обменному поглощению катионов, нежели анионов

2. Почвенные коллоиды

Поглотительная способность почвы неразрывно связана с наличием в ней высокодисперсных частиц-коллоидов, учение о которых создавалось в первой четверти 20 век.

В состав почвенной массы входят частицы самых разных размеров. Самые мелкие из них, размерами от 0,2 до 0.001 мкм относятся к коллоидам.

Почвенные коллоиды образуются в процессе выветривания и почвообразования, в результате дробления крупных частиц, или путем соединения молекулярно раздробленных веществ и подчиняются законам, установленным для таких систем в физической и коллоидной химии.

В почвах коллоиды образуют двухфазную систему, состоящую из дисперсной фазы (твердые коллоидные частицы) и дисперсионной среды (почвенный раствор). Высокодисперсные системы по величине частиц делятся на три группы.

Таблица 1. Классификация высокодисперсионных систем почвы

Предколлоидные системы

Коллоидные системы

Молекулярные растворы

диаметр частиц

I мкм-100 нм

диаметр частиц

100-1 нм

диаметр частиц

< 1 нм

Коллоиды в почвах представлены сложной системой минеральных, органических и органоминеральных соединений. В большинстве почв преобладают минеральные коллоиды, на долю которых приходится 85-90% их общей массы.

К минеральным относятся глинистые минералы (каолинит, монтмориллонит, галлуазит, гидрослюда, иллит, вермикулит и др.); гидроксиды железа, алюминия, марганца, кремния и их комплексные соли - коагели.

К органическим относятся гумусовые вещества, их соли, (гуматы, фульваты), некоторые полисахариды.

Органо-минеральные коллоиды широко распространены в верхних горизонтах всех почв. Они представляют собой сложные образования высокодисперсных минералов и гумусовых веществ.

Основными минералами, входящими в состав этих коллоидов, являются монтмориллонитовая и гидрослюдистая группы, а также всегда сопутствующие им в почве полуторные окислы и кремнезем, в меньшей степени распространено участие в их образовании каолинитовых минералов.

Формируются эти коллоиды в почве в процессе склеивания (адгезии) гумусовых кислот и их производных с поверхностью минеральной частицы, вследствие чего вещества минеральной природы в них преобладают.

В любой почве основная масса коллоидов находится в форме гелей, различных по степени гидратации и прочности связи с поверхностью твердых частиц.

Часть коллоидов находится в почве в свободном состоянии, часть образует пленки на поверхности более крупных гранулометрических фракций, сильно дегидратирована.

Первая категория коллоидов легко пептизируется при щелочной реакции и насыщении их диффузного слоя натрием.

Вторая категория очень прочно связана с поверхностью крупных гранулометрических фракций, и их пептизация затруднена.

Основное свойство коллоидов - способность к поглощению веществ из растворов как в виде молекул, так и в виде ионов.

Поглощенные вещества могут обмениваться на другие, находящиеся в растворе, т.е. коллоиды обусловливают поглотительную и обменную способность почв.

Это свойство определяется высокой реакционной способностью, обусловленной большой суммарной и удельной поверхностью, которая тем больше, чем выше дисперсность коллоидов (табл. 2). Если в почве содержится 10% коллоидных частиц, то сумма их поверхности на площади 1 га составит 70 тыс. га.

С увеличением суммарной поверхности растет суммарная поверхностная энергия и возрастает химическая активность коллоидов.

Удельная поверхность выше в суглинистых почвах, чем в песках и супесях, и выше в гумусовом горизонте, чем в нижележащих.

Таблица 2. Роль частиц различного размера в формировании общей поверхности среднесуглинистой почвы

Размер частиц, мм

Содержание.% к массе

Поверхность,

м2 на 1 г почвы

Доля общей поверхности, %

0,25-0,05

17

0,5

0,2

0,05-0,01

50

4,1

1.7

0,01-0,005

20

9,9

4,1

0,005-0,001

6

12,7

5,2

0,001-0,0001

3

18,8

7,8

0,0001

4

194,0

81,0

Сумма

100

240.0

100,0

Коллоид имеет сложное строение.

Внутренняя часть, состоящая из агрегатов аморфного или кристаллического вещества разного химического состава, называется ядром (рис. 1).

На его поверхности расположен слой прочно удерживаемых потенциалопределяющих ионов, которые вместе с ядром образуют гранулу.

Вокруг гранулы двумя слоями располагаются ионы противоположного (компенсирующего) заряда.

К грануле примыкает слой неподвижных противоионов, прочно удерживаемых электростатическими силами ионов потенциалопределяюшего слоя, образуя вместе с гранулой частицу.

Часть противоионов удалена от частицы, их связь с ней по мере удаления уменьшается. Это диффузный слой, ионы которого способны к эквивалентному обмену на ионы того же заряда из дисперсионной среды и вместе с частицей образуют коллоидную мицеллу.

Свободный электрический заряд коллоидной частицы (дзета-потенциал) - разность потенциалов вследствие удаления частиц противоионов от границы компенсирующего слоя к внешней границе диффузного слоя, колеблется от 0 до 40-60 мВ. Коллоидная мицелла электронейтральна при дзета-потенциале, равном нулю, что является изоэлектрической точкой коллоида.

Заряд коллоида появляется в связи с нарушением равновесия между зарядами, расположенными на поверхности раздела твердая частица - раствор, а также в связи с изменением химического состава и структуры коллоидного вещества.

поглотительный почва коллоид кислотность

Схема строения коллоидной мицеллы (по Н.И. Горбунову

Классификация коллоидов в зависимости от заряда ионов потенциал - определяющего слоя.

В зависимости от заряда ионов потенциал - определяющего слоя коллоиды делятся на

ацидоиды - отрицательно заряженные,

базоиды - положительно заряженные и

амфолитоиды, которые в кислой среде имеют положительный заряд, в шелочной - отрицательный.

К ацидоидам относятся глинистые минералы, гидроксиды кремния и марганца, гумусовые кислоты и органоминеральные коллоиды.

В качестве базоидов в кислой среде выступают гидроксиды железа и алюминия, белки, тела мелких бактерий, которые в щелочной среде имеют свойства ацидоидов.

Коллоиды в почве могут находиться в состоянии геля (коллоидный осадок) или золя (коллоидный раствор).

Золь может переходить в гель - процесс называется коагуляцией.

Коагуляция может происходить при встрече разнозаряженных коллоидных частиц, которые, соединяясь друг с другом, образуют коагелъ.

Гель может переходить в золь.

Это - пептизация. При прочих равных условиях она происходит при уменьшении концентрации солей в растворе.

Переход коллоидов из одного состояния в другое обусловлен изменением электрического потенциала коллоидных частиц и зависит от степени их гидратации.

Коллоиды, легко переходящие из геля в золь, называются обратимыми.

Обратимыми являются гидрофильные коллоиды, насыщенные высокогидратированными одновалентными катионами, необратимыми - гидрофобные коллоиды, насыщенные двух-и особенно трехвалентными катионами с низкой степенью гидратации (низкой обводненностью).

Особым видом коагуляции является тиксотропия: когда масса геля неотделима от золя, образуется студень, который можно превратить в состояние золя при механическом воздействии.

Тиксотропия распространена в почвах, образующихся под воздействием вечной мерзлоты.

От состава и свойств коллоидов зависит поглотительная способность почвы.

В почве под влиянием различных факторов - периодическое высушивание, нагревание, увлажнение, промораживание, изменение реакции среды и др. - происходит изменение вновь образующихся при выветривании и почвообразовании органических минеральных коллоидов.

Одним из таких изменений является процесс старения коллоидов, под которым понимается самопроизвольное уменьшение их свободной поверхностной энергии.

Старение обычно не сопровождается изменением химического и минералогического состава коллоидов, но при этом резко изменяются их свойства: они становятся более гидрофобными, уменьшается их сорбционная способность, связь с дисперсионной средой, может произойти частичная кристаллизация гелей.

Для некоторых коллоидов причиной старения является окисление кислородом воздуха, например переход оксида Fe (II) в оксид lll). Свет, особенно ультрафиолетовое излучение, ускоряет старение коллоидов.

3. Состав обменных катионов в почвах и его регулирование

На свойства почвы и условия произрастания растений большое влияние оказывает состав обменных катионов. Так, у почв, насыщенных кальцием, реакция близка к нейтральной; коллоиды находятся в состоянии необратимых гелей и не подвергаются, пептизации при избытке влаги; почвы хорошо оструктурены| обладают благоприятными физическими свойствами.

Черноземы являются примером таких почв. Почвы, у которых в составе обменных катионов в значительном количестве ионы натрия имеют щелочную реакцию, отрицательно влияющую на состояний коллоидов и рост растений. Насыщенные натрием коллоиды пептизируются; содержащие их почвы плохо оструктурены, имеют неблагоприятные водно-физические свойства: повышенную плотность, плохую водопроницаемость, слабую водоотдачу, низкую доступность почвенной влаги (солонцы, солонцеватые почвы).

В составе обменных катионов всех почв присутствуют Са2+, Mg2+ и в небольших количествах К+ и NH4. Кроме того, в некоторых почвах содержатся катион Н+ и А13+ или Na+.

В зависимости от состава обменных катионов К.К. Гедройц разделил все почвы на две группы: почвы, насыщенные основаниями, в составе обменных катионов которых присутствуют Са2+, Mg2+ и Na+, и почвы, ненасыщенные основаниями, содержащие наряду с Са2+ и Mg2+ катионы Н+ и А13+.

В разных почвах количество и состав обменных катионов, а следовательно, и емкость обменного поглощения катионов различны.

В черноземах в составе обменных катионов доминируют Са2+ и Mg2+ и отмечается высокая емкость поглощения, в подзолистых почвах наряду с Са2+ и Mg2+ присутствуют Н+ и А13+, емкость поглощения этих почв значительно ниже.

В составе обменных катионов солонцов много обменного натрия.

В профиле почвы величина емкости поглощения обычно уменьшается параллельно снижению количества гумуса.

Состав обменных катионов оказывает большое влияние на свойства почвы и условия произрастания растений. Состав обменных катионов влияет на реакцию и тип коагуляции коллоидов почвы, на ее физические свойства и структурообразование.

У почв, насыщенных Са2+ и Mg2+, реакция близка к нейтральной, коллоиды находятся в состоянии необратимых гелей и не подвергаются пептизации при избытке влаги, почвы хорошо оструктурены и обладают благоприятными физическими свойствами. Таковы черноземы, дерновые почвы.

Почвы, содержащие в составе обменных катионов наряду с Са2+ и Mg2+ значительное количество Na+, характеризуются щелочной реакцией, отрицательно влияющей на состояние коллоидов и рост растений. Коллоиды в этих почвах легко пептизируются, почвы плохо оструктуриваются и имеют неблагоприятные для жизни растений водно-физические свойства (повышенную плотность сложения, плохую водопроницаемость, высокую влагоемкость).

К таким почвам относятся солонцы и сильно солонцеватые почвы.

Почвы, не насыщенные основаниями, в составе обменных катионов которых наряду с обменными Са2+ и Mg2+ содержатся Н+ и А13+, имеют кислую реакцию, токсичную для многих культурных растений, в них легко разрушаются коллоиды в результате кислотного гидролиза, они плохо оструктуриваются. Типичные представители таких почв - подзолистые.

Для характеристики количества катионов и их свойств введено понятие ЕКО.

Емкостью поглощения или емкостью катионного обмена (ЕКО) называется общее количество катионов, которое может быть вытеснено из почвы.

ЕКО характеризует физико-химическую поглотительную способность почв и зависит от минералогического и гранулометрического состава почв, а также от содержания в них гумуса.

Емкость поглощения колеблется в широких пределах: она выше в суглинистых почвах, чем в песчаных, и выше в черноземах, чем в дерново-подзолистых.

Органическая часть почвы обладает более высокой поглотительной способностью, чем минеральная. Емкость катионного обмена возрастает также в условиях нейтральной и щелочной реакции почвы, когда сильнее проявляется отрицательный заряд ацидоидов и может меняться в зависимости от энергии катиона вытеснителя.

Различные почвы отличаются не только по ЕКО, но и по составу поглощенных катионов. Он разнообразен: все почвы содержат в поглощенном состоянии почти все катионы, среди них больше катионов кальция, магния, калия, аммония, присутствуют микроэлементы, катионы водорода и алюминия.

Поглощение почвой катионов

Поглощение почвой катионов осуществляется путем обменной ионной сорбции, необменной фиксации, химического и биологического поглощения.

Обменная сорбция - способность катионов диффузного слоя почвенных коллоидов обмениваться на эквивалентное количество катионов соприкасающегося с ними раствора.

Существенное значение имеет минералогический и химический состав почвенных коллоидов. Катионы кальция сильнее поглощаются гуминовыми кислотами и монтмориллонитом, аммоний - мусковитом.

Емкость поглощения у разных почв и содержание гумуса

Содержание, %

Емкость поглощения катионов, мэкв/100 г. почвы

Содержание поглощ. катионов, мэкв/100 г. почвы

Почва

гумуса

минеральных частиц диаметром

0.0002-25 мм

0,00025-0,001 м

Са* + Мg*

Na

Н*

Дерново-подзолистая -

2,5

2

-

15

8

-

7

Серая лесная

3,0

5

4

20

16

-

4

Чернозем:

выщелочен ный -

8,0

15

5

50

40

-

10

мощный

10

5

10

65

60

-

5

обыкновен ный -

6.0

5

10

36

31

2

2

южный

4,5

5

10

30

28

2

-

Каштановая

2.5

3

5

27

25

2

-

Серозем

1,0

3

5

15

14

1

-

Необменное поглощение катионов (фиксация) происходит в почве постепенно и часть обменных катионов переходит в необменную форму (не вытесняется из почвы в раствор при действии нейтральных солей).

Наиболее интенсивно фиксируются ионы калия и аммония. Большинство исследователей считают, что основной причиной перехода катионов в необменное (фиксированное) состояние является защемление этих катионов в межплоскостных промежутках кристаллической решетки глинистых минералов с расширяющимся типом ее (монтмориллонит, вермикулит).

Химическое поглощение катионов. Катионы переходят в твердую фазу почвы в результате реакций солеобразования, при которых образуются нерастворимые в воде соединения. К таким катионам относятся Са2+, А13+, Fe3+ и отчасти Mg2+.

При взаимодействии с растворимыми в воде сульфатами, карбонатами и фосфатами эти катионы образуют нерастворимые соединения и выпадают в осадок в твердой фазе почвы:

[ППК-] Са2+ + Na2SO4->[ППK-] 2Na+ +CaSO4;

[ППК-] Са2+ + 2NaHCO3-^[ППK-] 2Na+ + Ca(HCO3)2.

Ca(HCO3) 2 - Н20 - СаСО3 + СО2.

А1 (ОН)3 + H3PO4-> AlPO4 + ЗН2О.

Биологическое поглощение катионов

Некоторая часть катионов почвенного раствора поглощается в почве биологически вследствие усвоения их живыми организмами - растениями, микроорганизмами.

Биологическое поглощение носит избирательный характер, так как живые организмы поглощают в первую очередь катионы, необходимые для построения своих тканей.

К их числу относятся калий, аммоний, кальций, железо. Особенно велико значение этого вида поглощения для калия и аммония, которые физико-химически поглощаются слабо и не образуют в почве нерастворимых в воде соединений.

Поглощение анионов

Поглощение анионов почвами исследовано менее детально по сравнению с процессами поглощения катионов. Известно, что анионы поглощаются почвой в разной степени в зависимости от природы аниона, состава коллоидов и реакции среды.

Кислые почвы энергичнее поглощают анионы по сравнению с почвами, имеющими нейтральную или щелочную реакцию, в связи с повышенным содержанием подвижных форм полуторных окислов.

Основными видами поглощения анионов являются химическое и био-' логическое.

Широко распространенной реакцией при поглощении анионов следует признать солеобразование - реакцию взаимодействия растворимых солей, при которой образуется новая нерастворимая в воде соль, выпадающая в твердую фазу почвы. Таким путем поглощаются сульфаты, карбонаты и фосфаты.

Особенно велико значение реакций солеобразования для поглощения анионов фосфорной кислоты, которая образует с Са, А1 и Fe нерастворимые фосфаты.

Поглощение фосфатов почвой имеет положительное и отрицательное значение, так как приводит к накоплению фосфора в почве, но снижает степень его доступности растениям.

Общее содержание поглощенных катионов оснований (кроме Н+ и А13+) называют суммой обменных оснований.

На их долю в черноземах приходится до 80-90%; в дерново-подзолистых почвах и красноземах иногда 50% и более от ЕКО приходится на ионы водорода и алюминия.

В солонцах и солончаках наряду с кальцием и магнием в поглощенном состоянии присутствует натрий.

Сумма обменных оснований (S), выраженная в процентах от общей емкости катионного обмена (ЕКО), называется степенью насыщенности основаниями (V), которую определяют по формуле

V = (%).

По этому показателю почвы делятся на насыщенные (V > 80%) и ненасыщенные (V 50-70%) основаниями.

Наилучшие условия для растений создаются при V в пределах 80-90% от ЕКО. При этом, однако, важны уровни насыщения ППК отдельными обменными катионами, особенно кальцием, магнием и калием. Уровни определяются так же, как и степень насыщенности основаниями. Например, степень насыщенности кальцием определяется по формуле Са=Са/ЕКО*100%

Таблица 3. Емкость поглощения и ее структура в дерново-подзолистой легкосуглинистой почве при разном содержании гумуса, мэкв/100 г. почвы (А.И. Горбылева)

Вариант опыта

Гумус, %

Емкость поглощения

Общая

минеральной части

органической части

Без удобрений Навоз + NPK Без удобрений Навоз + NPK

1,4-1,8 3,5-4,0

15.0 16,6 31,3 34,6

10.6 11,2 13; 0 11.2

4,4 5,4 18,3 23,4

4. Кислотность, щелочность, и буферность почвы

Таблица 4. Значение рН реакции среды

Концентрация Н ионов, г/л

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

рН

3

4

5

6

7

8

9

10

11

Реакция среды

кислая

слабокислая

нейтральная

слабощелочная

щелочная

  • Кислотность почв
  • Характерным свойством почвы является ее реакция. Она проявляется при взаимодействии почвы с водой или растворами солей и определяется соотношением свободных ионов Н+ и OH- в почвенном растворе.
  • Концентрация свободных ионов Н+ выражается величиной рН, представляющей отрицательный логарифм концентрации ионов водорода;
  • рН 7 характеризует нейтральную реакцию,
  • рН<7 - кислую
  • и рН>7 - щелочную.
  • Реакция почвенного раствора в различных почвах колеблется от рН 3,5 до 8-9 и выше.
  • Наиболее кислую реакцию имеют болотные почвы верховых торфяников.
  • Кислой реакцией почвенного раствора характеризуются подзолистые и дерново-подзолистые почвы (рН 4-6).
  • Черноземы имеют реакцию, близкую к нейтральной.
  • Наиболее щелочная реакция у солончаков, особенно содовых (рН 8-9 и выше).
  • Сельскохозяйственные растения предъявляют разные требования к реакции почвы. Наиболее благоприятна слабокислая или слабощелочная реакция; отрицательно сказываются на развитии растений сильнокислая и особенно сильнощелочная реакция почвенного раствора.
  • С реакцией почвенного раствора тесно связана жизнедеятельность почвенной микрофлоры. В кислой среде преобладает грибная микрофлора, в нейтральной и слабощелочной - бактериальная.
  • С реакцией почвенного раствора связаны процессы превращения компонентов минеральной и органической частей почв: растворение веществ, образование осадков, диссоциация, возникновение и устойчивость комплексных соединений, а следовательно, и миграция и аккумуляция веществ в почвенном профиле.
  • Нейтральная реакция характерна для почв, не содержащих карбонатов, ППК которых полностью насыщен кальцием и магнием. Эта реакция наиболее благоприятна для развития большинства культурных растений и бактерий. Кислая реакция является следствием развития в почве кислотности, щелочная реакция - следствие щелочности почвы.
  • Кислотность почвы - способность почвы подкислять воду и растворы нейтральных солей. Различают актуальную и потенциальную кислотность, которая подразделяется на обменную и гидролитическую.
  • Актуальная кислотность - кислотность почвенного раствора, обусловленная повышенной концентрацией ионов водорода по сравнению с ионами гидроксила. Она определяется наличием в нем водорастворимых кислот - щавелевой, лимонной, фульвокислот, гидролитически кислых солей, прежде всего угольной кислоты.
  • Потенциальная кислотность характерна для твердой фазы почвы. Между актуальной и потенциальной кислотностью в почве сохраняется подвижное равновесие, но доминирующее значение во всех почвах имеет кислотность твердой фазы почвы.

Актуальная кислотность почвенного раствора зависит от наличия в нем свободных кислот, кислых солей и степени их диссоциации. В почвенном растворе свободные минеральные кислоты в заметных количествах встречаются очень редко. В целинных болотных и подзолистых почвах с высоким содержанием в почвенном растворе органических кислот роль их в создании концентрации водородных ионов возрастает. В большинстве почв актуальная кислотность обусловлена угольной кислотой и ее кислыми солями.

Потенциальная кислотность (кислотность твердой фазы) имеет сложную природу. Ее носителем являются обменные катионы Н+ и А13+ почвенных коллоидов.

В зависимости от характера вытеснения различают две формы потенциальной кислотности-обменную и гидролитическую.

Обменная кислотность проявляется при обработке почвы раствором нейтральной соли.

Образующаяся в результате взаимодействия солевого раствора с почвой и гидролитического расщепления А1С1з соляная кислота характеризует обменную кислотность. Обменная кислотность наиболее ярко выражена в подзолистых и красноземных почвах (рН 3-4). В почвах со слабокислой, нейтральной и особенно щелочной реакцией она не проявляется.

Величина обменной кислотности выражается в миллиграмм-эквивалентах Н+ и А13+, количество которых определяется методом титрования, или величиной рН солевой вытяжки, полученной при обработке почвы раствором нейтральной соли.

По величине pHKCl различают следующие градации кислой реакции: сильнокислая рН<4,5, кислая рН 4,6-5,0; слабокислая рН 5,1-5,5; близкая к нейтральной рН 5,6-6,0.

При обработке почвы раствором нейтральной соли вытесняются не все поглощенные ионы водорода.

Более полно выявляется потенциальная кислотность при обработке почвы раствором гидролитически щелочной соли, например CH3COONa.

При обработке почвы раствором такой соли вследствие щелочной реакции среды происходит более полное вытеснение поглощенного водорода.

Количество образующейся уксусной кислоты, определяемое титрованием, характеризует величину гидролитической кислотности. Она обычно больше обменной, так как при обработке почвы раствором гидролитически щелочной соли вытесняется, помимо подвижных ионов, и менее подвижная часть поглощенных ионов водорода.

Гидролитическая кислотность может рассматриваться как суммарная кислотность почвы, состоящая из актуальной и потенциальной кислотности.

Величину гидролитической кислотности (гк) выражают также в миллиграмм-эквивалентах Н+ на 100 г. почвы и обозначают символом Н.

Кислотность почвы является резко отрицательным свойством почвы, так как она угнетает развитие большинства культурных растений, усиливает разрушение минералов почвы, вызывая оподзоливание последней. Кроме того, катионы алюминия в почвенном растворе токсичны для растений.

Для устранения кислотности проводят известкование почвы, при котором происходит замещение поглощенного водорода на кальций.

Бикарбонат кальция, образующийся при взаимодействии извести с углекислотой почвенного раствора, нейтрализует также свободные органические и минеральные кислоты почвы. Уменьшению кислотности и созданию благоприятных соотношений поглощенных катионов способствует систематическое применение навоза, торфокомпостов в сочетании с агротехническими приемами окультуривания почв.

Количество извести, которое необходимо внести в почву, зависит от степени кислотности и механического состава почвы и исчисляется тоннами на гектар.

По нуждаемости в известковании почвы разделяются в зависимости от величины рНКСl на сильно - (рН<4,5), средне - (рН 4,6-5,0), слабонуждающиеся (рН 5,1-5,5) и ненуждающиеся (рН>5,5).

Для почв с рН 4,6-5,5 необходимо также учитывать и степень насыщенности основаниями по следующей градации: <50% - сильно нуждаются, 50-70 - средне; 70-80 - слабо и >80 - не нуждаются в известковании.

Щелочность почв. Различают актуальную и потенциальную щелочность.

Актуальная щелочность обусловливается наличием в почвенном растворе гидролитически щелочных солей (Na2CO3, NaHCO3, Са(НСО3)2 и др.).

При определении актуальной щелочности различают общую щелочность, щелочность от нормальных карбонатов и от бикарбонатов.

Щелочность почвенного раствора характеризуется в миллиграмм-эквивалентах кислоты, необходимой для нейтрализации ионов ОН раствора, обусловленных ионами НСО3 (щелочность бикарбонатов), СОз~ (щелочность нормальных карбонатов) или их суммой (общая щелочность).

Величину щелочности также выражают показателем рН почвенного раствора или водной вытяжки, выделяя слабощелочную (рН 7,2-7,5), щелочную (рН 7,6-8,5) и сильнощелочную (рН>8,5) реакции.

Щелочность также является крайне неблагоприятным свойством почвы, так как угнетает развитие растений и микроорганизмов, усиливает пептизацию почвенных коллоидов и резко ухудшает физические свойства почвы.

Избыточную щелочность устраняют гипсованием почвы:

Вследствие изменения реакции почвенного раствора после известкования и гипсования почв урожай сельскохозяйственных культур значительно повышается.

Норму гипса определяют в зависимости от содержания в почве обменного натрия.

Буферность почвы

Реакция почвенного раствора может изменяться вследствие накопления кислых продуктов разложения органических остатков, под влиянием выделения корнями растений углекислоты и Н-ионов, образования азотной кислоты при нитрифицирующей деятельности микроорганизмов.

Реакция почвенной среды может существенно измениться при внесении физиологически кислых или физиологически щелочных минеральных удобрений. При этом изменение реакции на разных почвах будет неодинаково. На одних действие подкисляющих или подщелачивающих веществ будет проявляться больше, на других меньше вследствие разной буферной способности почв.

Буферной способностью, или буферностью, называют способность почвы противостоять изменению реакции почвенного раствора.

Различают буферную способность почв против изменения реакции в сторону подкисления и буферную способность против изменения реакции в сторону подщелачивания. Буферность зависит от химического состава и емкости поглощения почвы, состава поглощенных катионов и свойств почвенного раствора.

Буферные свойства почвенного раствора связаны главным образом с буферностью твердой фазы почвы, с которой раствор находится в постоянном взаимодействии.

Важнейшую роль при этом играют содержание свободных карбонатов, а также количество и состав обменных катионов. При значительном содержании в ППК поглощенных Са2+ или Mg2+ последние при появлении в растворе Н+ будут обмениваться:

Буферность почвенного раствора обусловлена также присутствием в нем буферных систем, представленных смесью слабых кислот и их солей. Наибольшее значение в буферных свойствах почвенного раствора имеет система Н2СО3 + Са(НСО3)2.

Чем выше емкость поглощения почвы, тем больше ее буферная способность. Наиболее высокой буферной способностью характеризуются тяжелые хорошо гумусированные почвы.

Почвы с высокой степенью насыщенности основаниями (черноземы, каштановые, дерновые, перегнойно-карбонатные и др.) обладают высокой буферной способностью против подкисления: весь водород почвенного раствора у них обменивается на поглощенные основания, вследствие чего водородный ион оказывается связанным коллоидными частицами:

Буферность почвы характеризуется числом миллилитров кислоты или щелочи, которое необходимо прибавить, чтобы изменить концентрацию Н-ионов в почвенном растворе.

В почвах с низкой буферностью (например, песчаных и супесчаных, дерново-подзолистых) возможны резкие сдвиги реакции почвенного раствора при внесении высоких норм физиологически кислых и физиологически щелочных удобрений, что неблагоприятно сказывается на урожайности сельскохозяйственных культур. Поэтому рекомендуется увеличивать емкость поглощения таких почв для повышения их буферности систематическим внесением больших норм органических удобрений.

Буферная способность дерново-подзолистых почв повышается после внесения извести, органических удобрений и при посеве бобовых культур. Комплекс этих мер нейтрализует почвенную кислотность, повышает емкость поглощения и насыщенности почв основаниями; в результате чего в почвах повышается биологическая активность, улучшаются их агрофизические свойства и питательный режим.

азмещено на Allbest.ru


Подобные документы

  • Описания молекулярно-сорбционной, механической, биологической и химической поглотительной способности почвы. Характеристика морфологии почвы и её лабораторного изучения. Анализ определения кислотности солевой и водной вытяжкой колориметрическим методом.

    реферат [27,6 K], добавлен 02.05.2011

  • Исследование особенностей почв различных природных зон России. Анализ рельефа, растительности и климата местности. Изучение гранулометрического состава разреза, содержания карбонатов и гумуса в почве. Валовый состав почвы. Почвенный поглощающий комплекс.

    курсовая работа [42,0 K], добавлен 25.04.2015

  • Изучение химических и физических свойств почвы. Описание особенностей субарктических ландшафтов. Общая характеристика лесотундровой зоны в отношении почвообразования, ее принципиальная общность с тундрой и с северной тайгой. Мозаичный почвенный покров.

    презентация [2,5 M], добавлен 29.03.2015

  • Общие сведения о хозяйстве. Условия почвообразования: рельеф, почвообразующие породы, климат, растительность и хозяйственная деятельность человека. Плодородие почвы и современные пути его сохранения. Баланс гумуса в севооборотах и его регулирование.

    курсовая работа [67,6 K], добавлен 11.01.2012

  • Почва - поверхностный слой земной коры и самостоятельная экосистема, его образование и развитие в результате взаимодействия живых микроорганизмов, горных пород. Состав и свойства почвы. Классификация почв по механическому составу: основные характеристики.

    реферат [18,3 K], добавлен 14.11.2010

  • Исследование видов и способов образования болота - участков суши, характеризующихся избыточным увлажнением, повышенной кислотностью и низкой плодородностью почвы, выходом на поверхность стоячих грунтовых вод, но без постоянного слоя воды на поверхности.

    презентация [11,7 M], добавлен 24.01.2012

  • Географические особенности образования болот. Общая характеристика болотных верховых торфяных и низинных торфяных почв. Растительность и животный мир данных территорий. Основы сельскохозяйственного использования торфа, содержащегося в болотных почвах.

    презентация [2,5 M], добавлен 01.04.2015

  • Почва – особое природное тело, которое образуется на поверхности Земли в результате взаимодействия живой (органической) и мертвой (неорганической) природы. Составные части почвы. Труды В.В. Докучаева - русского ученого, основателя научного почвоведения.

    презентация [3,0 M], добавлен 12.12.2011

  • Исследование объема смытой почвы, потери гумуса и питательных веществ в результате эрозии. Методика определения смыва почвы методом замера ручейковых размывов. Расчет эффективности создания сети полезащитных лесополос. Коэффициент защитного влияния.

    контрольная работа [26,3 K], добавлен 23.01.2012

  • Нормальная и ускоренная скорость развития эрозии почвы. Дефляция - разрушающее действие ветра. Минимизации ветровой эрозии при сберегающем земледелии. Борьба с нарушением устойчивого водного режима в процессе эксплуатации земли. Выполаживание склонов.

    контрольная работа [26,7 K], добавлен 08.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.