Геологическое строение и нефтегазоносность месторождения Жанажол (Актюбинская область)
История геологической изученности и разработки месторождения нефти. Особенности геологического развития территории. Описание залежей нефти и газа месторождения, гидрохимическая характеристика подземных вод. Техническое обустройство месторождения.
Рубрика | Геология, гидрология и геодезия |
Вид | отчет по практике |
Язык | русский |
Дата добавления | 19.01.2018 |
Размер файла | 37,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
ФГБОУ ВО САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Кафедра геоэкологии и инженерной геологии
ОТЧЕТ ПО УЧЕБНОЙ ПРАКТИКЕ
Геологическое строение и нефтегазоносность месторождения Жанажол (Актюбинская область)
Студента 1 курса группы б НФГДипу-11
Сергеева А.А.
Зав кафедрой доцент к. г.-т.н. А.В. Иванов
Саратов 2016
Содержание
Введение
1. История геологической изученности и разработка месторождения.
2. Стратиграфия
3. Тектоника
4. Нефтегазоносность
Введение
Месторождение Жанажол находится в пределах Предуральского плато, расположенного между Мугоджарскими горами и долиной реки Эмба и в административном отношении входит в состав Мугоджарского района Актюбинской области Республики Казахстан.
Ближайшими населенными пунктами являются хозяйство Жанажол, расположенное в 15 км к северо-востоку, и действующий нефтепромысел Кенкияк, расположенный в 35 км к северо-западу. Нефтепровод Атырау - Орск проходит на расстоянии около 100 км. От областного центра Актобе Жанажол стоит в 240 км (Рисунок 1.1).
Ближайшая железнодорожная станция Эмба на линии Москва - Средняя Азия отстоит на 100 км от площади. Производственное предприятие НГДУ „Октябрьскнефть” ОАО „СНПС-Актобемунайгаз” расположено в районном центре городе Кандыагаш, в 130 км к северу от месторождения Жанажол.
Согласно схеме комплексного физико-географического районирования Казахстана, рассматриваемая территория расположена в полупустынной ландшафтной зоне умеренного пояса Сагиз-Эмбинского района, Уил-Эмбинского района, Узень-Урало-Эмбинской провинции, Северо-Каспийской области, Прикаспийско-Тургайской страны, на Подуральском денудационном плато.
Рельеф местности представляет собой слабо всхолмленную равнину. Абсолютные отметки его колеблются от 125 до 270 м. Южный участок ниже,
северный участок выше, средний участок является седловиной с отметкой 125-150 м, с севера на юг его пересекает река Эмба
Минимальные отметки приурочены к долине реки Эмба, с юго-запада ограничивающей территорию месторождения.
Гидрографическая сеть представлена реками Эмба и Атжаксы, которые относятся к бассейну Каспийского моря.
Река Эмба протекает в 2-14 км к юго-западу от месторождения. Вода минерализованная и используется для технических нужд. Для бытовых целей используется вода из колодцев. Уровень воды в колодцах и в пойме реки Эмба составляет 2 м и более.
Климат района сухой, резко континентальный, с резкими годовыми и суточными колебаниями температуры и крайне низкой влажностью. Зимний минимум температуры (по данным Кожасайской метеостанции) достигает минус 40°С, летний максимум +40°С. Самыми холодными месяцами являются январь и февраль, а самым жарким месяцем - июль. Глубина промерзания почвы составляет 1,5-1,8 м.
Район населен неравномерно. В экономическом отношении площадь работ представляет собой сельскохозяйственный район. Коренное население - казахи, в основном, занимаются скотоводством и земледелием - выращивают кормовые злака.
Непосредственно на территории месторождения широкое распространение получили такие строительные материалы как глины, пески, щебень и мергель. Глины выходят на поверхность на правобережье реки Атжаксы. Они характеризуются постоянством литологического состава и имеют среднюю толщину 3,9 м. Эти глины могут быть использованы как для приготовления глинистых растворов, так и в качестве сырья для местного строительства. Пески альбского, олигоценового и четвертичного возрастов
имеют довольно широкое распространение, главным образом, в долине реки Эмба. Они используются как строительный и балластовый материал. Щебень
имеет широкое распространение в местах развития маастрихтских отложений и обнажается на поверхности в виде маломощных прослоев - от 5 до 20 см, а в ряде случаев - от 40 до 50 см. Мергели широко распространены на площади в виде останцов и приурочены к маастрихтскому, кампанскому и сантонскому ярусам. В их составе от 19,9 до 36,6 % СаО и от 27 до 52 % нерастворимого остатка, что свидетельствует о возможности использования их для цементного производства.
1. История геологической изученности и разработки месторождения
Месторождение было открыто в 1978 году. В результате глубокого бурения Жанажолской структуры Актюбинской нефтеразведочной экспедицией 31 июля 1978 года из скважины № 4 был получен мощный приток из подсолевых отложений с глубины 2800-2894 м. Поисково-разведочные работы проводились на Жанажоле до 1986 года.
В 1981 года на месторождении начато бурение разведочных и первых эксплуатационных скважин вновь созданным объединением „Актюбинскнефть” Миннефтепром СССР, которому поручена его разработка.
С целью освоения крупнейшего в Актюбинской области Жанажолского месторождения и подготовки его к промышленной разработке приказом министра нефтяной промышленности № 157 от 10 марта 1981 года было создано нефтегазодобывающее управление „Октябрьскнефть”, в составе его на самостоятельном балансе - управление технологического транспорта, строительно-монтажное управление, жилищно-коммунальная контора.
Нефтегазоконденсатное месторождение Жанажол вступило в эксплуатацию фонтанным способом в 1983 году по проекту, составленному институтом „Гипровостокнефть” вводом в разработку северного купола
пачки В+В'.
Разработка месторождения началась с разбуривания объектов первой карбонатной толщи (пачки А, Б, В'), залегающие в интервале глубин 2550 -2900 м.
В 1982 году разведка залежей КТ-I была закончена, произведен расчет и утверждение ГКЗ запасов нефти, газа, конденсата и попутных компонентов.
Продуктивность второй карбонатной толщи (КТ-II) была установлена в декабре 1980 года скважиной № 23, заложенной на КТ-I и впоследствии углубленной.
В 1985 году были подсчитаны и утверждены запасы нефти, газа, конденсата и попутных компонентов по второй карбонатной толще КТ-II, после чего с 1986 года началась эксплуатация второй карбонатной толщи с вводом в разработку пачки Дн-I южного купола. В 1988 году был введен в разработку северный купол второй карбонатной толщи эксплуатацией пачек Д-III и Гн-III. Пачка Гв-III вступила в разработку в 1989 году.
Техническое обустройство месторождения осуществлялось трестом „Оренбургнефтегазстрой”, работы которого активизировались с сентября 1983 года. В дальнейшем генеральным подрядчиком по оснащению нефтяных месторождений выступал трест „Актюбнефтегазстрой”.
В освоении Жанажолского месторождения нефти и газа участвовал коллектив Октябрьской экспедиции глубокого эксплуатационного бурения (ОЭГЭБ) Степновского УБРНО „Саратовнефтегаз”, начавший работу вахтенно-экспедиционным методом с 1981 года в составе трех бригад. В 1982 году была создана база производственного обслуживания в поселке Жанажол, и были организованы вулканизационный и аккумуляторный цеха [1].
В 1983-1984 годах в поселке Жанажол был введен в эксплуатацию механоремонтный участок НГДУ „Октябрьскнефть” площадью 450 м для
восстановления бурового нефтепромыслового и транспортного оборудования
В 1983 году началось строительство дороги Эмба - Жанажол. Большое значение для современной транспортировки необходимого оборудования имело строительство дороги от Жанажолского месторождения до Кенкиякского. С целью улучшения использования рабочих кадров и сокращения времени доставки рабочих к месту работы было начато также в 1982-1983 годах строительство взлетно-посадочной полосы в районе Жанажолского месторождения и в 1983-1984 годах в городе Кандыагаш.
Таким образом, были созданы оптимальные условия для того, чтобы в апреле 1984 года месторождение Жанажол можно было ввести в опытно-промышленную эксплуатацию.
В 1986 году началась закачка воды в пласт по различным объектам, с целью поддержания пластового давления (ППД).
С самого начала разработки месторождения использовался только один способ эксплуатации - фонтанный. Этот метод применяется до сих пор.
Кроме этого метода на месторождении имеется опыт работы механизированным способом эксплуатации, который был начат в июне 1990 года, переводом скважины № 724 с фонтанного способа эксплуатации на глубинно-насосный .
В течении 1995-1998 годов проведен комплекс мероприятий по расширению системы ППД - введены блочные кустовые насосные станции (БКНС), 28 нагнетательных, 7 водозаборных скважин.
В 1999 году Синьцзяньским нефтегазовым научно-исследовательским институтом был выполнен „Отрегулированный проект по разработке нефтегазоконденсатного месторождения Жанажол”.
На данный момент месторождение находится на второй стадии разработки: доразведка, разбуривание, стабилизация добычи нефти.
2. Стратиграфия
На площади Жанажол буровыми работами изучен комплекс отложений нижнекаменноугольного - верхнемелового возраста. При стратиграфическом расчленении разреза использованы имеющиеся палеонтологические определения, диаграммы, промыслово-геофизических исследований, описание керна.
Каменноугольная система С
Нижний отдел С1
Наиболее древними отложениями, вскрытыми на площади Жанажол, являются терригенные осадки средневизейского возраста. В скважине № 1-С они встречены в интервале минус 4190-4200 м. На соседних площадях Кожасай, Восточный Тобускен, Восточный Тортколь вскрытая толщина терригенной толщи среднего и нижнего визейского и турнейского яруса превышает 1000 м.
Выше по разрезу терригенные осадки сменяются карбонатной толщей пород верхневизейского (окский надгоризонт) и серпуховского возрастов, представленной серыми, светло-серыми органогенно-обломочными, мелкокристаллическими и массивными известняками, полимиктовыми песчаниками и доломитами с резкими прослоями темно-серых аргиллитов. Толщина тарусского горизонта нижнего подъяруса составляет 70-86 м; толщина стешевского 62-76 м; толщина протвинского горизонта верхнего подъяруса 72-90 м. Максимальная вскрытая толщина отложений нижнего карбона достигает 308 м.
Средний отдел С2
Отложения среднего карбона вскрыты в составе башкирского и московского ярусов.
Башкирский ярус С2b
Отложения башкирского яруса полностью пройдены скважиной № 1-С (3892-3668 м) и частично скважиной № 23 (3886-3803 м). Толщина достигает 224 м. Представлены они серыми и светло-серыми, органогенно-комковатыми, массивными доломитизированными известняками со стиллолитовыми швами, с резкими прослойками аргиллитов.
Московский ярус С2m
Отложения нижнего московского подъяруса, представленные визейским и каширским горизонтами, вскрыты скважиной № 23 в интервале.
3803-3647 м и скважиной № 1-С в интервале 3668-3566 м. Толщина подъяруса колеблется от 108 до 156 м. Сложен он карбонатными породами с единичными маломощными прослоями аргиллитов..
Верхнемосковский подъярус представлен подольским и мячковским горизонтами. Нижняя часть подольского горизонта сложена преимущественно терригенной толщей пород, состоящей из переслаивания аргиллитов, песчаников, алевролитов, гравелитов, реже известняков, толщина его от 266 м до 366 м. Верхняя часть горизонта представлена светло-серыми, почти белыми, органогенно-обломочными, сгустковыми, прослоями микрозернистыми, массивными,крепкими известняками.Толщина подольских карбонатных отложений колеблется от 144 до 220 м. Выше по разрезу залегают органогенные, органогенно-обломочные, микрозернистые известняки и доломиты мячковского горизонта. Эта часть разреза довольно четко выделяется по положению между двумя реперными прослоями, образованными глинистыми породами толщиной до 10 м, прослеживающимися по всей площади месторождения. Мячковский горизонт вскрыт практически всеми скважинами на месторождении. Толщина его варьируется 115 до 164м
Верхний отдел С3
Граница верхнего карбона со средним отделом достаточно четко отбивается по изменению характера записи кривой гамма-каротажа. В составе верхнего карбона, благодаря находкам многочисленной микрофауны и конодонтов, выделяется касимовский и гжельский ярусы.
Касимовский ярус С3k
В литологическом отношении касимовский ярус на большей части площади сложен известняками и доломитами. В северо-восточной части месторождения характер разреза изменяется. Здесь наряду с известняками и доломитами большую роль играют голубовато-серые крупнокристаллические крепкие ангидриты. Степень ангидритизации разреза постепенно увеличивается снизу вверх от отдельных гнезд и включений до сплошных (толщиной 5-10 м) пластов и ангидритов. Толщина касимовского яруса варьирует от 50 до 97 м.
Гжельский ярус C3g
Гжельский ярус состоит из двух частей. Нижняя, толщина 53-136 м, в отложениях распространения сульфатных и карбонатных пород имеет строение, аналогичное нижележащему ярусу. Отличительной ее особенностью является широкое развитие органогенных известняков, на 65-85 % состоящих из обломков фауны и водорослей. Кроме того, в северо-восточной части площади еще более усиливается ангидритизация разреза, и значительное распространение получают также темно-серые, почти черные аргиллитоподобные глины. месторождение жанажол нефть газ
Таким образом, всю в основном карбонатную толщу пород подольского и мячковского горизонтов московского ярусов, а также касимовского и гжельского ярусов верхнего карбона, где наряду с карбонатными породами имеют развитие (особенно в северо-восточной части месторождения) и сульфатные отложения (ангидриты), относят к так называемой „верхней карбонатной толще KT-I”, суммарная толщина которой изменяется от 427 до 537 м.
Над карбонатной частью разреза расположена терригенная пачка пород гжельского яруса, состоящая из глин, алевролитов, реже гравелитов толщиной от 24 до 109 м.
Пермская система Р
Пермские отложения представлены нижним и верхним отделами.
Нижний отдел Р1
Нижняя пермь, представлена отложениями ассельского, сакмарского и кунгурского ярусов.
Ассельский и сакмарский ярусы P1a - P1s
Ассельско-сакмарская терригенная толща пород совместно с гжельской терригенной пачкой образует на Жанажолском месторождении региональный флюидоупор. Толщина этой покрышки, в значительной степени глинистой по составу, изменяется довольно в широких пределах от 16 до 598 м и имеет тенденцию к уменьшению с севера на юг. В литологическом отношении это переслаивание аргиллитов, песчаников, алевролитов, реже гравелитов и глинистых известняков. Толщина ассельского яруса колеблется от 9 до 359 м. Сакмарский ярус также не выдержан в отношении толщины (от 0 до 209 м в скважине № 5).
Кунгурский ярус P1k
Гидрохимические отложения кунгурского яруса совместно с верхней надкарбонатной терригенной толщей образуют мощную флюидоупорную покрышку для нефтегазонасыщенной части до кунгурского разреза.
Отложения кунгурского яруса в нижней части представлены сульфатно-
терригенными породами (ангидриты и аргиллитоподобные темные глины) толщиной от 10 до 60 м. Выше залегает толща галогенных пород (каменная соль) с прослоями аргиллитов, реже песчаников и алевролитов, ангидритов. Максимальная толщиной галогенной толщи составляет 996 м, минимальная - 7 м. В верхней части кунгура залегает терригенно-сульфатная пачка („кепрок”), сложенная в основном ангидритами, толщиной 4-84 м.
Верхний отдел Р2
Отложения верхней пeрми представлены пестро-цветными, серо-цветными терригенными породами: глины, в нижней части аргиллиты; полимиктовые, глинистые мелкозернистые песчаники и алевролиты; реже мелкогалечные конгломераты с отдельными выдержанными прослоями (от 3-5 до 10-15 м) высокоомных пород - ангидритов.
Толщина верхней перми изменяется от 633 м в своде северного купола до 1808 м на восточной периклинали.
Триасовая система Т
Отложения триаса выделяются в составе нижнего отдела и литологически представлены чередованием пестроокрашенных глин, песчаников, алевролитов, встречаются прослои слежавшихся слабосцементированных песков. Толщина отложений варьирует от 65 до 371м
Юрская система J
Юрские отложения выделяются в составе нижнего и среднего отделов. Суммарная их толщина колеблется от 60 до 246 м. Представлены они серыми глинами, темно-серыми песчаниками, плотными алевролитами и серыми, зеленовато-серыми, полимиктовыми, разнозернистыми песками.
Меловая система К
Меловые отложения представлены нижним и верхним отделами.
Нижний отдел К1
В составе нижнего отдела выделяются песчано-глинистые отложения готеривского, аптского и альбского ярусов суммарной толщиной от 298 до 437 м.
Верхний отдел К2
Верхний мел представлен преимущественно зеленовато-серыми, мергелистыми глинами . Толщина верхнего отдела колеблется от 28 до 132 м.
Четвертичная система Q
Четвертичные отложения небольшой толщины (2-3 м) повсеместно перекрывают отложения мела, представлены суглинками и супесями.
3. Тектоника
В тектоническом отношении район месторождения Жанажол расположен в восточной прибортовой части Прикаспийской впадины, которая отделена от Уральской геосинклинальной зоны Ащисайским и Северно-Кокпектинским разломами.
Одной из характерных черт геологического развития явилось интенсивное опускание территории и формирование мощного осадочного чехла (7-10 км). Основную часть этой толщины составляет подсолевой комплекс, включающий отложения, заключенные между поверхностью докембрийского фундамента и подошвой галогенных осадков кунгурского яруса [2].
Поверхность подсолевых отложений моноклинально погружается на запад, от 2,0-2,5 км близ Ащисайского разлома до 5,5-6,0 км на меридиане купола Беттау.
В пределах указанной моноклинали выделен ряд обособленных ступеней. Последние более четко проявляются по нижним горизонтам и
последовательно погружаются к центральной части впадины. С востока на запад выделяются Жанажолская, Кенкиякская, Коздысайская и Шубаркудукская системы ступеней, в пределах которых кровля подсолевого горизонта соответственно находится на глубинах: 3-3,5 км, 3-4 км, 4-5 км и ниже 5 км. К северу от Кенкияка несколько обособленно выделяются
Остансукский прогиб, который вдоль западной границы структур Талдышоки, Остансук, Северный Остансук и Байжарык ограничивается нарушением. К северу он непосредственно примыкает к Актюбинскому периклинальному прогибу. Тектонические ступени в значительной степени осложнены разрывными нарушениями.
Одной из особенностей Жанажолской ступени является развитие мощных карбонатных массивов, которые в свою очередь осложнены крупными поднятиями брахиантиклинального типа.
Месторождение Жанажол приурочено к верхней части обширного карбонатного массива, сложенного породами подольско-гжельского возраста. О строении этого массива по более нижним горизонтам можно судить по данным сейсморазведочных работ. На структурной карте по подошве нижней карбонатной толщи пород окско-каширского возраста локализован он в районе скважин № 4 и № 5. По кровле нижней карбонатной толщи, намечаются два локальных свода, оконтуренных изогипсой минус 3200 м. Северный из них расположен в районе скважин № 4 и № 5, южный свод намечается в районе скважины № 18 .
Мозаичная рисовка изогипс остается и по горизонтали, которая характеризуют строение верхней карбонатной толщи пород. По подошве верхнего карбонатного комплекса северный свод Жанажолского поднятия расположен в районе скважин № 4 и № 10; южный свод намечается в районе скважины № 18.
На структурной карте по кровле высокоомного разреза, фиксирующей
резкую плотностную границу при смене терригенных пород надкарбонатной толщи сульфатно-карбонатными породами гжельского яруса, Жанажолское поднятие имеет по длинной оси длину 28 км и представляет собой брахиантиклинальную складку субмеридионального простирания,
образованную в теле карбонатного массива пород. Она состоит из двух
локальных поднятий. Северное в районе скважины № 50 оконтурено изогипсой минус 2300 м. По замкнутой изогипсе минус 2500 м его размеры составляют 10,5 х 5,5 км. Свод южного поднятия залегает на 50 м ниже и оконтурен изогипсой минус 2350 м в районе скважины № 19. Размеры поднятия по изогипсе минус 2500 м составляют 9,5 х 4 км.
Амплитуда поднятия в изученной бурением части составляет порядка 250 м, западное его крыло более крутое (8-10 м) относительно восточного (4-7 м). В целом по всем горизонтам, связанным с границами карбонатных массивов пород, сохраняется унаследованность структурных форм, высокая амплитуда поднятий, их значительные размеры. Лишь по подошве отложений кунгурского яруса, ввиду резкого различия величины мощности подсолевой терригенной толщи пород, которая в пределах площади изменяется от 15 до 600 м, структурный план поднятия как бы нарушается.
Свод северного поднятия немного смещается к востоку и оконтуренный изогипсой минус 1850 м намечается в районе скважин № 5 и № 8.
Структурные карты были зарисованы по кровлям КТ-I и КТ-II на основании применения данных стратиграфического расчленения 284 добывающих и всех разведочных скважин. Общая форма структуры для КТ-I, а также и для КТ-II антиклиналь с южным и северным куполами, с одной седловиной в середине. Направление длинной оси антиклинали ориентировано к северу с отклонением к востоку на 25є.
Структура КТ-I: по структурному плану кровли абсолютная отметка свода южного купола минус 2330 м, абсолютная отметка замыкающей
изогипсы минус 2500 м, площадь по замкнутой изогипсе 9,38 км х 4,38 км, высота структуры 170 м; западное крыло данного поднятия круче, с углом падения пластов 10°, восточное крыло пологое, угол падения пластов 7°.
Абсолютная отметка свода северного купола минус 2260 м, абсолютная
отметка замыкающей изогипсы минус 2500 м, площадь по замкнутой изогипсе 11,25 км x 5,38 км, высота 240 м. Крылья структуры данного поднятия в основном симметричны друг другу, угол падения пластов около 9°.
Структура КТ-II: по структурной карте кровли абсолютная отметка южного свода минус 3110 м, абсолютная отметка замкнутой линии минус 3380 м, площадь по замкнутой изогипсе 12,75 км х 5,38 км, высота структуры 270 м. Западное крыло структуры круче, чем восточное: угол падения пластов западного крыла около 10°, угол падения пластов восточного крыла около 7°. Абсолютная отметка северного свода минус 3050 м, абсолютная отметка замкнутой линии минус 3380 м, площадь по замкнутой изогипсе 11,63 км х 5,5 км, высота структуры 330 м. Два крыла в основном симметричны, а угол падения пластов около 10°.
4. Нефтегазоносность
Месторождение представляет собой крупное антиклинальное подсолевое поднятие платформенного типа северо-восточного простирания. Продуктивные пласты в нем приурочены к среднегжельскому регионально - нефтегазоносному комплексу пород, представленному двумя мощными толщами карбонатов (КТ-I и КТ-II), сложенных из известняка и доломитов. Глубина залегания продуктивных горизонтов составляет КТ-I до 2850 м и КТ-II до 3850 м.
К характерным особенностям залежей нефти и газа месторождения Жанажол относятся: высокое содержание в нефти и газе коррозийных и токсичных компонентов, высокое содержание конденсата в газе (до 600 г/м3) и растворенного газа в нефти (250 - 300 м3/т), большие глубины залегания продуктивных горизонтов и сложные условия бурения ввиду наличия в соленосной толще кунгура прослоев пластичных монтмориллонитовых глин. Трудноизвлекаемые запасы сырья составляют здесь около 40 %, нефть и газ содержат до 6 % сероводорода.
Нефтегазоносность месторождения связана с отложениями двух карбонатных толщ. В отложениях первой карбонатной толщи выделены 4 продуктивные пачки: А, Б, В и небольшая пачка В'. Пачки объединены в 4 объекта разработки: пачка А, пачка Б, северный купол пачек В+В' и южный купол пачек В+В'. Все выделенные пачки первой карбонатной толщи объединены между собой единой гидродинамической системой и практически представляют собой одну пластово-массивную газонефтяную залежь с общим газонефтяным и водонефтяным контактами. Средняя глубина залегания залежей составляет 2800 метров. Начальное пластовое давление Рпл, приведенное к отметкам ГНК и ВНК равно соответственно 29,1 и 30 МПа. Пластовая температура равна 58-61°С. Геотермический градиент равен 2,4°С.
Продуктивность второй карбонатной толщи связана с двумя пачками Г и Д. Пачки разбиты тектоническими нарушениями на три блока. В первом блоке (южный купол) выделено 3 объекта разработки: один в пачке Г - Г-I, и два в пачке Д - верхний Дв-I и нижний Дн-I
Нефтеносность второго блока связана с одним небольшим объектом Г-II. В третьем блоке первоначально выделялись три объекта разработки: два в
пачке Г - верхний Гв-III и нижний Гн-III и один в пачке Д - объект Д-III.
Затем было признано целесообразным объединить верхнюю и нижнюю часть пачки Г в один объект разработки Г-III. Это единственный объект КТ-II, имеющий газовую шапку, остальные объекты Дв-I, Дн-I, Д-III являются чисто нефтяными.
Поры размерами 0,05-0,1 мм составляют 13-15,8%, а каверны в 1,1-1,9 мм - до 3% породы и сообщаются между собой микротрещинами. Открытая пористость пород КТ-II составляет 9,2-19,5% при проницаемости до 979-1279 мкм2 с максимальными значениями на Жанажол, Урихтау где по ГИС коэффициент пористость достигает до 42,67-46,1%. О наличии в разрезе КТ-II пластов с хорошими фильтрационными свойствами свидетельствуют полученные фонтаны притоков нефти, газа и конденсата на Жанажоле - 165-720 м3/сут.
Нефти в отложениях КТ-II нафтеново-метановые с содержанием нафтеновых углеводородов до 5,8%. Они бензиновые (31-35%) при керосиновых фракциях до 14-15% и масляных до 14%. Нефти имеют плотность 823,7-918,3 кг/м3 при t = 200. Утяжеление нефтей обнаруживается в разрезе от кровли к подошве - наиболее тяжелые в зоне ВНК. Вязкость при 200С составляет 564-130,4 мПас, они сернистые (0,4-1%) и высокосернистые (1,4-3,8%), парафиновые (4,7-8,7%) с температурой плавления t = 42-500C, малосмолистые (смол селикагелевых 4,2-9,5%, асфальтеновых 0,5-3,8%, содержание кокса до 4,7-6,7% и золы до 0,1%, газовый фактор равен 123- 40,67 м3 на 1 м3 нефти, при давлении насыщения 27,8-34,6 МПа. Начало кипения 58-620С, а для тяжелых нефтей 105-1820С. При t = 1500С выкипает 3,4-22,8%, 2000С - 9,2-35,6%, 3000С 18,2-58,8% иногда до 70,4%. Пластовая температура 63-940С, пластовое давление 35,8-41,7 МПа.
Средний суточный дебит скважин по месторождению составляет 27,34 т/сут. Состав нефти 1.1
Таблица 1.1 - Состав нефти и газа
Состав |
Нефть (%) |
Газ (%) |
|
N2 |
0,0001 |
1,71 |
|
CH4 |
0,13 |
81,18 |
|
CO2 |
0,01 |
0,72 |
|
C2H6 |
1,23 |
8,64 |
|
H2S |
0,53 |
2,64 |
|
C3H8 |
5,29 |
3,68 |
|
i-C4H10 |
2,23 |
0,42 |
|
n-C4H10 |
5,36 |
0,67 |
|
i-C5H12 |
3,55 |
0,16 |
|
n-C5H12 |
3,82 |
0,13 |
|
C6H14 |
4,73 |
0,05 |
|
C7H16 |
4,04 |
0,01 |
|
C8H18 |
1,78 |
0,02 |
|
CS |
0,0001 |
0,0001 |
|
CH3SH |
0,0157 |
0,0026 |
|
C2H5SH |
0,0265 |
0,0012 |
|
C3H7SH |
0,1965 |
0,0026 |
|
C4H9SH |
0,0151 |
0,0001 |
|
140°С |
7,49 |
0,004 |
|
165°С |
12,20 |
0,002 |
|
200°С |
5,52 |
0,0001 |
|
230°С |
4,57 |
||
250°С |
4,00 |
||
270°С |
3,77 |
||
290°С |
3,62 |
||
312°С |
4,89 |
||
298°С |
21,006 |
5. Водоносность
Жанажолское месторождение входит в восточную окраину Прикаспийского сложнопостроенного артезианского бассейна.
В палеозойских и мезозойских отложениях восточной окраины впадины выделяются четыре водоносных комплекса: подсолевой
палеозойский, кунгурско-верхнепермский, триасовый и юрско-меловой. Каждый их них заключает несколько регионально-выдержанных водоносных горизонтов, приуроченных к определенным стратиграфическим толщам. Ввиду отсутствия мощных глинистых пластов, простирающихся на большие расстояния, и наличия различного рода гидрогеологических окон подземные воды выделенных водоносных комплексов в региональном плане не достаточно хорошо изолированы друг от друга.
После каждого гидрогеологического цикла изменялась гидрохимическая характеристика подземных вод, происходила перестройка гидродинамического режима и возникла необходимость в разгрузке подземных вод через имевшиеся тектонические разрушения и плоскости угловых несогласий для выравнивания пластовых давлений, как в совмещенных водоносных горизонтах, так и в горизонтах с уменьшенными пластовыми давлениями.
Воды нижнекаменноугольных отложений хлоридно-кальциевого типа с минерализацией 182,1 г/л.
Воды среднекаменноугольных отложений соленые сероводородные хлоридно-кальциевого типа с минерализацией 96,4 г/л, сульфатные слабоминерализованные.
Воды нижнепермских терригенных отложений приурочены к песчаным прослоям артинских, сакмарских и ассельских отложений. Они хлоридно-кальциевого типа с минерализацией до 129 г/л, неметаморфизованные, сульфатные. Статический уровень устанавливается на 80-100 м от устья [3].
Воды кунгурских отложений локализуются в терригенно-сульфатных прослоях в толщи каменной соли, являются рассолом хлоридно-кальциевого типа с минерализацией 67,3-263 г/л, воды являются метаморфизованными или слабометаморфизованными.
Воды верхнепермских отложений располагаются в нескольких песчаных водоносных горизонтах, являются минерализованными. Воды хлоридно-кальциевого типа с минерализацией от 50,3 до 292 г/л при плотности 1035,7-1185,6 кг/м3 с растворенными в них метаном и азотом.
Газосодержание вод колеблется от 0,062 до 0,973 м3/м3 при упругости газов 1,16-5,65 МПа. Состав растворенных в воде газов в законтурных и подошвенных водах азотно-метановый и метановый с содержанием метана 55-79,2 %.
Кроме того, в растворенных газах подошвенных и законтурных вод содержится соответственно: этан - 11,1-26,8 % и 0,04-3,6 %; тяжелые углеводороды - 4,3-24 % и 0,03-0,05 %; углекислый газ - 0,36-3,48 %; гелий - 0,003-0,3 %; аргон - 0,03-0,748 %. Возраст пластовых вод неоген-верхнемеловой и он намного меньше возраста водосодержащих отложений. Верхнепермские отложения содержат напорные воды.
Воды нижнетриасовых отложений гидрокарбонатно-натриевые, сульфатно-натриевые, хлоридно-магниевые и хлоридно-кальциевые с минерализацией от 7,1 до 251 г/л. Воды имеют запах сероводорода. Газосодержание варьирует от 0,015 до 0,823 м3/м3 при упругости 3,4-4,57 МПа. Содержание растворенных газов в законтурной и подошвенной воде колеблется соответственно от 48,6 до 82,9 % и 2,9-40,1 %, метана от 4,5 до 41,7 % и 51,2-89,3 %. В водах установлены также этан - 0,13-21,3 % и тяжелые углеводороды - 0,31-26,1 %, гелий - 0,002-0,053 % и аргон - 0,09-0,932 %. Возраст пластовых вод соответствует раннему миоцену.
Воды юрских отложений образуют два водоносных комплекса: нижнеюрский и среднеюрский.
Нижнеюрские воды сульфатно-натриевые и хлоридно-кальциевые. Минерализация их меняется от 1,4 до 221,9 г/л. Воды слабометаморфизованные.
В состав растворенных газов подошвенных и законтурных вод входят: метан - 49,9-74 % и 30,3 %, этан - 2,6-4,5 % и 0,1 %, тяжелые углеводороды - 1,6-2,1 % и 0,01 %, углекислый газ - 2,5-2,9 % и 0,2 %, азот - 4,29-15,4 % и 67,5 %, гелий - 0,02-0,002 % и 0,43 %, аргон - 0,141-0,315 % и 0,738 %. Абсолютный возраст вод плиоценовый, что свидетельствует о более молодом возрасте водосодержащих отложений.
Воды меловых отложений представлены готеривским, барремским, атским и альбским водоносными комплексами.
В четвертичных отложениях имеет распространение водоносный горизонт, связанный с делювиальными отложениями, слагающими долины балок и пониженные участки рельефа. Питание его осуществляется, в основном, за счет атмосферных осадков. По типу залегания делювиальные воды относятся к грунтовым.
Таким образом, подземные воды продуктивных горизонтов верхнепермских и мезозойских отложений относятся в основном к высокоминерализованным. Минерализация их увеличивается с глубиной.
По гидрохимическим показателям они не типично нефтяные с застойным режимом, а инфильтрационные, что свидетельствует о плохой закрытости недр и активном разрушении нефтяных залежей.
Содержание водорастворенных газов на водонефтяном контакте месторождения Жанажол составляет в среднем 3,1 м3/м3, из которых примерно половина приходится на кислые (сероводород, двуокись углерода) и половина на метан и его гомологи.
Характерной особенностью растворенных газов является высокое содержание сероводорода (34,4%) и двуокиси углерода (11,7%). Обращает на себя внимание также низкая концентрация гомологов метана (около 2%), что не характерно для подземных вод, контактирующих с нефтяной залежью.
Литература
1.Алдамжаров Н.Н. Анализ эксплуатации горизонтальных скважин на месторождении Жанажол. Журнал « Нефть и газ/ Н.Н. Алдамжар
2. Бойко В.С. Разработка и эксплуатация нефтяных и газовых месторождений/ В.С. Бойко М.; Недра, 1990г.-312с.
3. Единые правила разработки нефтяных и газовых месторождений Республики Казахстан. Постановление правительства Республики Казахстан от 18 июня 1996г №745
4. Иванова М.М. Нефтегазопромысловая геология и геологические основы разработки месторождений нефти и газа/ М.М. Иванова - М. ; Недра, 1985г.-340 с.
5.Желтов Ю.П. Разработка нефтяных месторождений /Ю.. Желтов- М.; Недра 1985г. - 420с.
6. Мищенко И.Г. Скважинная добыча нефти; Учебное пособие для ВУЗов Москва: ФГУП Издательство « Нефть и газ» РГУ нефти и газа им. И.М.Губкина, 2003 г.
Размещено на Allbest.ru
Подобные документы
Геолого-физическая изученность месторождения. Литолого-стратиграфическое описание разреза. Тектоническое строение месторождения. Геологическое обоснование доразведки залежей и постановки дополнительных разведочных работ. Степень изученности залежей.
отчет по практике [28,4 K], добавлен 26.04.2012Характеристика геологического строения и газоносности месторождения "Совхозное". Литолого-стратиграфическое описание разреза. Тектоническое строение. Нефтегазоносность. Физико-литологическая характеристика продуктивных пластов, залежей. Свойства газа.
курсовая работа [15,7 K], добавлен 03.06.2008Стратиграфия, тектоника, морфология залежей, гидрогеология, генезис месторождения Жанажол. Степень геологической изученности и промышленного освоения минерально-сырьевой базы нефтегазовой промышленности. Структура запасов разрабатываемых месторождений.
курсовая работа [1,1 M], добавлен 22.04.2012Количество добытой нефти и газа на Тишковском месторождении, его литология и стратиграфия. Нефтеносность петриковской и елецко-задонской залежи. Подсчет и пересчет запасов нефти и растворенного газа межсолевых и подсолевых залежей месторождения.
курсовая работа [60,6 K], добавлен 17.11.2016Геологическое строение месторождения: стратиграфия, тектоника, общая гидрогеологическая обстановка, нефтегазоносность, физико-химическая характеристика нефти и газа. Анализ структуры фонда скважин, состояния выработки запасов пласта, величины нефтеотдачи.
дипломная работа [2,4 M], добавлен 19.09.2011Стратиграфический разрез месторождения. Физико-литологическая характеристика пласта. Коллекторские свойства пород. Физико-химическая характеристика нефти, газа и конденсата. Построение цифровой геологической модели. Моделирование свойств коллектора.
дипломная работа [561,0 K], добавлен 16.10.2013Геологическое строение и нефтегазоносность района. Литолого-стратиграфическая и геофизическая характеристика продуктивной части разреза. Подсчет запасов нефти и растворенного газа залежи евлановско-ливенского горизонта Ковалевского месторождения.
курсовая работа [3,1 M], добавлен 15.01.2014Характеристика Сосновского нефтяного месторождения в Беларуси. Количество запасов, сбор и транспорт нефти и газа. Краткая характеристика стратиграфии и литологии осадочного разреза месторождения. Тектоническая характеристика продуктивных горизонтов.
реферат [12,2 K], добавлен 29.12.2010Запасы нефти Верхнечонского месторождения, его продуктивность. Анализ точности подсчета запасов нефти пласта ВЧ1+2, ВЧ1, ВЧ2 блок 2 Верхнечонского нефтегазоконденсатного месторождения. Расчленение разреза на стратиграфические комплексы (свиты, подвиты).
курсовая работа [6,0 M], добавлен 04.01.2016Литолого-стратиграфическая характеристика, нефтегазоносность и состав пластовых флюидов IV горизонта. История геологического развития структуры. Формирование залежей нефти и газа Анастасиевско-Троицкого месторождения и их разрушение в условиях диапиризма.
дипломная работа [2,5 M], добавлен 07.09.2012