Коллекторы и флюидоупоры

Коллекторские свойства осадочных горных пород, их структурно-текстурные особенности. Минеральный состав пород флюидоупоров. Принципы типизации терригенных и карбонатных коллекторов, приемы их петрографического определения. Гранулометрический состав пород.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 30.03.2016
Размер файла 512,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

Национальный Исследовательский

Иркутский Государственный Технический Университет

Институт недропользования

Кафедра прикладной геологии

Пояснительная записка

к курсовой работе

по дисциплине: Геология и литология

Коллекторы и флюидоупоры

Выполнил студент группы НДб-13-2

Боровской М. В

Нормоконтроль А.Г Покатилов

Иркутск 2013г

Введение

В любой работе первым необходимым условием для получения хорошего результата является понимание того, с чем мы работаем, то есть понимать объект работы. Наш объект работы - породы-коллекторы. Процессы разработки и эксплуатации нефтяных, газовых и газоконденсатных месторождений тесно связаны с физическими и химическими свойствами пород-коллекторов. Мы не можем оценить запас нефти и газа, если не понимаем таких понятий как пористости, нефтенасыщенности, газонасыщенности. Бурение, выбор способа эксплуатации, выбор методов интенсификации добычи, выбор методов повышения коэффициента извлечения нефти и газа в какой-то степени зависит от свойств горных пород-коллекторов и их поведения при различных воздействиях. Изучению пород-коллекторов и процессов движения через них жидких и газообразных флюидов также придается большое значение в связи с поисками и разведкой нефтяных и газовых месторождений. Существуют многие науки, которые изучают горные породы-коллекторы ( геохимия, петрография, физика пласта, геология нефти и газа…). В данном реферате будем рассматривать кратко некоторые вопросы, связанные с классификацией пород-коллекторов, с характеристикой и оценкой пористости, проницаемости и насыщенности пустотного пространства жидкостью и газом, механические и тепловые свойства.

1. Классификация коллекторов

Горные породы, обладающие способностью вмешать нефть, газ и воду и отдавать их при разработке, называются коллекторами.

Подавляющая часть нефтяных и газовых месторождений приурочена к коллекторам трёх типов - гранулярным, трещинным и смешанного строения. К первому типу относятся коллекторы, сложенные песчано-алевритовыми породами, поровое пространство которых состоит из межзерновых полостей. Подобным строением порового пространства характеризуются также некоторые пласты известняков и доломитов. В чисто трещиноватых коллекторах (сложенных преимущественно карбонатами) поровое пространство образуется системой трещин. При этом участки коллектора между трещинами представляют собой плотные малопроницаемые нетрещиноватые массивы (блоки) пород, поровое пространство которых практически не участвует в процессах фильтрации. На практике, однако, чаще всего встречаются трещиноватые коллекторы смешанного типа, поровое пространство которых включает как системы трещин, так и поровое пространство блоков, а также каверны и карст. Трещиноватые коллекторы смешанного типа в зависимости от наличия в них пустот различного типа подразделяются на подклассы - трещиновато-пористые, трещиновато-каверновые, трещиновато-карстовые и т.д.

Анализ показывает, что около 60% запасов нефти в мире приурочено к песчаным пластами песчаникам, 39% - к карбонатным отложениям, 1% - к выветренным метаморфическим и изверженным породам. Следовательно, породы осадочного происхождения - основные коллекторы нефти и газа.

минеральный терригенный карбонатный коллектор

2. Коллекторские свойства горных пород

Под пористостью горной породы понимается наличие в ней пор (пустот). Пористость характеризует способность горной породы вмещать жидкости и газы. В зависимости от происхождения различают следующие виды пор:

1. Поры между зёрнами обломочного материала (межкристаллические поры), промежутки между плоскостями наслоения - это первичные поры, образовавшиеся одновременно с формированием породы.

2. Поры растворения, образовавшиеся в результате циркуляции подземных вод, за счёт процессов растворения минеральной составляющей породы активными флюидами образуются поры, например, выщелачивания, вплоть до образования карста.

3. Поры и трещины, возникшие под влиянием химических процессов, приводящие к сокращению объема породы. Например, превращение известняка (СаСО3) в доломит (СаСО3? МgСО3). При доломитизации идёт сокращение объёмов породы приблизительно на 12%, что приводит к увеличению объема пор. Аналогично протекает и процесс каолинизации - Al2O3?2SiO2?H2O.

4. Пустоты и трещины, образованные за счёт эрозионных процессов, выветривания, кристаллизации.

5. Пустоты и трещины, образованные за счёт тектонических процессов, напряжений в земной коре.

Виды пор (2) - (5) - это, так называемые, вторичные поры, возникающие при геолого-минералогических или химических процессах.

Объём пор зависит от:

· формы зёрен и размера зёрен;

· сортировки зёрен (чем лучше отсортирован материал, тем выше пористость);

· укладки зёрен, например, при кубической укладке пористость составляет » 47,6%, при ромбической укладке - 25,96% (см. рис.);

Рис. 2.1 Различная укладка сферических зёрен одного размера, составляющих пористый материал: а - менее плотная кубическая укладка, б - более компактная ромбическая укладка однородности и окатанности зёрен; вида цемента.

Рис. 2.2 Разновидности цемента горных пород

Не все виды пор заполняются флюидами: водой, газами, нефтью. Часть пор бывает изолирована, в основном, это внутренние поры.

Для хороших коллекторов коэффициент пористости лежит в пределах 15-25%. Поровые каналы нефтяных пластов условно подразделяются на три группы:

· субкапиллярные - размер пор < 0,0002 мм, практически непроницаемые: глины, глинистые сланцы, эвапориты (соль, гипс, ангидрит);

· капиллярные - размер пор от 0,0002 до 0,5 мм;

· сверхкапиллярные - размер пор > 0,5 мм.

По крупным (сверхкапиллярным) каналам и порам движение нефти, воды, газа происходит свободно, а по капиллярам - при значительном участии капиллярных сил.

В субкапиллярных каналах жидкость удерживается межмолекулярными силами (силами притяжения стенок каналов), поэтому практически никакого движения не происходит.

Породы, поры которых представлены в основном субкапиллярными каналами, независимо от пористости практически непроницаемы для жидкостей и газов (глины, глинистые сланцы).

Коэффициенты пористости некоторых осадочных пород Таблица 1

Горная порода

Пористость, %

Глинистые сланцы

0,54-1,4

Глины

6,0-50,0

Пески

6,0-52

Песчаники

3,5-29,0

Известняки

до 33

Доломиты

до 39

Известняки и доломиты, как покрышки

0,65-2,5

Общая и открытая пористость зависят от:

· глубины залегания и, как правило, падает с увеличением глубины залегания (рис. 2.3.);

Рис. 2.3 Влияние естественного уплотнения пород на их пористость: 1. песчаники, 2. - глины от плотности пород; количества цемента и др.

Пористость пород продуктивных пластов определяют в лабораторных условиях по керновому материалу. Пористость пласта на больших участках определяется статистически по большому числу исследованных образцов керна.

3. Породы-коллекторы

К настоящему времени предложен ряд классификаций коллекторов терригенного (обломочного) и карбонатного состава, однако ни одна из них не получила практического применения. Это объясняется тем, что трудно создать универсальную классификацию коллекторов, которая отражала бы все их свойства и представляла бы не только академический интерес, но и удовлетворяла бы запросам промышленности, оказывая существенную помощь при поисках, разведке и разработке нефтяных и газовых месторождений.

В различных опубликованных классификациях рассматриваются самые разнообразные свойства коллекторов: в одних излагаются морфология и генезис поровых пространств (И.М. Губкин), в других коллекторы расчленяются по форме их поровых пространств (П.П. Авдусин и М.А. Цветкова), в третьих они расчленяются по проницаемости (А.Г. Алиев, Г. И. Теодорович), далее по признакам, характеризующим различные генетические типы коллекторов (Н. Б. Вассоевич), наконец, по эффективной пористости и проницаемости (А. А. Ханин) и т. д.

Основываясь на данных о пористости и проницаемости горных пород, все известные коллекторы нефти и газа можно подразделить на две большие группы: межгранулярные (поровые) и трещинные.

Основное их различие заключается в том, что емкость и фильтрационные свойства межгранулярных коллекторов (чаще всего песчаников) определяются в основном структурой порового пространства, тогда как в трещинных коллекторах фильтрация нефти и газа обусловливается главным образом трещинами. Основной емкостью для трещинных коллекторов служат те же, что и для межгранулярных, -- межзерновые поры, а в карбонатных породах также и каверны, микрокарстовые пустоты и стилолитовые полости.

Роль самих трещин в общей емкости трещинного коллектора, как правило, незначительна и лишь иногда возрастает в зонах дробления горных пород вблизи дизъюнктивных дислокаций.

Трещинные коллекторы характеризуются разнообразием и сложностью их строения, наличием в них микротрещин, роль которых является ведущей в фильтрации флюидов. Однако не следует смешивать трещинный коллектор с трещиноватой породой, так как трещинный коллектор характеризуется лишь ему присущими специфическими особенностями, которые были указаны выше.

Е.М. Смехов и другие по условиям фильтрации выделяют два типа коллекторов -- межгранулярные и трещинные, -- а по характеру их емкости каверновый, карстовый, смешанный и порово-трещинный, которые, в свою очередь, подразделяются по преобладающему значению той или иной структуры пустот.

Большая часть имеющихся в трещиноватых породах пустот, определяющих тип коллектора, сообщаются благодаря широко развитой в них сети микротрещин.

Приведенная классификация трещинных коллекторов может оказаться полезной на практике, так как выделение в разрезе того или иного типа трещинного коллектора способствует выбору надлежащего метода разведки и разработки месторождения, а также учету необходимых параметров (пористость, коэффициенты нефтенасыщенности и нефтеотдачи) для подсчета запасов нефти и газа.

Природные коллекторы весьма разнообразны по строению и чаще всего представлены смешанными типами с преобладанием того или другого основного типа.

Во всех районах распространены преимущественно две системы трещин, одна из которых, как правило, имеет простирание, совпадающее с простиранием слоев, вторая -- с направлением падения слоев. Спорадически появляются диагональные к ним системы трещин.

Другой характеристикой трещиноватости является густота трещин, тесно связанная с литологией пород. Обычно наибольшей рас-тресканностью обладают кремнистые разности, затем глинистые и известковистые. В песчаных разностях в общем случае отмечены минимумы трещиноватости. Интенсивность трещиноватости не зависит от мощности слоя, что доказано на большом фактическом материале.

При изучении трещин в шлифах отмечено, что микротрещины развиты в той или иной мере во всех литологических разностях горных пород. Наименьшее количество трещин имеют песчаники и алевролиты, однако и в них отмечены открытые трещины и трещины, заполненные желтым битумом.

В то время как распределение трещиноватости в разрезе зависит от литологических разностей пород, распределение максимумов растресканности по площади тесно связано с тектоническими явлениями, контролируемыми упругостью породы. Имеются данные о том, что независимо от условий, максимумы трещиноватости преимущественно располагаются на периклиналях структур. Иногда они приурочены к изгибам слоев.

В то же время структуры платформенного типа имеют максимумы трещиноватости, спорадически распространенные по крыльям складок, на структурах геосинклинального типа -- вдоль осей.

Согласно изложенной характеристике трещиноватых пород при определении их пористости (емкости) для подсчета запасов основное внимание должно быть уделено изучению межзерновой пористости. Однако в некоторых случаях при выяснении емкости коллектора необходимо учитывать и трещинную пористость, если межзерновая или вторичная равны первым единицам процента, а трещинная 1% и более.

Гранулометрический состав пород. Гранулометрический анализ горной породы дает представление о количественном содержании в ней частиц различной величины. Количественное содержание и соотношение фракций частиц в известной мере определяют пористость, проницаемость и коллекторские свойства породы. Гранулометрический анализ выражается в определении процентного содержания фракций зерна различной крупности (в мм). Он производится различными методами, подробно описываемыми в специальной литературе.

Порода-коллектор в обрамлении пород - флюидоупоров, по которому может перемещаться флюид, называется природным резервуаром. Различают пластовые, массивные, пластово-массивные и литологические природные резервуары (рис. 2.4).

Рис. 2.4. Природные резервуары: 1 - пластовый. 2 - массивный, 3 - пластово-массивный; 4 -литологический ограниченный (по Л.П.Мстиславской, 1996).

4. Примеры - коллекторов

Коллекторами нефти и газа называются горные породы, способные вмещать жидкости и газы и пропускать их через себя при наличии перепада давления. На формирование геометрии порового пространства коллекторов и, следовательно, на их фильтрационные характеристики влияют структура и текстура пород.

Структура осадочных горных пород -- размеры и форма слагающих породу минеральных зерен или условных неделимых (биоморфных или детритовых остатков, скелетов организмов, оолитов и т. п.).

Текстура -- характер взаимного расположения компонентов породы и их пространственная ориентация. Геометрия порового пространства коллекторов -- это элемент текстуры пород. Основы текстуры закладываются в седиментогенезе и сохраняются в диагенезе и катагенезе. Постседиментационная характеристика коллекторов определяется совокупностью свойств, полученных породой в процессе осадкообразования, и новых свойств, формирующихся под влиянием увеличивающегося давления и температуры, перераспределения цементирующего материала, растворения неустойчивых и образования стабильных минералов в данных условиях. Следовательно, емкостное пространство включает емкости двух видов: седиментационные и постседиментационные, в которых все изменения протекают с разной интенсивностью, определяемой в первую очередь типом коллектора.

Наиболее распространенные коллекторы нефти и газа -- терригенные и карбонатные породы.

Терригенные породы-коллекторы представлены в основном песчаниками и алевролитами. Основные их показатели -- гранулометрический состав, форма и характер поверхности минеральных зерен.

5. Породы-флюидоупоры

Породы-флюидоупоры служат необходимой составляющей природных резервуаров нефти и газа. Они предотвращают рассеивание жидких и газообразных флюидов, содержащихся в пласте-коллекторе. Флюидоупоры могут быть как плотностными, так и динамическими.

Плотностные флюидоупоры возникают в результате сильного уплотнения горных пород. Оно может происходить как на начальных стадиях катагенеза у каменных солей, ангидритов и некоторых известняков, так и на больших глубинах у пород самого разного состава. Экранирующая способность плотностных флюидоупоров определяется малым размером пор, прямо через которые невозможна либо крайне затруднена фильтрация и жидкостей, и газов.

Минеральный состав пород флюидоупоров может быть различным. В глинистых пластах значительную роль играют глинистые минералы из групп монтмориллонита, каолинита, гидрослюды и хлорита. С глубиной количество минералов из группы монтмориллонита сильно понижается. Например, в древних мезозойских отложениях Прикаспийской впадины, Мангышлака и других районов монтмориллонит исчезает уже к глубине 1800-2000 м. Несколько медленнее преобразуется каолинит. Минералы групп хлорита и гидрослюды прослеживаются ровно по всему разрезу даже самых глубоких скважин.

Качество глинистых покрышек зависит от их минерального состава. Более всего содействуют надежности экранирующих свойств особые минералы группы монтмориллонита. Это определяется разной способностью глинистых минералов к набуханию и адсорбции. Самой высокой тенденцией к набуханию и адсорбции (50-150 мг-экв/100 г) обладает монтмориллонит. Слабее эти свойства проявляются у минералов группы гидрослюд (у них адсорбционная способность 20--40 мг-экв/100 г) и далее у минералов группы каолинита. Экспериментальные исследования показали, что при добавлении в особо чистый, среднезернистый кварцевые пески 20% каолинита проницаемость данной смеси понизилась примерно в 500 раз, но при добавлении ровно такого же количества другого вещества (монтмориллонита) снижение больше 3000 раз.

Широкое распространение имеют мономинеральные флюидоупоры, сложенные агалитом, ангидритом, кальцитом, иногда доломитом. Они обладают более высокими экранирующими свойствами, так как такая минеральная неоднородность при незначительном изменении термобарических условий будет способствовать возникновению различного рода деформаций, и, конечно, образованию трещин, а также изменению растворимости отдельных компонентов.

По соотношению флюидоупоров с этажами нефтегазоносности Э.А.Бакиров выделил:

- межэтажные толщи-покрышки, перекрывающие этаж нефтегазоносности в моноэтажных месторождениях или разделяющие их в полиэтажных месторождениях;

- внутриэтажные, разделяющие продуктивные горизонты внутри этажа нефтегазоносности;

По литологическому составу выделяются покрышки глинистые, карбонатные, глинисто-карбонатные, галогенные, сульфатные, сульфатно-галогенные, галогенно-карбонатные и другие смешанные типы. Наиболее надежные флюидоупоры - глинистые толщи и эвапориты.

Глинистые породы-покрышки.

Экранизирующие свойства глинистых пород ,помимо выдержанности и мощности, рассмотренных выше зависят от:

· Их состава

· Наличие примесей

· Текстурных особенностей

· Вторичных изменений

· Трещиноватости

· Мощности и выдержанности

Минеральный состав породы-покрышки является важнейшим показателем, определяющим ее качество. Более всего способствуют надежности экранирующих свойств минералы группы монтмориллонита, слабее - гидрослюды и каолинит. Эта особенность предопределяется тем, что глинистые минералы обладают различной способностью к набуханию. В полном соответствии с минеральным составом глин находится величина их емкости поглощения (обменной емкости), которая, как показали исследования Т.Т. Клубовой, служит косвенным показателем способности глинистых минералов оказывать влияние на процессы, протекающие в породах, в том числе и на формирование экранирующих свойств пород. Экспериментальные исследования показали, что при добавлении в чистый, среднезернистый кварцевый песок 20% каолиниты проницаемость смеси понижается в 500 раз, а при добавлении такого же количества монтмориллонита - более чем в 3 000 раз. С величиной обменной емкости связаны пластичность, набухаемость, пористость, проницаемость, деформационно-прочностные и другие свойства глин.

Терригенные примеси ухудшают изолирующие свойства пород благодаря возникающим вокруг них зонам повышенной проницаемости. Ухудшение показателей экранирующей способности глинистых покрышек связано с количеством, минеральным составом и структурой терригенных минералов-примесей, причем степень зависимости определяется взаимоотношением основных компонентов породы друг с другом, т.е. текстурами.

Органическое вещество участвует в формировании текстурного облика породы и структуры порового пространства, т.е. в формировании экранирующих свойств. По классификации Т.Т.Клубовой (1968-1970 гг.) рассеянное ОВ делится на три типа:

1) Углефицированные органические остатки, лишенные подвижных компонентов - не участвуют в формировании флюидоупорных свойств, служат матрицей, по которой образуются такие аутогенные минералы как пирит, сидерит, анафаз, графит.

2) Растительные остатки со значительным количеством гидролизуемых компонентов - способствуют образованию характерных для пород-покрышек слоистых и петельчатых мезотекстур. Покрышки с такими мезотектстурами обладают повышенной прочностью и пониженной проницаемостью в направлении, перпендикулярном к напластованию.

3) Сорбированное глинистыми минералами ОВ, которое снижает проницаемость и повышает прочность пород-покрышек, не влияя на пластичность пород. Сорбированное ОВ служит как бы цементом, сокращающим размер пор, в первую очередь мелких.

Итак, уменьшение размера пор особенно значительно, когда ОВ относится к третьему типу (олеиновая кислота, сине-зеленые водоросли), и меньше, когда ОВ содержит значительное количество компонентов, не способных сорбироваться глинистыми минералами.

Текстуры пород-покрышек. Различие в фильтрационных характеристиках пород с разными текстурами обусловлено тем, что зоны текстурного сочленения микроблоков глинистых минералов, действующих как один монокристалл, микролинз и слойков алевритового материала, стяжений карбонатных минералов и ОВ образуют уже не поры, а полосы повышенной проницаемости. Здесь необходимо отметить одну особенность. У пород с беспорядочными (массивными) мезоструктурами фильтрационные свойства во всех направлениях одинаковы, тогда как при слоистых мезоструктурах и аксиальных микротекстурах в породах фиксируется анизотропия фильтрационных свойств.

Уплотнение пород-флюидоупоров. Характер изменения структуры порового пространства и проницаемости, а следовательно, экранирующая способность флюидоупоров в значительной степени обусловлены изменением плотности пород, которая прежде всего зависит от литологического состава и глубины залегания.

Суммируя все сказанное о глинистых породах-флюидоупорах нефтяных и газовых залежей, отметим, что для надежного прогнозирования качества пород как покрышек необходимо иметь следующие сведения:

· Структурно-текстурные особенности

· Количество и тип ОВ

· Выдержанность по простиранию

· Мощность

· Деформационо-прочностойные свойства

· их минеральный состав

Соляные покрышки.

Соли являются, по-видимому, наилучшими покрышками, хотя и сквозь их толщу может проходить медленный, но постоянный поток УВ. С этими покрышками связано существование гигантских по запасам скоплений газа (например, Вуктыльское и Оренбургское в Предуралье под пермской соленосной толщей). Более пластичные покрышки каменной соли являются лучшими по качеству, чем ангидриты и гипсы. По мере увеличения глубины возрастает пластичность солей, в связи с чем улучшаются и их экранирующие свойства.

Плотностные покрышки образуются обычно толщами однородных, монолитных, лишенных трещин тонкокристаллических известняков, реже доломитов, мергелей, аргиллитов. Карбонатные покрышки характерны для нефтяных залежей платформенных областей, для условий пологого залегания пород. Карбонатные покрышки часто ассоциируются с карбонатными коллекторами, границы между ними могут иметь весьма сложную поверхность. Для карбонатных покрышек характерно быстрое приобретение ими изолирующей способности в связи с быстрой литификацией и кристаллизацией карбонатного осадка. Для плотностных покрышек большое значение имеет мощность, увеличивающая в целом крепость пород.

Плотностные покрышки теряют свою герметичность на больших глубинах за счет появления трещин механического образования.

Криогенные покрышки - обычно песчано-алевритовые породы с льдистым цементом. Формируются в зонах развития многолетнемерзлых пород.

6. Примеры флюидоупоров

Минеральный состав пород флюидоупоров может быть различным. В глинистых пластах значительную роль играют глинистые минералы из групп монтмориллонита, каолинита, гидрослюды и хлорита. С глубиной количество минералов из группы монтмориллонита сильно понижается. Например, в древних мезозойских отложениях Прикаспийской впадины, Мангышлака и других районов монтмориллонит исчезает уже к глубине 1800-2000 м. Несколько медленнее преобразуется каолинит. Минералы групп хлорита и гидрослюды прослеживаются ровно по всему разрезу даже самых глубоких скважин.

Качество глинистых покрышек зависит от их минерального состава. Более всего содействуют надежности экранирующих свойств особые минералы группы монтмориллонита. Это определяется разной способностью глинистых минералов к набуханию и адсорбции. Самой высокой тенденцией к набуханию и адсорбции (50-150 мг-экв/100 г) обладает монтмориллонит. Слабее эти свойства проявляются у минералов группы гидрослюд (у них адсорбционная способность 20--40 мг-экв/100 г) и далее у минералов группы каолинита. Экспериментальные исследования показали, что при добавлении в особо чистый, среднезернистый кварцевые пески 20% каолинита проницаемость данной смеси понизилась примерно в 500 раз, но при добавлении ровно такого же количества другого вещества (монтмориллонита) снижение больше 3000 раз.

Заключение

В настоящей работе кратко рассматривается лишь ограниченный круг вопросов, связанный с породами-коллекторами нефти и газа - основные свойства, петрографические признаки, некоторые классификации. Большое количество последних свидетельствует о разностороннем подходе к изучению коллекторов (петрографическом, генетическом, емкостно-фильтрационном и др.) и сложности самого объекта исследований. Следует признать, что до сих пор не разработана систематика пород-коллекторов, основанная на анализе зависимостей между структурно-текстурными и фильтрационно-емкостными параметрами, не всегда удается достаточно надежно увязывать характер пористого пространства с определенными геологическими процессами и стадиями литогенеза. Изложенные принципы типизации терригенных и карбонатных коллекторов и простейшие приемы их петрографического определения - это первый шаг в освоении сложного вопроса изучения и прогноза природных резервуаров нефти и газа.

Список литературы

1. Э.А Бакиров, В.И. Ермолкин, В.И. Ларин. Геология нефти и газа. Москва «Недра» 1990.

2. Ш.К.Гиматудинов. Физика нефтяного и газового пласта. Москва 1971.

3. П.В Флоренский, П.В. Милосердова, В.П. Балнцкий. Основы литологии. Москва 2003.

Размещено на Allbest.ur


Подобные документы

  • Классификация коллекторов терригенного и карбонатного состава. Гранулометрический состав пород. Трещины диагенетического происхождения. Закономерности в расположении и ориентировке трещин в горной породе. Методы определения остаточной воды в пластах.

    контрольная работа [30,2 K], добавлен 04.01.2009

  • Физические свойства горных пород-коллекторов нефти и газа. Типы осадочных пород: терригенные, хемогенные и органогенные. Гранулометрический состав как содержание в горной породе зерен крупности, выраженное в % от массы или количества зерен, его изучение.

    презентация [2,5 M], добавлен 17.04.2015

  • Залегание нефти, воды и газа в месторождении. Состав коллекторов, формирование и свойства. Гранулометрический состав пород, пористость, проницаемость. Коллекторские свойства трещиноватых пород. Состояние остаточной воды в нефтяных и газовых коллекторах.

    учебное пособие [3,1 M], добавлен 09.01.2010

  • Общее описание и характерные черты осадочных горных пород, их основные свойства и разновидности. Типы слоистости осадочных горных пород и структура. Содержание и элементы обломочных пород. Характеристика и пути образования химических, органогенных пород.

    реферат [267,1 K], добавлен 21.10.2009

  • Сущность интрузивного магматизма. Формы залегания магматических и близких к ним метасоматических пород. Классификация хемогенных осадочных пород. Понятие о текстуре горных пород, примеры текстур метаморфических пород. Геологическая деятельность рек.

    реферат [210,6 K], добавлен 09.04.2012

  • Понятие фаций и фациального анализа осадочных пород. Рассмотрение основных методов изучения карбонатных сред. Геологическая характеристика карбонатных коллекторов. Возможности оценки фаций карбонатных пород по данным геофизических исследований скважин.

    реферат [20,7 K], добавлен 07.05.2015

  • Принципы классификации обломочных пород, основные представители осадочных пород. Характеристика свойств грубообломочных пород. Глыбовые, галечные и щебеночные, гравийные и дресвяные породы, специфика классификации песчаных отложений, минеральный состав.

    реферат [15,9 K], добавлен 24.08.2015

  • Классификация горных пород по происхождению. Особенности строения и образования магматических, метаморфических и осадочных горных пород. Процесс диагенеза. Осадочная оболочка Земли. Известняки, доломиты и мергели. Текстура обломочных пород. Глины-пелиты.

    презентация [949,2 K], добавлен 13.11.2011

  • Общая характеристика осадочных горных пород как существующих в термодинамических условиях, характерных для поверхностной части земной коры. Образование осадочного материала, виды выветривания. Согласное залегание пластов горных пород, типы месторождений.

    курсовая работа [2,6 M], добавлен 08.02.2016

  • Типы природных емкостей подземных вод, водоносность кристаллических и трещиноватых пород. Свойства порово-трещинного пространства, влагоемкость горных пород. Гидрогеологическая стратификация Прикаспийской впадины в пределах Астраханской области.

    курсовая работа [333,5 K], добавлен 08.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.