Бурение нефтяных и газовых скважин

Ознакомление с литологической характеристикой разреза скважины. Рассмотрение процесса выбора и расчета параметров промывочной жидкости по интервалам скважины в зависимости от геологических условий. Анализ технологии приготовления буровых растворов.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 15.12.2014
Размер файла 230,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Геологический раздел

1.1 Литологическая характеристика разреза скважины

1.2 Осложнения

1.3 Конструкция скважины

1.4 Выбор и обоснование вида промывочной жидкости по интервалам бурения

1.5 Выбор и расчёт параметров промывочной жидкости по интервалам скважины в зависимости от геологических условий

2. Выбор растворов по интервалам бурения скважин

2.1 Анализ используемых в УБР буровых растворов

2.2 Обоснование выбора типа растворов по интервалам бурения

2.3 Обоснование параметров бурового раствора

2.4 Обоснование рецептур буровых растворов

3. Уточнение рецептур буровых растворов

3.1 Постановка задачи

3.2 Разработка матрицы планированного эксперимента

3.3 Результаты опытов и их обработка

3.4 Определение оптимальной концентрации реагентов

4. Определение потребного количества растворов, расхода компонентов по интервалам бурения

5. Приготовление буровых растворов

5.1 Технология приготовления буровых растворов

5.2 Выбор оборудования для приготовления буровых растворов

6. Управление свойствами растворов в процессе бурения скважин

6.1 Контроль параметров буровых растворов

6.2 Технология и средства очистки буровых растворов

6.3 Управление свойствами буровых растворов

7. Мероприятия по экологической безопасности применения буровых растворов

7.1 Охрана окружающей среды и недр

7.2 Охрана труда

Заключение

Библиографический список

Введение

Промывочные растворы выполняют ряд функций, которые определяют успешность, скорость бурения, а также ввод скважины в эксплуатацию с максимальной продуктивностью. Поэтому роль промывочной жидкости очень велика, особенно для глубокого и сверхглубокого бурения, которое распространено в нашей стране. Функции промывочной жидкости:

· Разрушать забой;

· Очищать забой от шлама и транспортировать шлам на дневную поверхность;

· Компенсировать избыточное пластовое давление флюидов;

· Предупреждать обвалы стенок скважины;

· Сбрасывать шлам;

· Смазывать и охлаждать долото, бурильный инструмент и оборудование.

Задача курсовой работы состоит в том, чтобы подобрать параметры, тип бурового раствора и химические реагенты для его обработки, с учётом следующих требований:

снижение до минимума отрицательного воздействия бурового раствора на продуктивность объектов;

снижение до минимума техногенной нагрузки на окружающую природную среду;

предупреждение осложнений в процессе бурения и крепления;

доступность и технологическая эффективность химреагентов;

экономически приемлемая стоимость бурового раствора.

Выбор буровых растворов определяется, прежде всего, геологическими условиями проходки скважины.

1. Геологический раздел

1.1 Литологическая характеристика разреза скважины

Интервал, м

Краткое описание горной породы

От (верх)

До

(низ)

0

40

Суглинки серые, пески кварцевые желтовато-серые, глины, супеси, присутствуют остатки растительности.

40

221

Алевриты, пески кварцевые с включениями зерен глауконита, глины.

221

429

Глины серые с различными оттенками (зеленоватым, желтым, голубым, шоколадным) и алевролиты.

429

731

Глины серые.

771

809

В верхней части преобладание глин. Нижняя часть из песчано-алевритового материала, пески и алевриты светло-серые, светло-мелкозернистые, кварц-полевошпатовые с прослоями глин

809

932

Глины светло-серые листованные, плотные, слюдистые, переходящие вниз по разрезу в опоковидные вплоть до опок. Отмечается присутствие зерен глауконита.

932

1094

Глины зеленовато-серые, до черных, слабоалевритистые, плотные с тонкими пропластками и линзами алевритов, присутствуют углефицированные растительные остатки.

1094

1122

Глины серые, известковистые, алевритистые с прослоями алевритов и мергелей.

1122

1967

В верхней части преобладают песчаники. В нижней - глины серые, слюдистые, в разной степени алевритистые, местами опоковидные. Встречаются зерна глауконита, сидерит.

1967

2031

Глины темно-серые до черных, плотные, массивные, однородные, тонкоотмученные.

2031

2114

Неравномерное переслаивание темно-серых слюдистых глин, серых мелко среднезернистых кварцевых песчаников и тонкослоистых слюдистых алевролитов, присутствует растительный детрит. Нижняя часть состоит из глин.

1.2 Осложнения

Стратиграфическое

подразделение

Интервал по стволу, м

Вид (название осложнения)

Условия

Возникновения

от

до

Четверт. отложения

0

40

Поглощения

бурового раствора

Увеличение репрессии на нефтеводоносные пласты, отклонения параметров бурового раствора от проектных

Верхний палеоген

40

221

Тавдинская свита

221

429

Талицкая свита

731

809

Ганькинская свита

809

932

Березовская свита

932

1094

Осыпи, обвалы

Создание депрессии, отклонения параметров бурового раствора от проектных

Покурская свита

1122

1967

Водопроявления

Алымская свита

1967

1981

Нефтепроявления

Возникновение депрессии на продуктивные пласты

Ванденская свита

1981

2114

1.3 Конструкция скважины

Принимая во внимание геологические особенности разреза, а также проектируемый комплекс исследований предусматривается следующая конструкция скважины: Направление. Бурение производится долотом диаметром 393,7м. Направление диаметром 324 мм спускается на глубину 50 м для крепления устья скважины и предотвращения размыва и осыпания современных образований. Цементируется до устья. Марка цемента ПЦТ1-50, удельный вес цементного раствора 1,85 г/см3. Кондуктор. Бурение производится долотом диаметром 295,3м. Кондуктор диаметром 245 мм спускается до глубины 790м с целью обеспечения надежного перекрытия неустойчивых, склонных к обвалообразованию пород. Ввиду возможных нефтеводопроявлений при дальнейшем углублении скважины на кондукторе устанавливается противовыбросовое оборудование. Глубина спуска кондуктора, рассчитана из условия предотвращения разрыва горных пород после полного замещения бурового раствора в скважине пластовым флюидом и герметизации устья скважины. Цементируется раствором портландцемента удельным весом 1,85±3 г/см3 . Эксплуатационная колонна. Бурение производится долотом диаметром 215,9м. Эксплуатационная колонна диаметром 146 мм спускается до глубины 2109 м. (по стволу). Назначение эксплуатационной колонны - крепление стенок скважины, разобщение проницаемых горизонтов и проведение опробования пластов в запроектированных интервалах, высота подъема цементного раствора с перекрытием не менее на 150м выше башмака кондуктора. Цементируется лёгким цементом ПЦТ1-50 удельным весом 1,225±25. 324 245 146

1.4 Выбор и обоснование вида промывочной жидкости по интервалам бурения

Глинистый раствор обеспечивает:

1) закрепление стенок скважины в результате образования тонкой глинистой корки

2) предупреждение оседания шлама на забой при прекращении циркуляции

3) устранение потерь циркуляции в пористых и трещиноватых породах.

К недостаткам глинистых растворов можно отнести их неустойчивость к воздействию электролитов содержащихся в пластовой воде и воде, на которой приготовлен раствор, а также частиц разбуриваемых пород. Бурение под направление(50м) начинается на свежеприготовленном глинистом растворе. Предусматривается бурение под направление на растворе, оставшемся от бурения предыдущей скважины. При бурении под направление для снижения фильтратоотдачи и увеличения вязкости глинистый раствор обрабатывается реагентами КМЦ, Унифлок и Каустической содой.

При бурении под кондуктор(50-790м) проходят сквозь, рыхлых песчаников и неустойчивых глинистых отложений. В связи с этим требуется решать следующие основные проблемы: укрепление стенок скважины, уменьшение расцепляющего действия бурового раствора, увеличение выносной способности бурового раствора при относительно невысокой скорости восходящего потока. Данные задачи решаются с использованием глинистых буровых растворов с высоким содержанием активной глинистой фазы, высокоэффективных полимеров - структурообразователей, и применением химических реагентов флоккулирующей направленности, поддержанием низкой температуры. Для бурения под кондуктор проектом предусматривается буровой раствор, приготовленный из бентонитового глинопорошка, обработанный химическими реагентами.

При бурении под кондуктор в Западной Сибири для обработки бурового раствора применяют КМЦ и высокомолекулярные синтетические акриловые полимеры (гипан, унифлок, и др.). Поскольку акриловые полимеры, ингибируют буровой раствор и глинистые отложения разреза, благодаря чему обеспечивают ровный ствол скважины и бурение без осложнений. КМЦ является основным реагентом для поддержания низкой водоотдачи раствора и обеспечения тонкой корки. С помощью каустической соды здесь поддерживается нужный уровень рН.

При бурении под эксплуатационную колонну(790-2109м) основные осложнения, которые встречаются, следующие: это поглощения бурового раствора и водопроявления при прохождении отложений сеномана, предупреждение прихвата бурильного инструмента при прохождении через проницаемые пласты скважины, осыпи обвалы в интервалах Березовской - Алымской свит. И основная задача-это сохранение коллекторских свойств продуктивных пластов.

При бурении под эксплуатационную колонну основные проблемы, которые требуется решать, следующие:

1) предупреждение осыпей и обвалов отложений березовской свиты;

2) предупреждение поглощения раствора и водопроявлений

3)предупреждение прихвата бурильного инструмента при прохождении через проницаемые пласты;

4) главная проблема - это обеспечить максимально возможную степень сохранения коллекторских свойств, продуктивных пластов.

Бурение из-под кондуктора начинается с промывкой забоя буровым раствором, обработанным химическими реагентами (структурообразователи, разжижители и т.п.) с последующей наработкой естественного глинистого раствора за счет выбуренной породы.

Глинистый раствор для первичного вскрытия нефтяного пласта представляет собой суспензию высокоактивной бентонитовой глины, с добавлением мела, обработанную кальцинированной содой, смазочными добавками и ПАВ, обладающим способностью понижать поверхностное натяжение фильтрата и гидрофобизировать поверхность поровых каналов пласта-коллектора. В качестве понизителя фильтрации используется КМЦ и унифлок.

Перед вскрытием продуктивного пласта производят замещение глинистого бурового раствора на малоглинистый полимерный «Порофлок». Основные требования к буровому раствору на водной основе для первичного вскрытия продуктивных пластов, следующие:

- репрессия на пласт от гидростатического давления столба бурового раствора должна быть минимальной

- импульсы гидродинамического давления при спускоподъемных операциях и возобновлении циркуляции раствора должны быть также минимальные. Это достигается, при прочих равных условиях, при низкой пластической вязкости раствора, низких значениях СНС и невысоких значениях динамического напряжения сдвига (ДНС). Запрещается допускать высокие значения СНС10 и предельного динамического напряжения сдвига с целью предупреждения возникновения высоких импульсов давления и больших гидравлических потерь. Низкая пластическая вязкость обеспечивается малым содержанием наработанной твердой фазы в растворе, т.е. выбуренная порода не должна переходить в раствор, иными словами, должно быть обеспечено ингибирование системы и должна быть организована хорошая очистка раствора от выбуренной породы. Параметры СНС и ДНС регулируются типом и концентрацией реагента структурообразователя и реагента понизителя вязкости наряду с регулированием содержания твёрдой фазы;

- раствор должен иметь низкую фильтратоотдачу и формировать тонкую корку на стенках скважины;

- фильтрат раствора должен иметь низкое поверхностное натяжение на границе с пластовой нефтью и обладать обратимой гидрофобизирующей способностью по отношению к поверхности поровых каналов нефтяного пласта;

- время, в течение которого буровой раствор находится в контакте с поверхностью нефтяного пласта, должно быть как можно меньше.

При бурении интервала 1981-2114 используется малоглинистый буровой раствор «Порофлок» с кислорастворимым утяжелителем, обработанный полисахаридами и ПАВ-гидрофобизатором и понизителем поверхностного натяжения фильтрата, отвечает практически всем требованиям, которые предъявляются к буровым растворам для первичного вскрытия продуктивных пластов с сохранением их фильтрационно-емкостных свойств.

Процесс замещения раствора в скважине должен производиться непрерывно до выхода раствора «Порофлок» на устье. Далее, после освобождения и чистки от глинистого раствора емкостей, входящих в циркуляционную систему, продолжить бурение на растворе «Порофлок».

В процессе бурения контролируются свойства раствора. При необходимости производят обработку раствора понизителями водоотдачи. Для этого в буровой раствор добавляют унифлок или КМЦ в виде водных растворов.

В процессе бурения скважины в продуктивном интервале используют трехступенчатую систему очистки бурового раствора, отключая центрифуги, чтобы избежать удаления из раствора частиц мела.

Отработанный полимерный раствор откачивают в дополнительные емкости для повторного использования при вскрытии продуктивных пластов в следующих скважинах куста и для бурения скважины под кондуктор.

В состав раствора входят:

- в качестве загустителей и понизителей фильтрации водорастворимые полимеры Унифлок и карбоксиметилцеллюлоза;

в качестве структурообразователя - бентонит;

в качестве утяжелителя и кислоторастворимого кольматанта - мел. Для стабилизации и снижения водоотдачи в раствор дополнительно вводится КССБ. Регулирование рН и связывание ионов кальция осуществляется добавками кальцинированной соды. При необходимости для пеногашения используется пеногаситель. Приготовление раствора «Порофлок» начинают за двое суток до вскрытия продуктивного пласта, с тем, чтобы к началу вскрытия пластов необходимый его объем с требуемыми свойствами был готов к использованию. Удельное электрическое сопротивление раствора равно 0,6-1,4 Ом . м, что меньше удельного электрического сопротивления глинистого раствора (1,0-2,8 Ом . м).

1.5 Выбор и расчёт параметров промывочной жидкости по интервалам скважины в зависимости от геологических условий

Выбор плотности промывочной жидкости

· Плотность бурового раствора при вскрытии газонефтеводонасыщенных пластов должна определяться для горизонта с максимальным градиентом пластового давления в интервале совместимых условий в соответствии с п. 2.7.3.3 «Правил безопасности в НГП».

· Не допускается превышение плотности бурового раствора (освобожденного от газа), находящегося в циркуляции, более чем на 0,02 г/см3 от установленной проектом.

· В процессе бурения и промывки скважины свойства бурового раствора должны контролироваться с периодичностью, установленной буровым предприятием для данной площади.

· При вскрытии газоносного горизонта и дальнейшим углублением скважины должен производиться контроль бурового раствора на газонасыщенность.

· Если объемное содержание газа в растворе превышает 5 %, то должны приниматься меры по его дегазации, выявлению причин насыщения раствора газом и их устранению.

· Для контроля загазованности должны производиться замеры воздушной среды у ротора, блока приготовления раствора, вибросит и в насосном помещении, а при появлении загазованности приниматься меры по ее устранению.

· Повышение плотности бурового раствора, находящегося в скважине, путем закачивания отдельных порций утяжеленного раствора запрещается.

· Очистка бурового раствора от выбуренной породы и газа должна осуществляться комплексом средств, предусмотренных проектом на строительство скважины.

· Рецептура и методика приготовления, обработки, утяжеления и очистки бурового раствора контролируется лабораторией бурового предприятия на основании регламентов.

· На буровой должна быть мерная емкость для контролируемого долива скважины, оборудованная уровнемером. Геометрия емкости и шкала ее градуировки должны обеспечивать возможность сопоставления объема вытесняемого при спуске и доливаемого при подъеме бурильных труб из скважины.

· Объем циркуляционной системы зависит от класса БУ и согласно ГОСТ 16293-89 (СТСЭВ 2446-88) составляет не менее двух объемов скважины.

Выбор плотности при бурении осуществляется из условия создания противодавления на пласт.

, кг/м3

где k - коэффициент превышения давления бурового раствора в скважине в зависимости от глубины;

Pпл - пластовое давление, МПа;

g - ускорение силы тяжести, равное 9,81;

Ln - глубина залегания кровли пласта.

Интервал 0-790м

Плотность-1,16 г/см3

Вязкость- 55-60 с

Фильтрация-8-9 смі/30мин

СНС 1мин-15, 10мин-35 мг/смІ

Интервал 790-932м

Плотность-1,08 г/см3

Вязкость- 18-20 с

Фильтрация-7-8 смі/30мин

СНС 1мин-8-10, 10мин-12-20 мг/смІ

Интервал 932-1981м

Плотность-1,10 г/см3

Вязкость- 22-25 с.

Фильтрация-6-7 смі/30мин

СНС 1мин-8-10, 10мин-12-20 мг/смІ

Интервал 1981-2114м

Плотность - 1,08 г/см3

Вязкость - 24-50 с.

Фильтрация - 3-5 смі/30мин

СНС 1мин - 5-10, 10мин - 10-20 мг/смІ

2. Выбор растворов по интервалам бурения скважин

2.1 Анализ используемых в УБР буровых растворов

С точки зрения бурового предприятия данная гамма буровых растворов подобрана вполне правильно и целесообразно. При проводке основного ствола скважины используется глинистый водный раствор. Он удовлетворяет общепринятым требованиям при бурении: обеспечивает необходимую репрессию на пласт, поддерживает гидростатическое давление в скважине, очищает забой от шлама и т.д.

Основой в глинистом растворе является куганакский глинопорошок. Он применяется для структурообразования и увеличения плотности промывочной жидкости.

Кальцинированная сода - порошок марки Б или I-III сортов (при изготовлении из нефелинового сырья). Добавляется в промывочную жидкость в сухом виде или в виде водного раствора 5-10 %-ной концентрации. Сильная щелочь. Применяется при модификации глинопорошков и баритового утяжелителя. Поставка в мешках массой 40-50 кг. Гарантийный срок годности 3-6 мес (зависит от завода-изготовителя). Вводится для повышения устойчивости стенок скважины и связи ионов Ca+ и Mg+ в процессе бурения.

Хлористый кальций - применяется для регулирования СНС. Порошок, чешуйки или гранулы; типы - кальцинированный, плавленый или жидкий. Добавляется в промывочную жидкость в товарном виде или в виде 30-50%-ного водного раствора. Величина добавки 0,1-10%, зависит от типа применяемой промывочной жидкости. Неприменим в калиевых растворах. Поставляется в стальных барабанах массой 100-150 кг, полиэтиленовых мешках массой 50 кг, контейнерах МК2-1,5, или специальных железнодорожных цистернах. Срок годности не ограничен.

Celpol-RX(SL) - экспериментальный импортный реагент вводится для понижения водоотдачи.

Графит - смазочная добавка. Порошок марок ГС-1, ГС-2, ГС-3 и ГС-4, применяется совместно с нефтью (СМАД-1) или отработавшим маслом в количестве 1-2%. Поставка в мешках массой 40 кг. Срок хранения не ограничен.

Т-66, Т-80 - флотореагенты, жидкость плотностью 1,02-1,05 г/см3, добавляются в промывочную жидкость в виде водного раствора 50%-ной концентрации. Применяются как стабилизаторы в соленасыщенных промывочных жидкостях, пеногасители и поглотители сероводорода. Величина добавки 0,5-1% (в пересчете на товарный продукт). Пожароопасны, при добавке 10% воды не горят. Поставки в железнодорожных цистернах. Срок хранения не ограничен.

Хлористый калий или хлоркалий-электролит - ингибитор диспергации глины. Повышает устойчивость раствора к воздействию солей, устойчивость горных пород, а также улучшается качество вскрытия пласта. Порошок (гранулы, кристаллы) или куски различного размера. Добавляется в промывочную жидкость в товарном виде. Величина добавки 1-7%, зависит от типа и влажности разбуриваемых глинистых пород и типа промывочной жидкости. Поставляется в мешках массой 40-50 кг или навалом в крытых вагонах. Гарантийный срок годности 6-12 мес.

ДСБ-4ТМП - смазочная добавка.

НТФ - нитрилтриметил фосфоновая кислота. Понизитель вязкости.

ФХЛС - феррохромлигносульфонат. Понизитель вязкости. Порошок, добавляемый в промывочную жидкость с pH=8,5-9,5 в сухом виде или в виде водного раствора 30-40%-ной концентрации. Величина добавки 2-3% (в пересчете на товарное вещество). Сильно вспенивает. Поставка в мешках массой 40 кг. Гарантия 12 мес.

2.2 Обоснование выбора типа растворов по интервалам бурения

Основной исходный раствор - глинистый буровой раствор для первого интервала бурения. Данный тип раствора вполне приемлем для бурения данной площади. Если в процессе бурения корректно регулировать свойства (=1,14-1,16 г/см3, УВ=60-80 с, ПФ=5-6 см3/30 мин, СНС=15,25(20,35)мгс/см2, pH=8-8,5) бурового раствора, то на этом растворе можно бурить до глубины 1515 м. Осложнения в этом разрезе не серьезные, если не отклоняться от параметров бурового раствора по ГТН.

Для бурения нижележащего интервала следует перейти на ингибированный раствор, так как в интервале 1515-2500 м предположительно может наблюдаться сужение ствола скважины вследствие разбухания глин. На этом интервале не стоит использовать РУО, так как их применение может оказаться не целесообразным. А осложнения, связанные с литологией, легко ликвидировать, придерживаясь технологии бурения и обработки бурового раствора. скважина геологический буровой

Данные растворы грамотно подобраны и оправдывают себя, ввиду того что затраты на химреагенты минимальны, не нужны дополнительные емкости (исходный раствор - основа, при бурении нижележащих интервалов добавляются только различные присадки).

2.3 Обоснование параметров буровых растворов

В связи с опасностью проявления, строго нормируется плотность бурового раствора, остальные параметры проектируются, исходя из имеющихся научных знаний и опыта промыслового бурения.

Интервалы 1,2,3 совместимы по условиям бурения.

(1)

гдеPПЛ - пластовое давление, Па,

KП - коэффициент превышения гидростатического давления бурового раствора над пластовым давлением, при H=1200-2500 м KП=1,05-1,1,

g - ускорение свободного падения, g=9,81 м/с2,

H - глубина залегания кровли горизонта с максимальным градиентом пластового давления, м;

Предварительные значения параметров буровых растворов

Условия

бурения

Значения параметров

,кг/м3

ПФ, см3/30 мин

P1, Па

УВ, с

, мПас

0, Па

СП, %

k

pH

,

кг/м3

Нормальные

1208

5-6

15-20

60-80

6

7

1,5

0,2

8

20

Осложненные

1082

5

5

25-30

35

15

1,0

0,3

9

60

2.4 Обоснование рецептур буровых растворов

В интервалах бурения 1,2,3,4 необходимо предварительно заменить реагент Celpol -RX (SL) на аналогичный по свойствам отечественный - гивпан. А при вскрытии продуктивного пласта вместо двух реагентов - понизителей вязкости использовать один экспериментальный реагент: ЛСТП - лигносульфанат технический порошковый. Это сэкономит средства на строительство скважины.

Технологическая карта поинтервальной обработки растворов при бурении скважин на Лугинецком месторождении.

Интервал бурения, м

Наименование компонента раствора

Цель его применения

Норма расхода, %

1

2

3

4

0-30

глинопорошок

кальцинированная сода

хлористый кальций (CaCl2)

гивпан

плотность, структура

повышение устойчивости стенок скважины

регулирование СНС

понизитель водоотдачи

25

3

10

5

30-524

-----«»---«»----

графит

-------«»--------«»-----

смазочная добавка

--«»--

10

524-1515

-----«»---«»----

-------«»--------«»-----

--«»--

1

2

3

4

1515-2500

глинопорошок

кальцинированная сода

Т-66, Т-80

гивпан

KCl

ЛСТП

плотность, структура

повышение устойчивости стенок скважины

стабилизатор, пеногаситель, поглотитель H2S

понизитель водоотдачи

ингибитор диспергации глины

понизитель вязкости

25

3

1-1,5

2

70

1-2

Примечание: остальное - вода

3. Уточнение рецептур буровых растворов

3.1 Постановка задачи

Объектом исследования является интервал бурения на хлоркалиевом растворе (1515-2500 м). Исходный буровой раствор представлен в таблице 15.

Исходный буровой раствор

Название (тип)

раствора

Название компонента в порядке ввода

, г/см3

БР, г/см3

УВ, с

ПФ, см3/30мин

СНС, мгс/см2 через, мин

pH

1

10

Гл. раствор

куганакский глинопорошок

кальцинированная сода

CaCl2

гивпан

2,4

2,5

1,28

1,1

1,2

60-80

5-6

15

25

8-8,5

Параметры бурового раствора после химической обработки приведены в таблице.

Необходимый буровой раствор

Название (тип)

раствора

Название компонента в порядке ввода

, г/см3

БР, г/см3

УВ, с

ПФ, см3/30 мин

СНС, мгс/см2 через, мин

pH

1

10

Хлоркалиевый раствор

глинопорошок

KCl

Т-66,

ЛСТП

Ca сода

CaCl2

гивпан

2,4

1,99

1,2

-

2,5

1,28

1,1

1,082

25-30

5

5

10

9

Средствами регулирования являются химреагенты: гивпан, Т-66, ЛСТП.

Планирование и реализация эксперимента включает следующие основные этапы:

- разработка матрицы планированного эксперимента;

- выполнение лабораторных экспериментов;

- обработка результатов опытов.

3.2 Разработка матрицы планированного эксперимента

Выбираем факторы и уровни их варьирования. Факторами являются химреагенты, а уровнями варьирования - их концентрации.

Применение плана типа 2K рассмотрим на примере исследования влияния трех химических реагентов: гипан, Т-66, ЛСТП, на показатель фильтрации буровых растворов.

Гипан: 3-6%; Т-66: 1-1,5%; ЛСТП: 2-5%.

По формуле (2) рассчитывается основной уровень, где i - номер фактора.

(2)

По формуле (3) рассчитывается интервал варьирования.

(3)

Для математического описания влияния трех химических реагентов на свойства бурового раствора используемая модель первого порядка имеет вид:

(4)

Рассчитанные значения выбранных уровней (нижний и верхний уровни концентрации реагентов в растворе) варьируемых факторов (трех химических реагентов) заносятся в таблицу.

Значения варьируемых факторов

Уровни варьируемых факторов

Кодовое обозначение

Гипан, %

ЛСТП, %

Т-66, %

X1

X2

X3

Основной уровень

0

4,5

3,5

1,25

Интервал варьирования

Xi

1,5

1,5

0,25

Верхний уровень

+1

6

4

3

Нижний уровень

-1

3

1

2,5

Матрица планирования эксперимента с расчетными столбцами взаимодействия факторов представлена в таблице.

Матрица планированного эксперимента

Номер опыта

X0

X1

X2

X3

X1X2

X1X3

X2X3

X1X2X3

1

+1

-1

-1

-1

+1

+1

+1

-1

2

+1

+1

-1

-1

-1

-1

+1

+1

3

+1

-1

+1

-1

-1

+1

-1

+1

4

+1

+1

+1

-1

+1

-1

-1

-1

5

+1

-1

-1

+1

+1

-1

-1

+1

6

+1

+1

-1

+1

-1

+1

-1

-1

7

+1

-1

+1

+1

-1

-1

+1

-1

8

+1

+1

+1

+1

+1

+1

+1

+1

3.3 Результаты опытов и их обработка

Результаты восьми опытов вносим в таблицу.

Проверка однородности дисперсий проводится с целью принятия решения о возможности их использования для регрессионного анализа путем сравнения значений расчетного (Gp) и табличного (GT) критериев Кохрена. Если GT >GP, то гипотеза об однородности дисперсии принимается.

Расчетное значение критерия Кохрена определяется по формуле:

(5)

гдеSu2 -дисперсия параллельных опытов,

N - количество опытов,

u - порядковый номер опыта.

Дисперсию параллельных опытов определяем по формуле:

(6)

гдеr - число параллельных опытов,

v - порядковый номер повторного опыта,

yuv - значения параметров оптимизации в повторных опытах,

yu - среднеарифметическое значение параметров оптимизации.

Определим расчетное и табличное значение критерия Кохрена.

GT выбираем из таблицы 7 [1] при числе степеней свободы f1=r-1 и f2=N, т.е. f1=3-1 и f2=8, и заданном уровне значимости p=0,05.

В нашем случае GT=0,51. Так как GT >GP, гипотеза об однородности дисперсии принимается.

Результаты испытаний и расчета дисперсий опытов

Номер опыта

Показатель фильтрации, см3/30 мин

Yuv-Yu

(Yuv-Yu )2

Su2

Yu1

Yu2

Yu3

Yu

Yu1-Yu

Yu2-Yu

Yu3-Yu

(Yu1-Yu)2

(Yu2-Yu)2

(Yu3-Yu)2

1

15

17

18

16,7

-1,7

+0,3

+1,3

2,89

0,09

1,69

2,34

2

10

12

11

11

-1

+1

0

1

1

0

1

3

12

11

13

12

0

-1

+1

0

1

1

1

4

10

12

9

10,3

-0,3

+1,7

-1,3

0,09

2,89

1,69

2,34

5

10

9

11

10

0

-1

+1

0

1

1

1

6

8

9

11

9,3

-1,3

-0,3

+1,7

1,69

0,09

2,89

2,34

7

7

9

10

8,7

-1,7

+0,3

+1,3

2,89

0,09

1,69

2,34

8

5

8

6

6,3

-1,3

+1,7

-0,3

1,69

2,89

0,09

2,34

84,3

14,7

Коэффициенты уравнения регрессии рассчитаем по формулам

После всех расчетов уравнение (4) примет вид:

(7)

Статистическая значимость коэффициентов уравнения (7) проверяется по условию bi2bi, где 2bi - доверительный интервал. Если это условие выполняется, то коэффициенты незначимы и члены уравнения (bi) с незначимыми коэффициентами отбрасываются.

Граница доверительного интервала определяется по формуле:

гдеtkp - критическое значение критерия Стьюдента,

S(bi) - средняя квадратичная ошибка коэффициентов уравнения регрессии.

гдеS(y) - ошибка эксперимента,

гдеS2(y) - дисперсия воспроизводимости, определяемая по формуле:

Для полнофакторного эксперимента ошибки всех коэффициентов равны между собой.

Критическое значение критерия Стьюдента выбирается по таблице 8 [1] в зависимости от числа степеней свободы f=8(3-1)=16 и заданного уровня значимости p=0,05 (tkp=2,12).

Тогда: bi=2,120,28=0,59 и 2bi=1,18.

Следовательно, коэффициенты b12, b13, b23, b123 статистически не значимы и уравнение (7) примет вид:

(8)

Гипотеза об адекватности уравнения регрессии проверяется по условию:

FpFT, где

Fp,FT - расчетное и табличное значения критерия Фишера.

Расчетное значение Fp определяется по формуле:

гдеSад2 - дисперсия адекватности, определяемая по формуле:

(9)

где - количество значимых коэффициентов уравнения регрессии,

yu - расчетное значение параметра оптимизации для каждого опыта.

Для составления таблицы в уравнение (8) подставляем для каждого опыта значения X1, X2, X3 из таблицы 18 и подсчитываем значения yu.

Расчетные и экспериментальные значения параметра оптимизации

Номер опыта

Yu

Yu

Yu -Yu

(Yu -Yu)2

1

16,7

15

+1,7

2,89

2

11

12,4

-1,4

1,96

3

12

12,6

-0,6

0,36

4

10,3

10

-0,3

0,09

5

10

11,08

-1,08

1,16

6

9,3

8,48

+0,82

0,67

7

8,7

8,68

+0,02

0,0004

8

6,3

6,08

+0,22

0,048

7,1784

Определим расчетное значение критерия Фишера:

Табличное значение критерия Фишера определяется для соответствующих степеней свободы: fад=N-; fE=N(r-1) и принятого уровня значимости p=0,05 из таблицы 10 [1].

Fт=3,0 для fад=4; fE=16. Fp <FT=3,0, следовательно уравнения (7) и (8) адекватны.

3.4 Определение оптимальной концентрации реагентов

Для определения оптимальных концентраций химреагентов перейдем от кодированных значений переменных уравнений (7) и (8) к натуральным значениям, используя формулу:

(10)

гдеXi - кодовое значение i-го фактора,

xi - натуральное текущее значение i-го фактора,

xi0 - начальный уровень фактора,

xi - интервал варьирования i-го фактора.

Соответствующие значения переменных подставим в (8):

(11)

Уточненные концентрации химреагентов определяют из уравнения (11), задаваясь требуемым значением выходного показателя и минимальными значениями концентраций наиболее дефицитных или дорогих реагентов.

Определим концентрацию гипана при [ПФ30]=4 см3, гипан x1=3%, ЛСТП x2=2,0%.

4=17,04-0,4333 - 1,952-1,96 x3,

x1=5%x2=1%x3=3%

На заключительном этапе эксперимента приготовили раствор 0,5 л по уточненной рецептуре с вводом всех проектных добавок (использовался экспериментальный пеногаситель «Триксан»).

Параметры полученного раствора:

=1,09 г/см3,

УВ=24 с,

ПФ=7 см3/30 мин,

РН=8,

СНС1/10=10/17 мгс/см2.

Данный раствор по показателям плотности, условной вязкости и pH удовлетворяет принятым нормам. Для понижения показателя фильтрации на 2-3 единицы необходимо увеличить концентрацию гипана на 1-2%. А для снижения СНС необходимо увеличить концентрацию кальцинированной соды.

4. Определение потребного количества растворов, расхода компонентов по интервалам бурения

Определим потребное количество бурового раствора V, для бурения скважины.

(12)

где VП - объем приемных емкостей, буровых насосов и желобов, VП=50 м3,

a - коэффициент запаса бурового раствора, a=1,5,

VС - объем скважины в конце интервала бурения с промывкой данным раствором,

VБ - объем бурового раствора, расходуемого в процессе бурения интервала при поглощениях, очистке от шлама и т. д.

(13)

гдеDi - диаметры скважины по интервалам бурения, [ 2 ]

li - длины интервалов скважины постоянного диаметра.

(14)

Где ni - нормы расхода бурового раствора на 1 м проходки по интервалам бурения.

Тогда количество бурового раствора, потребного для бурения скважины будет равно:

Количество глинпорошка определяется по формуле:

(15)

где qг - количество глинпорошка, необходимое для приготовления 1 м3 глинистого раствора.

(16)

где Г - плотность сухого глинпорошка, Г=2,4 г/см3,

В - плотность воды, взятой для приготовления бурового раствора, В=1,0 г/см3,

Р - плотность бурового раствора, Р=1,1 г/см3,

m - влажность глинпорошка, m=0,07.

Количество воды для приготовления бурового раствора определяется по формуле:

(17)

гдеqВ - количество воды для приготовления 1 м3 бурового раствора.

(18)

Полученные данные для наглядности сведем в таблицу.

От

До

Di, мм

Li, м

VС, м3

VБ, м3

V, м3

qг, кг/м3

QГ, м3

qВ, кг/

м3

QВ, м3

1

0

30

393,7

30

3,66

3,65

59,14

183

10823

915

54,1

2

30

500

295,3

470

32,12

32,1

80,28

-

73,5

3

500

2500

215,9

2000

73,29

73,2

183,14

-

167,6

2500

109,07

108,95

322,6

10823

295,2

5. Приготовление буровых растворов

5.1 Технология приготовления бурового раствора

Процесс приготовления бурового раствора включает в себя три технологические операции:

а) приготовление исходного раствора;

б) обработка его реагентами для обеспечения требуемых параметров;

в) обеспечение требуемой плотности в случае разбуривания пластов с аномальным давлением.

Исходный раствор готовится по требуемой плотности смешением дисперсной среды (вода) и дисперсной фазы (глинопорошок).

Технология обработки раствора реагентамидолжна предусматривать очередность и способ ввода реагентов. Их дозирование и время перемешивания предусмотренными техническими средствами, контроль параметров должны производиться согласно регламенту.

5.2 Выбор оборудования для приготовления буровых растворов

В современных условиях бурения для приготовления бурового раствора используется следующее оборудование: блок приготовления растворов БПР-70 с выносными гидроэжекторными смесителями и загрузочными воронками, емкости циркуляционной системы с гидравлическими и механическими перемешивателями, диспергатор, насосы.

В таблице приведен состав оборудования для приготовления и очистки бурового раствора, применяемый в УУБР.

Оборудование для приготовления и очистки бурового раствора

Название

Типоразмер или шифр

Количество, шт

Показатель

Блок очистки

Вибросито

СВ-1л

2

Общая площадь раб. поверхности 2,4-4,8 м3

Илоотделитель гидроциклонный

ИГ-45М

1

Пропускная способность - 45 л/с

Размер удаляемых на 95% частиц плотностью 2,6 г/см3 - 0,08 мм

Допустимые потери раствора - 2%

Центрифуга

СГШ-500

1

Нет данных

Дегазатор

ДВС-2

1

Пропускная способность - 55 л/с

Допустимое остаточное газосодержание в растворе - 2%

Насос шламовый

6Ш8

2

Нет данных

Насос водяной

1,5К6

1

Нет данных

Емкость

-

1

10 м3

Емкостный блок

Емкость приемная

-

2

40 м3

Перемешиватели механические

-

4

Частота вращения лопастного вала - 45-90 об/мин

Емкость долива

-

1

Емкость - 15 м3

Глиномешалка

МГ2-4Х

1

Нет данных

Гидромешалка

-

1

Емкость - 30 м3

Емкость водяная

-

1

Емкость - 8 м3

Емкость дозировочная

-

1

Емкость - 0,2 м3

Емкость доливная

-

1

Емкость - 50 м3

Емкость для раствора

-

1

Емкость - 50 м3

В растворном узле кран поворотный

8КП-2

1

Нет данных

6. Управление свойствами растворов в процессе бурения скважин

В процессе бурения скважин параметры буровых растворов выходят за пределы регламентированных значений в связи с поступлением шлама, пластовых флюидов и т. д. Это приводит к дестабилизации промывочной жидкости.

Такого негативного влияния необходимо избегать. Это достигается путем:

– периодического контроля параметров бурового раствора;

– выбора технологии и средств очистки бурового раствора;

– выбора средств повторных химических обработок раствора.

6.1 Контроль параметров буровых растворов

Показатели свойств бурового раствора не реже одного раза в неделю должны контролироваться лабораторией бурового предприятия с выдачей буровому мастеру результатов и рекомендаций по приведению параметров раствора к указанным в проекте.

Перед и после вскрытия пластов с АВПД, при возобновлении промывки скважины после СПО, геофизических исследований, ремонтных работ и простоев, необходимо начинать контроль плотности и вязкости. Контроль газосодержания в буровом растворе следует начинать сразу после восстановления циркуляции.

При вскрытии газоносных горизонтов и дальнейшем углублении скважины (до спуска очередной обсадной колонны) должен проводиться контроль бурового раствора на газонасыщенность.

В данном случае можно руководствоваться таблицей.

Периодичность контроля параметров бурового раствора

Параметр

Частота измерений параметров

Неосложненное бурение

Бурение в осложненных условиях

При начавшихся осложнениях или выравнивании раствора

Плотность, УВ

Через 1 ч

Через 0,5 ч

Через 5-10 мин

ПФ

1-2 раза в смену

2 раза в смену

Через 1 ч

СНС

1-2 раза в смену

2 раза в смену

Через 1 ч

Температура

-

2 раза в смену

Через 2 ч

Содержание песка

2 раза в смену

2 раза в смену

-

6.2 Технология и средства очистки буровых растворов

При выборе оборудования для очистки необходимо учитывать нормы на технологические параметры по ступеням очистки - таблица.

Нормы на технологические параметры по ступеням очистки

На первой ступени (сито ВС-1)

Подача раствора, л/с не более

90,0

Потери раствора, % не более

0,5

На второй ступени (ПГ-50)

Подача раствора в один гидроциклон, л/с не более

12,0

Давление на входе гидроциклона, МПа не менее

0,25

Потери раствора, % не более

1,5

На третьей ступени (ИГ-45)

Подача раствора в один гидроциклон, л/с не более

3,0

Давление на входе гидроциклона, МПа не менее

0,28

Потери раствора, % не более

2,0

Очистка бурового раствора от выбуренной породы и газа должна осуществляться комплексом средств, в последовательности: скважина - блок грубой очистки (вибросито) - дегазатор - блок тонкой очистки (пескоотделитель и илоотделитель) - блок регулирования твердой фазы (гидроциклоны, центрифуга).

6.3 Управление свойствами буровых растворов

Все разработанные мероприятия по управлению свойствами растворов представлены в таблице.

Мероприятия по управлению свойствами растворов по интервалам бурения

Интервал, м

Отрицательные факторы

Цель управления

Мероприятия по управлению свойствами растворов

1

2

3

4

0-460

Поглощения

Уменьшение плотности

Довести показатели до проектных, ввод наполнителей, возможно разбавление водой

0-460

Интенсивные осыпи и обвалы

регулирование СНС

добавить гипан, кальцинированную соду

1

2

3

4

0-460

Прихваты

Очистка бурового раствора

Необходимо сменить сетки на ВС, или внедрить дополнительный блок очистки

835-1515

Водопроявления

Деминерализация раствора

Регулирование плотности, добавление антикоррозийных присадок

1515-2500

Сужение ствола скважины

Снижение образования глинистой корки

Довести ПФ до проектного добавлением понизителей водоотдачи (КМЦ, гипан и т.д.)

7. Мероприятия по санитарно-экологической безопасности применения буровых растворов

Строительство скважин связано с использованием земельных отводов и сопровождается неизбежным техногенным воздействием на объекты природной среды. Для устранения отрицательного влияния процессов строительства скважин на природную среду предусматривается комплекс мероприятий, направленных на ее охрану и восстановление. Эти мероприятия соблюдают основные правила экологически безопасного ведения буровых работ на всех этапах строительства скважин, включая проведение подготовительных и вышкомонтажных работ, бурение, испытание, а также консервацию скважин, контроль за состоянием окружающей среды. Мероприятия направлены на охрану водных ресурсов, атмосферного воздуха, почвы, биосферы, недр и восстановление природно-ландшафтных комплексов.

Основным руководящим документом является «Инструкция по охране окружающей среды при строительстве скважин на нефть и газ на суше» РД 39-133-94, а также действующие нормативно-справочные и инструктивно-методические материалы по охране окружающей среды.

7.1 Охрана окружающей среды и недр

Наука, изучающая условия существования живых организмов, их взаимосвязь между собой и средой обитания, называется экологией (с греч. экое - дом, логос - наука). Взаимодействие человека и природы должно полнее удовлетворять потребности общества в природных ресурсах, а также обеспечивать всемерное восстановление ресурсов. Необходимо осуществлять восполнение и охрану природы, как живой - флоры и фауны, так и неживой - атмосферы. Также гидросфера (поверхностные и подземные водные объекты), литосфера (земли, почва, недра), подвергается негативному воздействию в результате строительства, эксплуатации и ликвидации скважин. При этом основными источниками загрязнения окружающей среды и недр являются, прежде всего, отходы бурения: буровой шлам, буровые сточные воды, отработанные буровые растворы и технологические жидкости, материалы и реагенты для приготовления жидкостей, ГСМ, выхлопные газы ДВС, продукты сгорания топлива в котельных установках, использованные тара и упаковка, металлолом.

Одним из важных природоохранных мероприятий при строительстве нефтяных и газовых скважин является повсеместное применение экологически вредных буровых растворов, не оказывающих загрязняющего и токсичного действия на объекты окружающей среды и человека как непосредственно, так и в результате взаимодействия, реакции каких-либо компонентов растворов и среды.

По степени опасности ядовитые вещества по ГОСТ 12.1.605-88 делятся на четыре класса 1 - чрезвычайно опасные; 2 - высокоопасные; 3 - умеренно опасные; 4 - малоопасные.

Наряду с классом опасности вещества характеризуются нормами предельно допустимых концентраций (ПДК) в окружающей среде.

Сведения по указанным характеристикам для некоторых реагентов и буровых растворов приведены в таблице.

Экологические нормативы растворов, шламов, реагентов

Отработанный буровой раствор, реагент

Экологический норматив

Класс опасности

ПДК

В воде, мг/л

В воздухе, мг/м3

1. Буровой раствор на основе гипана

3

5,0

-

2. -------«»----«»---- КМЦ

4

6,4

-

3. -------«»----«»---- К-14

4

8,0

-

4. -------«»----«»---- ФХЛС

4

3,2

-

5. -------«»----«»---- КМЦ, ТПФН

4

-

-

6. Полиминеральный шлам

4

12,5

-

7. Хроматы и бихроматы

1

0,1

0,01

8. Сода каустическая

2

120,0

0,5

9. Сода кальцинированная

3

120,0

2,0

10. Хлористый кальций

4

-

5,0

11. Хлористый калий

3

300,0

5,0

12. Сернокислое железо

3

0,5

-

13. Жидкое стекло

3

-

1,0

14. УЩР

4

500,0

0,5

15. ССБ, КССБ, ФХЛС

4

20,0

0,004

16. КМЦ

4

20,0

10,0

17. ПАА

3

2,0

20,0

18. Гипан

3

6,0

10,0

19. Поли-кем-Д

4

0,0025

-

20. Кем-пас

4

0,0125

-

21. Сырая нефть

3

0,3

-

22. Сульфонол

3

0,1-0,2

-

23. Барит

4

50,0

6,0

24. Т-66

4

0,8

-

Мероприятия по охране окружающей среды и недр при строительстве скважин в конкретном регионе входят в состав технологических регламентов, разрабатываются, как правило, проектными институтами и согласовываются с соответствующими организациями горного и экологического надзора. Ниже приведены некоторые наиболее распространенные рекомендации, используемые при разработке мероприятий по охране окружающей среды и недр

1. Применять малотоксичные рецептуры промывочных жидкостей и технологию управления их свойствами, обеспечивающие сокращение объемов жидких и твердых отходов бурения.

Использовать малоотходную технологию промывки, повторное применение растворов при бурении последующих скважин.

2. Для приготовления, регулирования параметров и очистки буровых растворов территории скважин глинопорошком, химреагентами, буровым раствором, шламом.

3. Для химической обработки использовать реагенты, выпускаемые по ГОСТу или ТУ, поставляемые на буровую в заводской упаковке, полиэтиленовых мешках, резино-кордовых или металлических контейнерах.

4. Запрещается применение химреагентов и материалов, санитарно-токсикологические свойства которых неизвестны.

5. Для предупреждения загрязнения продуктивных пластов технология промывки должна обеспечивать низкий показатель фильтрации в сочетании с минимально допустимой репрессией на пласты.

6. Для уменьшения расхода химреагентов необходимо применять растворы с минимальным содержанием твердой фазы и использовать многофункциональные и синергетические реагенты.

7. Шлам и песок с очистных устройств, а также избыточный буровой раствор отводят в накопитель со специальным гидроизолирующим покрытием, препятствующим фильтрации жидкой фазы в тело насыпи и почвенный грунт.

8. Технология сбора, утилизации и захоронения отводов бурения должна соответствовать «Регламенту на утилизацию и захоронение отходов бурения при строительстве скважин», разработанному применительно к конкретному ремонту работ.

9. Для предупреждения загрязнения недр буровым раствором и его фильтратом, а также исключения гидроразрыва пород, наряду с исключением нерегламентируемых отклонений фактических параметров растворов, необходимо ограничивать скорость спуска инструмента, исключить значительные колебания гидродинамических давлений.

7.2 Охрана труда

Мероприятия по охране труда при строгом их выполнении призваны обеспечить безопасность работ при приготовлении и управлении свойствами буровых растворов.

Перечень некоторых мероприятий по охране труда приведен ниже.

1. Для приготовления бурового раствора и обработки его химическими реагентами должны допускаться лица, прошедшие инструктаж и обучение по безопасному ведению работ.

2. При длительном контакте с буровыми растворами, шламом необходимо проводить профилактические осмотры с оценкой функционального состояния внутренних органов

3. Рабочее место по приготовлению и химобработке буровых растворов должно быть оснащено:

а) средствами индивидуальной защиты (спецодежда в случае необходимости, очки, перчатки, респираторы),

б) аптечкой с медикаментами и перевязочным материалом и растворами: 1%-м раствором борной кислоты; 2% раствором питьевой соды; 0,5% раствором марганцовокислого калия;

в) средствами пожаротушения.

4. При термических ожогах рекомендуется вначале делать примочки из 0,5% раствора марганцовокислого калия или этилового спирта (96%), а затем смазать обожженный участок мазью от ожогов и наложить повязку.

5. При попадании на кожу каустической соды или другой щелочи этот участок тщательно промывается струей воды, обрабатывается 1% раствором борной кислоты и смазывается борным вазелином.

6. При попадании на кожные покровы кислоты участок кожи промывается водой, обрабатывается 2% раствором питьевой соды и смазывается борным вазелином.

7. При попадании щелочи или кислоты в глаза пострадавшему вначале необходимо промыть глаза большим количеством проточной воды, затем 2% раствором питьевой соды (при попадании кислоты) или 1% раствором борной кислоты (при попадании щелочи). После оказания первой помощи пострадавшему необходимо обратиться к врачу.

8. При применении РУО должны быть приняты меры по предупреждению загрязнения рабочих мест и загазованности воздушной среды. Для контроля загазованности должны проводиться замеры воздушной среды у ротора, в БПР, у вибросит и в насосном помещении, а при появлении загазованности - принимать меры по ее устранению. При концентрации паров углеводородов свыше 300мг/м3 работы должны быть приостановлены, люди выведены из опасной зоны.

9. При ингаляционных повреждениях (вдыхания паров аммиака или др.) пострадавшего нужно немедленно вывести на свежий воздух, освободить от стягивающей одежды, создать спокойную обстановку, напоить теплым чаем. В случае необходимости - вызвать врача.

10. По окончании работ с химическими реагентами необходимо:

а) тщательно промыть средства индивидуальной защиты и сложить в строго отведенном месте,

б) вымыть теплой водой с мылом лицо и руки, прополоскать рот.

11. Мероприятия по охране труда и оказание первой медицинской помощи при работе с новыми химическими реагентами, в том числе импортного производства, проводятся в соответствии с сертификатом качества или токсикологическим паспортом.

12. Температура самовоспламенения паров РУО должна на 50С превышать максимально ожидаемую температуру раствора на устье скважины.

Заключение

В результате бурения скважины на нефтегазоносных площадях должен быть создан долговечный, прочный изолированный канал, связывающий продуктивный горизонт с дневной поверхностью. Решающее значение при проводке скважины имеют буровые промывочные растворы. От их способности выполнять свои функции в различных геолого-технических условиях зависит не только эффективность буровых работ, но и срок службы скважины.

Тяжелые осложнения в процессе бурения, а в некоторых случаях и ликвидация скважин, нарушение режима эксплуатации нефтяных и газовых месторождений, связанные со значительным ущербом народному хозяйству, могут быть обусловлены низким качеством буровых растворов, отсутствием надежных методов и средств управления ими. Все это и обусловливает целесообразность затрат на повышение качества этих систем.

С увеличением глубины скважин повышаются температуры и давления, скважина вскрывает горизонты с различными по химической природе флюидами (газ, нефть, пластовая вода), минералогический состав пород также разнообразен, поэтому бурение все больше становится физико-химическим процессом.

Разбуриваемые породы, пластовые воды, высокие температуры и давления отрицательно влияют на свойства буровых растворов. Аналогичное влияние оказывают и гидродинамические эффекты при закачивании и продавливании растворов в скважинах.

В зависимости от конкретных условий свойства этих систем направленно изменяют, вводя в них различные наполнители и обрабатывая химическими реагентами для предотвращения осложнений и оптимизации процесса бурения.

Наибольшее влияние на качество бурового раствора, а также технико-экономические показатели бурения оказывают породы, которые активно взаимодействуют с этими системами. Например, пластичные породы под влиянием фильтрата раствора набухают, теряют устойчивость и, переходя в буровой раствор, существенно ухудшают его качество. Смачивание этим раствором рыхлых пород вызывает их оползание или осыпание в ствол скважины.

Свойства буровых растворов в значительной мере зависят от минерального состава разбуриваемых пород. Солевые породы вследствие легкой растворимости вызывают коагуляцию буровых растворов. Чаще всего эти системы подвергаются натриевой, кальциевой и магниевой агрессии при разбуривании каменной соли, бишофита, гипса и других пород. Отрицательное влияние на свойства буровых растворов оказывают минерализованные пластовые воды и рапа. Под их воздействием буровые растворы коагулируют, их структурно-механические и фильтрационные свойства ухудшаются.

Пластовые воды имеют различный генезис, отличаются солевым составом, содержат растворенный газ и нерастворимые, но гидролитически разлагаемые водой минералы. По преобладающим анионам выделяют воды гидрокарбонатные, сульфатные и хлоридные. В пределах этих классов выделяют воды по преобладающему катиону кальция, магния или натрия. Наиболее минерализованными являются воды, которые находятся в осадочных породах, содержащих известняки, доломиты, гипсы и каменную соль. Минерализация пластовых вод, как правило, возрастает с увеличением глубины и колеблется в широких пределах, достигая 30 г/л и более (рассолы).


Подобные документы

  • Описание содержания и структуры курсовой работы по бурению нефтяных и газовых скважин. Рекомендации и справочные данные для разработки конструкции скважины, выбора режима бурения, расхода промывочной жидкости. Разработка режима цементирования скважины.

    методичка [35,5 K], добавлен 02.12.2010

  • Строительство наклонно-направленной скважины для геологических условий Приобского месторождения. Нормы расхода буровых растворов по интервалам бурения. Рецептуры буровых растворов. Оборудование в циркуляционной системе. Сбор и очистка отходов бурения.

    курсовая работа [64,2 K], добавлен 13.01.2011

  • Основные функции промывочных жидкостей: гидродинамические, гидростатические, коркообразующие и физико-химические. Краткая геологическая характеристика разреза скважины. Особенности технологии бурения. Анализ инженерно-геологических условий бурения.

    курсовая работа [341,4 K], добавлен 21.12.2010

  • Основная характеристика составов горных пород и разрезов скважины. Выбор промывочной жидкости. Расчет реологических свойств буровых растворов, химических материалов и реагентов на основе геологических, промысловых и технологических условий бурения.

    курсовая работа [227,7 K], добавлен 07.12.2012

  • Геологическая характеристика разреза скважины, ее конструкция. Определение количества потребных материалов для приготовления промывочной жидкости с заданными свойствами. Анализ инженерно–геологических условий бурения скважины. Выбор буровой установки.

    курсовая работа [124,5 K], добавлен 05.12.2017

  • Технические средства и технологии бурения скважин. Колонковое бурение: схема, инструмент, конструкция колонковых скважин, буровые установки. Промывка и продувка буровых скважин, типы промывочной жидкости, условия применения, методы измерения свойств.

    курсовая работа [163,3 K], добавлен 24.06.2011

  • Геологический разрез скважины. Литологическая характеристика разреза. Возможные осложнения. Конструкция скважины: направление, кондуктор и эксплуатационная колонна. Выбор и обоснование вида промывочной жидкости по интервалам бурения, расчет ее параметров.

    курсовая работа [35,4 K], добавлен 03.02.2011

  • Анализ используемых на данном месторождении буровых растворов, требования к ним. Обоснование выбора промывочной жидкости по интервалам. Гидравлический расчет промывки скважин в режиме вскрытия продуктивного пласта. Управление свойствами растворов.

    курсовая работа [294,2 K], добавлен 07.10.2015

  • Проектирование конструкции нефтяных скважин: расчет глубины спуска кондуктора и параметров профиля ствола. Выбор оборудования устья скважины, режимов бурения, цементирующих растворов и долот. Технологическая оснастка обсадных и эксплуатационных колонн.

    дипломная работа [2,8 M], добавлен 19.06.2011

  • Выбор типа промывочной жидкости и показателей ее свойств по интервалам глубин. Расчет материалов и химических реагентов для приготовления бурового раствора, необходимого для бурения скважины. Критерии выбора его типа для вскрытия продуктивного пласта.

    курсовая работа [2,2 M], добавлен 05.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.