Криосфера Земли

Гляциосфера как часть криосферы. Распространение материковых льдов. Характеристика горных, покровных, холодных, теплых ледников. География современного оледенения. Формирование снежного покрова, его свойства. Лавины, вечная мерзлота. Льды Мирового океана.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 30.11.2014
Размер файла 252,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНЕСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Институт прикладной математики, информатики, био- и нанотехногиии

Факультет биологии и экологии.

КУРСОВАЯ РАБОТА ПО ТЕМЕ:

КРИОСФЕРА ЗЕМЛИ

Введение

Криосфера Земли.

Целью данной курсовой работы является полное раскрытие темы Криосфера Земли. Выбранная мной тема является актуальной на сегодняшний день. Криосфера -- это одна из географических оболочек Земли, характеризующаяся наличием или возможностью существования льда

Криосфера расположена в пределах теплового взаимодействия атмосферы, гидросферы и литосферы. Криосфера простирается от верхних слоев земной коры до нижних слоёв ионосферы.

Криосфере свойственны многочисленные криогенные образования:

системы ледяных облаков,

снежный покров,

ледяной покров водоёмов,

наледи,

ледники гор,

ледниковые покровы,

сезонномёрзлые почвы,

горные породы с подземными льдами.

Криосфера характеризуется отрицательной или нулевой температурой, при которых вода, содержащаяся в парообразном, свободном или химически и физически связанном с другими компонентами виде, может существовать в твёрдой фазе (лёд, снег, иней и другие).

Температура 0 °C определяет равновесие между химически чистыми льдом и водой. В естественных условиях различные примеси и растворённые вещества, а также поверхностные силы и давление понижают точку замерзания воды, в результате чего в границы криолитозоны попадает и жидкая фаза воды во временно или устойчиво охлаждённом ниже 0 °C состоянии.

Криолитозона включает также безводные толщи горных пород и относительно сухие воздушные массы с отрицательной температурой, в которых естественными или искусственными путями могут создаваться условия для конденсации воды, а тем самым и сформирования её твёрдой фазы. [1]

1. Гляциосфера - часть криосферы

Гляциосфемра -- это совокупность снежно-ледяных образований на поверхности Земли, самостоятельная компонента глобальной природной системы наряду с сушей, морем, внутренними водами, атмосферой. Она представляет собой часть криосферы.

Гляциосфера обладает важными специфическими свойствами: наличием воды в твердой фазе, замедленным массообменом, высокой отражательной способностью, огромными затратами тепла на фазовые переходы, особым механизмом воздействия на сушу и земную кору.

Теплота фазовых превращений льда достигает 1/3 внешнего теплооборота планеты. Гляциосфера в значительной мере определяет современную широтную зональность, усиливает межширотный обмен воздушных масс, влияет на уровень Мирового океана.

Гляциосфера представляет собой основной объект исследования гляциологии

Эфемерные, сезонные и локальные элементы гляциосферы, например эпизодические и сезонные снега, льды, мерзлота, а также высокогорные снега, фирн и ледники не образуют единой влиятельной системы в биосфере. Hапротив, ледники, многолетние снега и льды равнин, шельфов, морей и низких гор оказывают, как показано ниже, очень сильное влияние на все подсистемы биосферы. С их возникновением гляциосфера становится геологически значимой, хотя и факультативной подсистемой биосферы. Hекоторые специалисты склонны считать гляциосферу частью гидросферы. Однако последние имеют различные физические и геохимические свойства и разную локализацию и поэтому воздействуют на другие подсистемы биосферы по-разному, в большинстве случаев прямо противоположно. Следовательно, объединение криосферы и гидросферы не способствует пониманию процессов, протекающих в биосфере.[1]

1.1 Распространения материковых льдов

Материковый лед образуется из снега на суше и попадает в океан в виде айсбергов, их обломков и так называемых ледяных островов. Этот лед пресный, содержит сравнительно мало примесей и имеет в большинстве случаев голубоватый цвет. Основная масса материкового льда попадает в Мировой океан из антарктических ледников. В меньшем количестве он встречается в Северном Ледовитом океане, откуда течениями выносится в северную часть Атлантического океана.

Айсберги, ледяные дрейфующие острова. Материковый (ледниковый) или глетчерный лед образуется на суше из твердых атмосферных осадков

,который потом постепенно сползает в море. Льды материкового происхождения делятся на неподвижные и дрейфующие.

К неподвижным льдам материкового происхождения относятся:

язык ледника - часть ледника, сильно выдвинувшаяся в море, находится на плаву и иногда простирается от берега на многие десятки километров, имеет большую ширину, в особенности в Антарктике;

шельфовый лед - ледовое образование, возвышающееся над уровнем моря более чем на 2 м; имеет обычно волнообразную поверхность;

ледяной барьер - край ледникового языка или шельфового льда, возвышающийся над уровнем моря от 2 до нескольких десятков метров.

К дрейфующим льдам относятся айсберги и ледяные острова.

Айсберг - отделившаяся часть ледника или шельфового льда, дрейфующая в море (океане) и имеющая высоту свыше 5 м над уровнем моря. Высота айсбергов над поверхностью воды в среднем 70 (в Арктике) и 100 м (в Антарктике); основная часть айсберга находится под водой, т. е. его осадка может быть от 400 до 1000 м. Айсберги по своему внешнему виду бывают столбообразные (плосковершинные айсберги, имеющие большие горизонтальные размеры, особенно в Антарктике), пирамидальные (айсберги, имеющие остроконечную, неправильной формы вершину и сравнительно малые горизонтальные размеры). Встречаются в море обломки айсберга (значительные глыбы льда, отломившиеся от айсберга или от ледника и возвышающиеся не более чем на 5 м над уровнем моря) и куски (весьма малые по величине обломки айсбергов).

Ледяные дрейфующие острова - огромные обломки шельфового льда с волнистой поверхностью длиной до 30 км и более; возвышаются над уровнем моря на 5-10 м, достигают толщины более 15-30 м, дрейфуют в Северном Ледовитом океане.

Распространение и характеристика горных и покровных ледников.

Человеку, впервые попавшему в высокогорье, невольно бросаются в глаза цветовые контрасты -- белоснежные поля и отдельные снеговые вкрапления на фоне многокрасочной палитры горных склонов и альпийских лугов.

Климатические условия, царящие в высокогорьях, благоприятствуют появлению ледников -- этих, как их еще иногда называют, «вечных снегов». Ледники образуются в том случае, когда выпадающие в зимний период твердые атмосферные осадки не успевают в течение летнего сезона стаивать или испаряться. Они постепенно накапливаются, причем летом частично оттаивают, просачиваются в глубь снежного покрова, снова замерзают и под влиянием давления вышележащих слоев превращаются в фирн -- переходную стадию между снегом и льдом. Фирн состоит из массы ледяных зерен различной величины и формы. В дальнейшем фирн уплотняется, зерна сливаются, преобразуясь либо в аморфный, либо в кристаллический лед.

В настоящее время оледенение на нашей планете занимает площадь в 16 млн. кв. км. Но в большинстве своем это наземные покровные ледники северных и южных полярных областей, главным образом Антарктики и Гренландии. На их долю приходится почти 90% всех ледников, еще 9% -- это прибрежные, шельфовые льды и всего лишь 1,3% -- горные ледники. Самый большой горный ледник находится на Аляске -- это ледник Беринга, его длина 170 км; у нас самый крупный -- ледник Федченко на Памире имеет длину 77 км. На территории Европы наибольшим оледенением отличаются Альпы, там насчитывается 1200 ледников общей площадью более 4 тыс. кв. км.

На Кавказе первое место среди ледников занимает Дыхсу (длина его --13 км, площадь свыше 40 кв. км), а общая площадь оледенения Кавказа -- около 1,5 тыс. кв. км.

Горные ледники, как правило, подвижны -- они могут наступать и отступать; встречаются и пульсирующие ледники, к ним, например, относится ледник Медвежий на Памире, который периодически (приблизительно раз в 10 лет), после длительного относительно спокойного состояния начинает быстро продвигаться вперед: так, весной 1973 года он за 2 месяца удлинил свой язык почти на 2 км. Скорость движения ледников может быть самой различной, и зависит она от многих причин -- от экспозиции склонов, от условий питания ледника, от характера дна долины и окружающих горных пород и т. д. Наступает ледник под действием силы тяжести, заставляющей его сползать вниз по склону.

На ледниках выделяют область аккумуляции, или накопления, и область абляции, или таяния. Так вот, когда таяние преобладает над накоплением, ледник отступает, сокращается в размерах.

От характера подстилающей поверхности, по какой движется ледник, зависит тип ледника, его форма. Назовем некоторые из них: долинные ледники стекают по долинам горных рек, висячие -- расположены на крутых склонах, каровые, остаточные, занимают кары, или цирки -- углубления полукруглой формы, выпаханные существовавшим здесь в прошлом крупным ледником.[1]

Покрувные ледниким, ледники, форма которых не зависит от рельефа земной поверхности, а обусловлена распределением питания и расхода льда. Движение льда в таких ледниках определяется преимущественно силой растекания и происходит, как правило, из центр. части к периферии. Покровные ледники образуются там, где снеговая линия опускается до уровня низменностей, реже - на высоких платообразных возвышенностях. Края ледников могут оканчиваться на суше и в море, в послед_нем случае значительная часть расхода льда происходит за счёт откалывания айсбергов. Среди покровных ледников в зависимости от размера выделяют ледниковые купола и ледниковые щиты, а также выводные и шельфовые ледники

Покровные ледники имеют значительную мощность и занимают большую площадь. Пример материкового (покровного) оледенения -- ледяной покров Антарктиды. Его мощность достигает 4 км при средней толщине 1,5 км.

Покровные ледники составляют 98,5 % площади современного оледенения. Они имеют плоско-выпуклую форму в виде куполов или щитов, поэтому и называются ледяными щитами.

Гренландский и антарктический ледниковый покров

Гренландский ледниковый покров

Ледниковый покров расположен и на самом большом в мире острове, в Гренландии. Из 2 миллионов 186 тысяч квадратных километров площади острова свыше 1 миллиона 700 тысяч квадратных километров, или 79%, скрыто под этим покровом, еще 100 тысяч квадратных километров занято более мелкими ледниковыми комплексами. Гренландский ледниковый покров состоит из двух куполов - очень большого северного и сравнительно небольшого южного. Их поверхности поднимаются к осевым линиям куполов, образуя своды, удлиненные в меридиональном направлении. Северный купол поднимается до 3,3 тысяч метров над уровнем моря, вершина южного - до 2,8 тысяч метров. Что касается ледникового ложа, то оно, наоборот, вогнутое: по краям его обрамляют береговые возвышенности и горы, а каменные породы внутренней области погружены на сотни метров ниже уровня моря.

Естественно, что в этих условиях максимальная толщина льда приходится на центральные части острова, а минимальная - на его побережья. Судя по измерениям, проведенным геофизическими методами (сначала сейсмическим, а позже радиолокационным зондированием), наибольшая толщина северного купола составляет 3,2 - 3,4 тысяч м; недавно правильность этого вывода подтвердило бурение. Толщина льда южного купола, тоже по данным бурения, превышает 2 тысячи километров. Средняя

толщина Гренландского ледникового покрова равна 1,8 тысячам м. Зная эту толщину и умножив ее на площадь покрова, получим общий объем льда Гренландии: он оказывается равным 3 миллионам кубических км, что близко к 10% всего объема льдов планеты.

Подсчитано, что в случай полного таяния гренландского льда уровень Мирового океана повысится на целых 7 метров.

Климат Гренландии холодный и сравнительно влажный. Среднегодовая температура во внутренней области покрова составляет - 31 С, а средняя температура зимних месяцев опускается ниже - 46 С. Да и летом положительные температуры возможны только на побережьях, во внутренних же областях безраздельно господствуют морозы.

Ледники Гренландии питаются влагой, поступающей с Атлантического океана. Из-за разницы температур между холодным ледниковым покрова сравнительно теплым океаном у южной оконечности острова регулярно образуются циклоны. Связанные с ними осадки выпадают почтя исключительно в виде снега. На юге их годовое количество превышает 1 тысячу мм, к северу оно сокращается, составляя 300 - 500 мм в средней частя острова и 50--100 мм на его северной оконечности. На юге граница питания лежит на высоте около 1,8 тысяч м, к северу она постепенно снижается до 800 м.

Как у всех ледниковых щитов, лед из внутренних областей Гренландии растекается во все стороны в направлениях уклона поверхности куполов. Скорость такого растекания обычно не превышает 10 - 20 м/год и только в ледяных потоках, через которые идет основной сток, или «спуск», льда в океан, она сильно возрастает, достигая нескольких километров в год.

Самый знаменитый из гренландских ледяных потоков, ледник Якобсхавн, впадающий в залив Диско на западе острова, держит мировой рекорд: скорость его движения превышает 7 км/год. Если к тому же учесть, что толщина его плавучего языка составляет 800 м, а ширина 6 км, то легко представить, сколь велика масса льда, выносимого через Якобсхавн в океан. Значение этого выноса. Для жизни Гренландского покрова трудно переоценить. Дренируя его внутреннюю область, он снижает ледниковую поверхность и создает седловину, отделяющую северный купол от южного. А вынося огромные массы льда в океан, этот ледник вместе с сотнями других больших и не очень больших потоков компенсирует ежегодный прирост массы покрова, связанный со снегонакоплением в области питания. Компенсирует, правда, не один, а «на паях» с таянием.

Если перейти на язык цифр, то баланс массы Гренландского ледникового покрова выглядит следующим образом. Его приходная масса составляет 640 кубических км/год, а расход складывается из таяния, ежегодно производящего от 130 до 330 кубических км воды, и «экспорта» айсбергов, равного 240 - 300 кубических км/год. Две статьи расхода, примерно одинаковы. Однако их измерения дают большие ошибки, из-за чего до сих пор нельзя сказать, что сейчас происходит с Гренландским ледниковым покровом: растет ли он, убывает или остается стационарным. Известно только, да и то по результатам повторных наблюдений за положением ледяного края, что площадь покрова сокращается, причем особенно сильно отступают фронтальные обрывы ледяных потоков.

Антарктический ледниковый покров.

Антарктический ледник - самый большой на Земле. Его площадь 13 миллионов 660 тысяч квадратных км, что в 1,6 раза больше поверхности Австралии. Судя по радиолокационным измерениям, средняя толщина этого покрова равна почти 2,2 км, максимальная толщина превышает 4,7 км, а общий объем антарктического льда близок к 26 - 27 миллионам кубических км - это почти 90% объема всех природных льдов планеты. Полное таяние Антарктического ледникового покрова привело бы к повышению уровня океана на 60 - 65 метров. Антарктический ледниковый покров имеет сложное строение. Он образован слиянием колоссального наземного щита Восточной Антарктиды, «морского» ледникового щита Западной Антарктиды, плавучих шельфовых ледников Росса, Ронне-Фильхнера и других, а также нескольких горно-покровных комплексов Антарктического полуострова. Как будет рассказано ниже, именно такую структуру имели и крупнейшие ледниковые покровы прошлого. Поэтому их иногда называют ледниками антарктического типа.

Восточно-антарктический ледниковый щит - это огромная ледяная «лепешка» площадью 10 миллионов квадратных км и поперечником более 4 тысяч км. Он налегает на каменное ложе, имеющее частью равнинный, частью горный рельеф; на своих основных площадях это ложе располагается выше уровня моря, почему этот щит и называют наземным. Поверхность льда, скрытая под 100 - 150-метровой толщей снега и фирна, образует огромное плато со средней высотой около 3 км и максимальной - в его центре - до 4 км. Установлено, что средняя толщина льда Восточной Антарктиды равна 2,5 км, а максимальная - почти 4,8 км. О такой толщине льда в современных ледниках еще недавно даже не подозревали.

Существенно меньшие размеры имеет Западно-антарктический ледниковый щит. Его площадь менее 2 миллионов квадратных км, средняя толщина - лишь 1,1 км, поверхность не поднимается выше 2 км. Ложе этого щита на больших площадях погружено ниже уровня океана, его средняя глубина около 400 м. Так что ледник Западной Антарктиды - это настоящий «морской» ледниковый щит, единственный из ныне существующих на Земле.

Особый интерес представляют шельфовые ледники Антарктиды, служащие плавучим продолжением ее наземного и «морского» покровов. За пределами Антарктиды таких ледников практически нет. Их общая площадь - 1,5 миллиона квадратных км, причем крупнейшие из них - шельфовые ледники Росса и Ронне-Фильхнера, занимающие внутренние части морей Росса и Уэдделла, имеют площади по 0,6 миллиона квадратных км каждый. Плавучий лед этих ледников отделен от «основного» щита линиями налегания, а его внешние границы образованы фронтальными обрывами, или барьерами, которые постоянно обновляются благодаря откалыванию айсбергов. Толщина льда у тыловых границ может доходить до 1 - 1,3 км, у барьеров она редко превышает 150 - 200 м.

Антарктический лед растекается из нескольких центров к периферии покрова. В разных его частях это движение идет с разной скоростью. В центре Антарктиды, как и в Гренландии, лед движется медленно, у ледникового края его скорости возрастают до многих десятков и сотен метров в год. И здесь быстрее всего движутся ледяные потоки, разгружающиеся в открытый океан. Их скорости нередко достигают километра в год, а один из ледяных потоков Западной Антарктиды - ледник Пайн-Айленд - «делает» несколько километров в год.

Однако большинство ледяных потоков впадает не в океан, а в шельфовые ледники. Ледяные потоки этого рода движутся медленнее, их скорости не превышают 300 - 800 м/год. Такую «медлительность» обычно объясняют сопротивлением со стороны шельфовых ледников, которые сами, как правило, бывают заторможены берегами и отмелями. В этой связи специалисты предсказывают, что глобальное потепление климата может вызвать своеобразный «эффект домино»: повысятся температуры - разрушатся шельфовые ледники, не будет этих ледников - получат свободу ледяные потоки, их скорости резко возрастут, давая начало массовому «спуску» льда в океан. А это может привести к катастрофически быстрому подъему уровня океана, сулящему крупные неприятности всем прибрежным районам Земли, в том числе и далеким от Антарктиды.

Климат Антарктиды холодный и сухой. Влагонесущие циклоны, возникающие из-за температурных контрастов между Южным океаном и ледниковым щитом, оказывают влияние лишь на прибрежные части материка. Они редко проникают в его внутренние области, над которыми господствует антарктический антициклон. Этим определяется и распределение осадков: высокое внутреннее плато Восточной Антарктиды ежегодно получает лишь 5 - 10 г/квадратный см снега, на более низком Западноантарктическом щите это количество удваивается, а в береговых районах оно возрастает до 60 - 90 г/квадратных см.

Для Антарктиды характерно крайне низкое положение границы питания. Она лежит на уровне моря, так что вся ледниковая поверхность - это сплошная область питания. Поэтому, хотя снега здесь выпадает мало, его общий приход многократно превышает потери от таяния. Тем не менее ледниковый покров не растет. Прирост массы льда и тут уравновешивается расходом, в котором, правда, главная роль принадлежит не таянию, а потерям, связанным с откалыванием айсбергов.

После длительного изучения баланса массы Антарктиды исследователи пришли к выводу, что его приходные статьи составляют около 2 тысяч кубических км льда, а расходные, в которых главную роль играет айсберговый сток, превышают эту величину. И хотя общий расход льда здесь известен лишь приблизительно, преобладает мнение, что этот баланс отрицательный и ледниковый покров сокращается. Хотя есть немало специалистов, которые с этим не согласны и считают, что он, наоборот, растет. Так что наши знания об Антарктиде все еще недостаточны, чтобы с уверенностью сказать, каков характер ее современной эволюции, какой будет ее реакция на предстоящие изменения климата и, наконец, какую роль она может играть в текущих изменениях уровня океана. Однако новейшие успехи наук о Земле вселяют надежду, что мы на пороге решения этой загадки. Источник оптимизма - в огромных возможностях, открывающихся в связи с развитием методов космической съемки и спутниковой геодезии. Уже сейчас можно сосчитать и измерить айсберги в Южном океане, можно напрямую, путем повторных измерений из космоса, определить изменения высоты и площади ледникового покрова. Наберемся же терпения и будем ждать результатов.

Оледенение Гренландии и Антарктиды - типично покровное. Форма и строение обоих покровов, характер их движения, степень воздействия на окружающую природу наводят на мысль об их исключительной близости ледниковым покровам прошлого. Хочется ступить на их лед и воскликнуть: «Вот они, ледяные монстры Агассиса, некогда погребавшие Европу и Америку!». И в этом нет преувеличения, они - подлинные выходцы из ледникового периода, его пережитки. Судя по прекрасной сохранности и обильному снежному питанию Гренландского и Антарктического ледниковых покровов, они совсем не плохо приспособлены к условиям современной эпохи.

Конечно, весь ледниковый панцирь планеты сейчас не тот, каким был 20 тысяч лет назад, но он ведь и не исчез, а только сократился. Он не раз сокращался и в прошлом, после чего вновь и вновь восстанавливался. Крупные колебания оледенения - характерная особенность ледникового периода, который все еще продолжается.[1]

Холодные и теплые ледники. Движение льда.

По температурному состоянию ледники различают две главные группы: теплые (изотермические или умеренные) ледники, в которых глубже уровня сезонных колебаний температура льда постоянно держится близкой к точке таяния льда под давлением, и холодные (полярные) ледники, в которых глубже уровня сезонных колебаний температура во всей толще всегда ниже точки плавления льда под давлением. Так как ледники получают тепло не только от солнечной радиации, но и от теплового излучения земной коры, то, как правило, в холодных ледниках температура льда с глубиной повышается (так, в Антарктиде, в центральных районах ледникового покрова, температура от -- 55°С на глубине 10 м повышается до точки плавления льда под давлением у ложа). Существуют и переходные типы ледников -- от теплых к холодным (субполярные). Некоторые крупные долинные ледники в высокогорных районах могут в верховьях принадлежать к холодным ледникам, а в нижнем течении -- к теплым (например, ледник Батура в Каракоруме).

Ледники, порождаемые климатом в сочетании с местными орографическими условиями, раз возникнув, сами создают благоприятные условия для дальнейшего своего существования и развития. Достигнув больших размеров, они оказывают существенное обратное воздействие на климат. Так, ледниковые покровы Антарктиды и Гренландии являются гигантскими холодильниками нашей планеты, оказывая влияние на климат и циркуляцию атмосферы в глобальном масштабе.

Теплые ледники еще называют умеренными, или изотермическими. В них ниже уровня сезонных колебаний температуры, на глубине нескольких метров, температура льда остается на точке плавления. А в холодных (их иначе называют полярными) ледниках эта температура всегда отрицательна.

Такие различия чрезвычайно важны. При температуре, близкой к точке плавления, лед намного пластичнее, чем, скажем, при -30 или -50 С, а главное - во всей его толще и на нижней поверхности присутствует жидкая вода, создавая возможности для скольжения ледника по ложу. Поэтому теплые ледники могут двигаться быстрее, чем холодные. Трение на их нижних поверхностях слабее, чем у холодных и примороженных к ложу, их лед с большей легкостью растекается под действием силы тяжести, а это значит, что продольные профили теплых ледников менее выпуклые, а лед не такой толстый.

Как это ни удивительно, но температуру таяния могут иметь льды полярных ледниковых покровов, правда не на поверхности, а в придонных частях. Дело в том, что эта «глубинная» температура во многом зависит от поступления тепловой энергии из недр Земли. Зависит она также от общей толщины ледникового покрова и от массы снега и фирна, ежегодно нарастающих на его поверхности. Так что поток холода, идущий в глубину льда, сталкивается со встречным потоком тепла, взаимодействует с ним и слабеет. И если лед достаточно толст, а питание ледника, как в Антарктиде, скудное, то его придонная температура может повыситься до точки таяния. Это и происходит в центральных районах Антарктического ледникового покрова, хотя средняя температура его поверхности там равна -55 С.

Факт донного таяния льда Антарктиды подтвержден бурением, к немалому удивлению специалистов там даже обнаружены подледные озера. Площадь одного из них, расположенного в районе российской полярной станции «Восток», оказалась равной нескольким тысячам квадратных километров, а глубина - 440 м. И это под 3,5-километровой толщей льда.

Иначе обстоит дело в Гренландии. Ее ледниковый покров, имея почти ту же толщину, что и Антарктический, получает обильное питание. А это значит, что низкотемпературный поверхностный лед там быстро уходит на глубину и с ним, как энергия с водной массой нисходящего течения, переносится и... холод. Перенос этот происходит быстро, так что с ним не может совладать поток тепла, идущий из недр Земли. В итоге весь Гренландский покров оказывается примороженным к ложу. И это тоже подтверждено бурением. Исключение составляют лишь ледяные потоки. Они всегда движутся быстрее, чем сопредельный лед, и скользят по ложу. А раз скользят, то у их дна выделяется тепло трения, и придонный лед тает.

Движение льда в ледниках -- основной процесс переноса массы из области накопления в область расхода. Благодаря перемещению льда из первой области во вторую поддерживается относительное равновесие между ними, что и обеспечивает само существование ледника как единой ледниковой системы. В горном леднике количество льда, проходящее через любое поперечное сечение, в области аккумуляции постепенно увеличивается от истоков к границе питания, где достигает максимума, а в области абляции постепенно уменьшается к концу ледника. Соответственно изменяется и скорость движения льда: от истоков к границе питания она увеличивается, а от границы питания к концу ледника уменьшается. При этом векторы скорости относительно поверхности ледника в области аккумуляции наклонены вниз, а в области абляции -- вверх. Но такова лишь идеальная схема. В реальных ледниках наблюдается множество отклонений от нее из-за изменений толщины, ширины и уклонов поверхности ледников. В ледниковых покровах и куполах, граница питания которых проходит близ их концов, а расход массы осуществляется путем откола айсбергов, скорость движения льда увеличивается от нуля в центре ледникового покрова до максимума у его края.

Движение льда в ледниках осуществляется двумя основными способами: путем вязкопластического течения и путем глыбового скольжения по ложу и внутриледниковым разрывам и сколам. Соотношение вязкопластического течения и глыбового скольжения в движении реальных ледников может быть самым различным. Лед в примерзших к ложу холодных ледниках может двигаться только за счет вязкопластических деформаций, тогда как ледники с водной пленкой на ложе в определенных условиях могут двигаться только путем глыбового скольжения (пульсирующие ледники в период быстрых подвижек). В движении большинства ледников участвуют оба механизма.

При вязкопластическом течении льда скорость движения определяется главным образом толщиной льда, его температурой и наклоном поверхности ледника. Лед будет течь в направлении наклона поверхности и в том случае, если на ложе ледника будут встречаться неровности с обратным уклоном. Между толщиной льда, наклоном поверхности и скоростью движения льда ледника существует закономерная связь: лед обычно тонок там, где поверхность наклонена круто и лед движется быстрее, и толст там, где наклон незначителен и движение льда замедлено. Это наблюдается как в разных частях одного ледника, так и на разных ледниках. Мелкие неровности на поверхности ледника, если они меньше его толщины, на скорости течения ледника не отражаются.

На скорость течения льда в ледниках большое влияние оказывает их температурное состояние, так как при более высоких температурах лед легче деформируется. Теплые ледники движутся быстрее холодных. Выделяющееся при движении ледника тепло также ускоряет движение.

Скорость движения льда в любом леднике складывается из горизонтальной и вертикальной составляющих. Уже говорилось, что векторы скорости в области аккумуляции направлены вниз относительно поверхности, а в области абляции -- вверх, но углы наклона небольшие, так как горизонтальная составляющая скорости во много раз больше вертикальной. Величина вертикальной составляющей связана с величиной аккумуляции и абляции, поэтому в районах с обильными осадками и интенсивным таянием она больше, чем в районах с холодным сухим климатом. Горизонтальная составляющая скорости движения льда в ледниках на порядок, а иногда и на несколько порядков больше вертикальной составляющей. Поэтому, когда речь идет о смещении льда в горизонтальном направлении, обычно говорят просто «скорость движения», а не «горизонтальная составляющая скорости движения». Скорость движения льда в ледниках разных размеров и типов колеблется в очень широких пределах. Скорость движения в малых ледниках редко превышает несколько метров в год, в горно-долинных ледниках она колеблется от первых десятков до сотен метров в год. В выводных и шельфовых ледниках Антарктиды скорость движения льда достигает 300 -- 1200 м в год. Самые большие скорости измерены в концевых частях выводных ледников Гренландии -- до 10 км в год. При подвижках пульсирующих ледников лед может двигаться со скоростью сотен метров в сутки, проходя за несколько месяцев 8--10 км.

Скорость движения льда в леднике изменяется по продольному и поперечному профилям, изменяется она и с глубиной. В идеальном леднике скорость движения от нуля в его истоках к границе питания увеличивается до максимума, а к концу ледника снова сходит на нет. В реальных ледниках картина много сложнее. Там, где уклон поверхности ледника увеличивается, увеличивается и скорость движения льда; там, где канал стока расширяется, скорость движения льда уменьшается, а там, где он сужается, скорость увеличивается. Линия максимальных скоростей движения льда обычно проходит посередине ледника, а на поворотах смещается к внешней стороне излучины. Поперек ледника от осевой линии к краям поверхностные скорости движения льда постепенно уменьшаются, что связано с трением ледника о ложе и борта долины. Эпюра скоростей может быть то более, то менее крутой, но ее общая форма при глыбовом скольжении близка к трапеции, а при вязкопластическом течении -- к параболе. По вертикали от поверхности до ложа скорости движения льда изменяются в зависимости от соотношения типов движения: при движении вязкопластического типа, обусловленном деформациями ледяной толщи, скорость изменяется от максимума на поверхности до нуля на ложе. При глыбовом скольжении поверхностная и придонная скорости практически одинаковы.

Скорости движения льда в ледниках изменяются также во времени. Летом скорости движения льда выше, чем зимой, днем выше, чем ночью. Это связано главным образом с тем, что в теплое время года и суток в леднике и особенно у его ложа скапливается вода, играющая роль смазки. Эта разница может достигать 25% и более.

Изменяются скорости движения ледников и от года к году. Так, скорость движения льда на одном и том же поперечном профиле ледника Фер-нагтфернер в Эцтальских Альпах в 1889 г. была 17 м, в 1899 г. -- 250 м, в 1901 г. -- 50 м в год.

Есть много и других примеров. В общем виде можно сказать, что при увеличении массы ледника и особенно его толщины скорости движения льда увеличиваются. Увеличивается скорость движения ледника или его части при переходе от вязкопластического течения к глыбовому скольжению (подвижки ледников).

Скорости движения ледников могут резко возрастать при слиянии разобщенных ранее ледниковых потоков и резко падать, когда от главного ствола ледника отчленяются его притоки. Первое происходит, когда условия оледенения улучшаются, второе -- когда оледенение деградирует.[1]

Ледниковые пульсации

Ледниковые пульсации - это периодические релаксационные колебания ледников, отражающие их динамическую неустойчивость, которая контролируется взаимодействием внешних факторов и реологическими свойствами ледника.

Скорости движения большинства ледников очень мало меняются от года к году. Но из этого правила есть исключение. Это - пульсирующие ледники, скорости которых подвержены резким колебаниям. В их жизни периоды относительного покоя, обычно длящиеся от 10 до 50 - 100 лет, чередуются с этапами коротких быстрых подвижек, или пульсаций. По-английски пульсации называются ледниковыми серджами, т.е. ледяными волнами, паводками. Этот термин хорошо описывает суть явления: в ходе пульсаций массы льда, скопившиеся за время покоя в верховьях ледника, быстро сползают в его низовья. Соответственно в верховьях, в зоне выноса, количество льда уменьшается, а в низовьях, в зоне приноса и продвижения, оно резко возрастает, как уровень реки при паводке.

Собственно пульсации обычно длятся по нескольку месяцев, при этом скорость движения льда возрастает в десятки и сотни раз, известны случаи, когда она превышала 100 - 120 м/сутки. Ледник при пульсации растрескивается, его поверхность превращается в непроходимое нагромождение ледяных блоков, в хаос рушащихся глыб, а язык движется, порой перемещаясь на 10 - 15 км. Майн Рид в «Охотниках за растениями», описывая картину ледниковой пульсации в Гималаях, нисколько не преувеличивал, говоря об адском грохоте, сопровождавшем продвижение льда, о вызванных им горных обвалах и наводнениях, о паническом страхе, охватывавшем все живое на многие километры вокруг.

Ледниковые пульсации действительно чреваты катастрофами - ледяными обвалами, прорывами озер из подпруженных льдом боковых долин, паводками и селями. Снесенные мосты, разрушенные поселки геологов. А какую тревогу вызвали подвижки памирского ледника Медвежий в 1963 и 1973 годы. Отчеты журналистов были похожи на репортажи из зоны боевых действий. Какими только эпитетами ни награждали разбушевавшийся ледник. Особенно полюбился многим термин - неточный, но эмоциональный - «взбесившийся айсберг».

В проблеме пульсирующих ледников многое неясно. Непонятна природа этих ледников, неясно также, почему одни ледники способны пульсировать, а другие нет. Специалисты до конца не разобрались и в причинах пульсаций. Пока имеется лишь много гипотез, но сам факт их множественности - это прямое указание на нерешенность проблемы. Одно лишь ясно: важнейшая роль в пульсациях принадлежит периодическим изменениям условий на ложе, таким, как появление и исчезновение талой воды, нарастание и падение ее давления, примерзание и оттаивание придонного льда.

Список пульсирующих ледников на Тянь-Шане стал заметно пополняться только в самые последние годы в результате детальных гляциологических исследований с привлечением аэрофотосъемочных и дистанционных методов. Особенно много таких ледников сосредоточено в горном узле Хан-Тенгри и в массиве Ак-Шыйрак, а пульсации отдельных ледников зарегистрированы в Заилийском Алатау (ледник Шокальского), Алайском хребте (ледник Абрамова) и др. Причины ледниковых пульсаций до настоящего времени не удалось раскрыть, хотя на этот счет было высказано немало соображений. Большинство из них основывается на связи пульсаций с обстановками на ледниковом ложе. Считается, что при определенных условиях сила трения между подошвой ледника и поверхностью коренных пород может существенно уменьшаться, вызывая тем самым резкое увеличение скорости донного скольжения. В целом анализ динамики ледников Тянь-Шаня показывает их малую активность. Во всяком случае, по сравнению с оледенением периферийных горных массивов Евразии контрасты в скоростях движения ледников весьма значительны, что связано с особенностями их режима. Дело в том, что для внутриматериковых ледников Тянь- Шаня характерны малые масштабы как аккумуляции, так и абляции. Напротив, ледникам приморских окраин Евразии (Кавказ, Альпы) свойственны высокие значения режимных показателей. Этими различиями определяются и разные темпы оборота вещества, которые для Тянь-Шаня менее значительны: они колеблются в основном от 250 до 900 лет в зависимости от размеров, формы и особенно географического положения ледниковых тел.

География современного оледенения

Самые благоприятные условия для существования ледников следует искать в полярных областях Земли - в Арктике и Антарктике. А благоприятнейшие из благоприятных - в полярных районах, которые испытывают влияние океанических циклонов и получают много снега. Расход льда на таяние в них незначителен, а его приход, связанный со снегопадами, сравнительно велик. В итоге граница питания ледников опускается очень низко, иногда доходя до уровня моря. Поэтому современное оледенение приурочене к полярным районам с достаточно влажным, циклоническим климатом. Именно в них сосредоточена основная масса ледников, а сами эти ледники имеют наибольшие размеры и покровный характер.

На карте Северной полярной области, или Арктики, сразу бросается в глаза Гренландия с ее гигантским ледниковым щитом, лежащая на «стыке» Северной Атлантики и Северного Ледовитого океана. К ней жмутся и более мелкие центры современного оледенения с характерными для них «островными» ледниковыми покровами. На западе - это острова Девон, Элсмир, Баффинова Земля, Аксель-Хейберг, на востоке - Свальбард (Шпицберген), Земля Франца-Иосифа, Новая Земля, Северная Земля, острова Де-Лонга.

В Южной полярной области абсолютно господствует самый большой ледник планеты - Антарктический ледниковый покров. К нему тяготеют ледниковые комплексы субантарктических островов - Южных Шетландских, Южных Оркнейских, Южной Георгии, Кергелена и др.

Что касается умеренных и низких широт, то в них ледники могут существовать лишь в горах, особенно в горах, получающих много осадков. Выберите на карте мира любой крупный район горного оледенения - и он наверняка окажется одним из рекордсменов по количеству выпадающего снега. Таковы Аляска и Британская Колумбия в Северной Америке, Норвегия, Альпы и Кавказ в Европе, Гималаи, Каракорум, Памиро-Алай, Тянь-Шань и Камчатка в Азии, Анды в Патагонии и Южные Альпы в Новой Зеландии.

Каждый из названных районов современного оледенения по-своему знаменит. Так, сетчатые ледники Юго-Восточной Аляски и Патагонских Анд сочетаются с живописными ландшафтами «альпийского» высокогорья и фьордовых побережий, их «приливные» ледники, такие, как знаменитый Колумбия (площадью в 1370 квадратных км), принадлежат к числу крупнейших. Уникальны предгорные ледники Аляски: достаточно назвать величайший в умеренных широтах ледник Беринга (площадь 5800 квадратных км) и вошедший во все учебники предгорный ледник Маласпина на южном побережье Аляски (площадью 2200 квадратных км).

Долинные ледники Альп - Большой Алечский, Фернагтфернер, Хинтерайсфернер - много меньше аляскинских, однако они были первыми объектами гляциологических исследований. Их изучение можно считать первыми шагами в познании законов движения и колебаний ледников. А вот Гималаи, Каракорум, Памир и Тянь-Шань знамениты своими огромными дендритовыми ледниками. Самые известные из них - Сиачен, Биафо, Балторо, Федченко, Южный Иныльчек - протяженностью 60 - 77 км каждый с колоссальными бассейнами площадью во многие сотни квадратных километров.

1.2 Формирование, образование и распространение морских льдов

Морской лёд -- лёд, образовавшийся в море (океане) при замерзании воды. Так как морская вода солёная, замерзание воды с солёностью, равной средней солёности Мирового океана происходит при температуре около ?1,8°C.

Важнейшие свойства морского льда -- пористость и солёность, определяющие его плотность (от 0,85 до 0,94 г/смі). Из-за малой плотности льда льдины возвышаются над поверхностью воды на 1/7 -- 1/10 их толщины. Таяние морского льда начинается при температуре выше ?2,3 °C. По сравнению с пресноводным он труднее поддаётся раздроблению на части и более эластичен.

Солёность морского льда зависит от солёности воды, скорости льдообразования, интенсивности перемешивания воды и его возраста. В среднем солёность льда в 4 раза ниже солёности образовавшей его воды, колеблясь от 0 до 15 ‰ (в среднем 3-8‰).

Морской лёд является сложным физическим телом, состоящим из кристаллов пресного льда, рассола, пузырьков воздуха и различных примесей. Соотношение составляющих зависит от условий льдообразования и последующих ледовых процессов и влияет на среднюю плотность льда. Так, наличие пузырьков воздуха (пористость) значительно уменьшает плотность льда. Солёность льда оказывает на плотность меньшее воздействие, чем пористость. При солёности льда 2 ‰ и нулевой пористости плотность льда составляет 922 кг/мі, а при пористости 6 % понижается до 867. В то же время при нулевой пористости увеличение солёности с 2 до 6 ‰ приводит к увеличению плотности льда только с 922 до 928 кг/мі.

Морские льды по степени своей подвижности подразделяются на неподвижные и дрейфующие. Основной формой неподвижного льда является припай, который может образовываться путем естественного замерзания воды или же в результате примерзания к берегу дрейфующего льда любой возрастной категории. К неподвижным льдам относятся такжестамухи - торосистые образования, сидящие на грунте на мелководье или у берега. Все остальные виды морского льда относятся к категории дрейфующих, которые перемещаются под действием ветра и течений. В результате неоднородности полей ветра и течений, различий в толщине и строении ледяных полей и сложного взаимодействия с берегами дрейф ледяных полей, льдин и кусков льда происходит неравномерно. Это приводит к их сталкиваниям, деформациям и разломам.

Дрейфующие льды по сплоченности подразделяются на отдельные льдины, редкий лед, сплоченный лед, очень сплоченный лед и сплошной лед. Движение сплоченных льдов сопровождается деформациями, включающими подвижки и сдвиги ледяных полей и льдин относительно друг друга, вращение льдин, образование торосов, трещин и разводий. В результате перемещений и деформации происходит перераспределение льдов на поверхности моря, изменяется их сплоченность, меняются строение и морфология ледяного покрова.

После сплочения льдов до 9-10 баллов, если вызвавшие его силы продолжают действовать, начинается сжатие, при котором происходят наслоение и торошение льдов. Процесс торошения заключается в разламывании ледяного покрова с последующим наклоном обломков, вплоть до вертикального положения, раздроблении кромок льдин, надвиге льдин одна на другую, нагромождении ледяных валов и гряд. При относительном перемещении ледяных полей образуются длинные прямые гряды торосов из мелкораздробленного льда. Гряды торосов сдвигового происхождения характерны для районов, где наблюдаются существенные различия скоростей дрейфа. На границе припая с подвижным льдом в зависимости от направления дрейфа могут возникать трещины или разводья или же образуются сдвиговые гряды торосов либо торосы сжатия. При малой глубине моря и интенсивном торосообразовании подошвы торосов могут достигать грунта. Такие торосы пропахивают борозды на дне.

Торосы

В зависимости от причин, вызывающих поступательное движение льдов, выделяют несколько разновидностей дрейфа.Ветровой дрейф возникает под действием ветра. Такой дрейф продолжается некоторое время и после прекращения ветра, так как дрейфующий лед вовлекает в движение верхние слои воды. Скорость ветрового дрейфа морских льдов близка к 1:50 скорости ветра. Направление дрейфа обычно не совпадает с направлением ветра. В арктических морях под действием сил Кориолиса направление дрейфа отклоняется вправо от направления ветра на угол 28°, а в антарктических морях - в противоположную сторону. Во многих морях, например, в Белом, Баренцевом, Беринговом, Охотском и других, важную роль играет приливный дрейф льдов, обусловленный течениями при приливах и отливах.

На направление дрейфа большое влияние оказывают близость береговой линии, наличие островов и отмелей, рельеф дна. В результате одновременного влияния множества факторов дрейф льдов часто бывает неравномерным, отдельные массивы и скопления льдов могут дрейфовать в разных направлениях и с разными скоростями. Границы между ними называются дрейфоразделами, для которых характерно наличие полос тертого льда и поясов торосов.

По стадиям развития льда выделяют несколько так называемых начальных видов льда (в порядке времени образования):

ледяные иглы,

ледяное сало,

снежура,

шуга,

внутриводный (в том числе донный или якорный), образующийся на некоторой глубине и находящихся в воде предметах в условиях турбулентного перемешивания воды. Дальнейшие по времени образования виды льда -- ниласовые льды:

нилас, образующийся при спокойной поверхности моря из сала и снежуры (тёмный нилас до 5 см толщиной, светлый нилас до 10 см толщиной) -- тонкая эластичная корка льда, легко прогибающаяся на воде или зыби и образующая при сжатии зубчатые наслоения;

склянки, образующиеся в распреснённой воде при спокойном море (в основном, в заливах, около устьев рек) -- хрупкая блестящая корка льда, которая легко ломается под действием волны и ветра;

блинчатый лёд, образующийся при слабом волнении из ледяного сала, снежуры или шуги или вследствие разлома в результате волнения склянки, ниласа или так называемого молодого льда. Представляет собой пластины льда округлой формы от 30 см до 3 м в диаметре и толщиной 10 -- 15 см с приподнятыми краями из-за обтирания и ударов льдин. Дальнейшей стадией развития льдообразования являются молодые льды, которые подразделяются на серый (толщина 10 -- 15 см) и серо-белый (толщиной 15 -- 30 см) лёд. Морской лёд, развивающийся из молодого льда и имеющий возраст не более одного зимнего периода, называется однолетним льдом. Этот однолетний лёд может быть:

тонким однолетним льдом -- белый лёд толщиной 30 -- 70 см,

средней толщины -- 70 -- 120 см,

толстым однолетним льдом -- толщиной более 120 см. Если морской лёд подвергался таянию хотя бы в течение одного года, он относится к старым льдам. Старые льды подразделяются на:

остаточный однолетний -- не растаявший летом лёд, находящийся вновь в стадии замерзания,

двухлетний -- просуществовавший более одного года (толщина достигает 2 м),

многолетний -- старый лёд толщиной 3 м и более, переживший таяние не менее двух лет. Поверхность такого льда покрыта многочисленными неровностями, буграми, образовавшимися в результате неоднократного таяния. Нижняя поверхность многолетних льдов также отличается большой неровностью и разнообразием формы.

Распространение морских льдов.

Площадь распространения морских льдов меняется по сезонам от 9 до 18 млн кмІ в Северном полушарии и от 5 до 20 млн кмІ в Южном. Максимальное развитие ледяного покрова в Северном полушарии наблюдается в феврале-марте, а в Антарктике - в сентябре-октябре. В целом на земном шаре морские льды с учетом сезонных колебаний покрывают 26,3 млн кмІ при средней толщине покрова около 1,5 м. Морские льды образуются во всех морях Северного Ледовитого океана. Зимой они формируются также в Беринговом, Охотском, Азовском, Аральском и Белом морях, в Финском, Ботническом и Рижском заливах Балтийского моря, в северных частях Японского и Каспийского морей и временами на северо-западном побережье Черного моря.

В Арктике выделяют шесть градаций однолетних и многолетних льдов, различающихся по толщине и времени их существования. Однолетний лед называется тонким при толщине 30-70 см, средней толщины - от 70 до 120 см и толстым - более 120 см. Двухлетние льды имеют толщину 180-280 см, трех- и четырехлетние - 240-280 см. Толщина многолетних льдов достигает 280-360 см. В период максимального развития ледяного покрова в Северном Ледовитом океане многолетние льды занимают 28% общей площади, двухлетние - 25%, однолетние и молодые - 47%.

В Южном полушарии ледяной покров развивается с апреля по сентябрь концентрически вокруг Антарктиды. Многолетние льды там практически не встречаются, а двухлетние занимают менее 25% площади максимального развития льдов.

Ледниковая летопись

Снег, выпадающий на ледник, ложится слоем на его поверхность, причем зимние отложения по строению сильно отличаются от летних. Каждый год новый слой снега погребает под собой прошлогодний, и так - в течение десятков и сотен тысяч лет. Ледник растет, древние слои оказываются все глубже и глубже, и вся ледяная толща разбивается на годовые слои, похожие на годичные кольца деревьев. Так пишется ледниковая летопись, но, для того чтобы ее прочитать, необходимо по крайней мере научиться определять возраст каждого ледникового слоя.

В верхней части ледника, образовавшейся «совсем недавно» - за последние несколько тысяч лет, - возраст слоя определяется без особого труда. Для этого просто подсчитывают годовые слои, состоящие из зимних и летних отложений. С увеличением глубины сделать это становится все труднее, поскольку лед медленно течет. Поэтому при определении возраста древних слоев используют специальные расчеты, учитывающие это движение.

В ледниках записано гораздо больше подробных сведений о былых эпохах, чем в годовых кольцах деревьев. Они могут рассказать ученым о том, какой климат, температура воздуха, атмосфера были на нашей планете не 10 - 20, а 200 - 300 тысяч лет назад. Даже сведения о ветрах, дувших в те далекие эпохи, остаются в памяти ледников. Как же хранится в толще льда вся эта богатейшая информация? Известно, что вода состоит из двух химических элементов - водорода и кислорода. Но кислород и водород бывают разные - «легкие» и «тяжелые», Из так называемых легких изотопов образуется обычная вода, а из тяжелых - тяжелая. Среди множества молекул обычной воды всегда можно найти несколько молекул тяжелой - в природе они, как правило, неразлучны. Но дело в том, что содержание тяжелой воды во льду зависит от температуры, при которой он образовался. Чем выше температура, тем больше в составе льда молекул тяжелой воды. Поэтому, измерив количество тяжелой воды в толще льда, можно достаточно точно узнать, какая температура была в момент его образования. Вместе с водой в толще ледника хранится и атмосферная пыль, которая осела на поверхности льда много тысяч лет назад. Сделав ее анализ, можно узнать, чем был загрязнен воздух в те эпохи, откуда он принесен ветрами, не было ли тогда крупных извержений вулканов и многое другое.


Подобные документы

  • Основы современного понимания физикохимии воды. Особенности атмосферного льда, снежного покрова, снежных лавин и гляциальных селей. Морские, речные и озерные льды. Наледи, вечная мерзлота. Ледники и ледниковые покровы. Палеогляциология и обитатели льдов.

    реферат [4,3 M], добавлен 28.02.2011

  • Характеристика и особенности основных типов ледников: материковых или покровных, горных, промежуточных или смешанных. Неодинаковая скорость движения отдельных частей ледников. Основные типы оледенения, условия их образования и развития, типы рельефа.

    курсовая работа [1,5 M], добавлен 23.05.2013

  • Изменение климата Земли: повышение средней температуры, процессы таяния островных и материковых ледников, последствия. Коралловые рифы - показатель уровня моря на протяжении истории. Влияние глобального потепления на частоту вращения Земли и экосистему.

    реферат [19,2 K], добавлен 18.03.2012

  • Эволюция климатической системы на протяжении всей истории развития планеты Земля. Основные компоненты климатической системы: атмосферы, океана и криосферы, воды в замерзшем состоянии, поверхности суши и биосферы. Основные черты климата периода голоцена.

    реферат [921,5 K], добавлен 10.10.2009

  • Криолитозоны: сущность понятия; распространение; присхождение; структура. Подземные воды криолитозоны: надмерзлотные; межмерзлотные; внутримерзлотные; подмерзлотные. Группы льдов, формирующихся в горных породах: погребенный; инъекционный; конституционный.

    контрольная работа [15,4 K], добавлен 24.11.2010

  • Причины и факторы ледников – огромных глыб льда, ползущих по земной поверхности. Характеристика самых известных ледников России. Разрушительная деятельность ледников. Прогноз их готовности начать наступление на равнину. Перенос материала ледниками.

    реферат [27,5 K], добавлен 03.10.2014

  • Экологическая, геоморфологическая и географическая характеристика Лысогорского плато. Методика полевых исследований снежного покрова. Геоинформационное обеспечение снегомерной съемки на примере оврага Боровой. Способы составления топографической карты.

    курсовая работа [2,6 M], добавлен 24.04.2012

  • Обшая оценка ледников, описание их типов. Особенности Антарктического. Гренландского ледников. Характеристика пластического или вязкопластического течения льда. Ледниковое разрушение и осадкообразование. Переносная и аккумулятивная деятельность ледников.

    реферат [22,2 K], добавлен 25.12.2011

  • Главные черты строения океанических впадин. Действительная картина подводного рельефа на современных картах Мирового океана. Особенность строения океанского ложа и хребтов. Осадки Мирового океана. Будущее освоение океана. Основные типы донных осадков.

    реферат [17,4 K], добавлен 16.03.2010

  • История исследования глубоководных областей океана. Методы изучения строения океанического дна. Анализ особенностей образования континентальных окраин материков. Структура ложа океана. Описания основных форм рельефа, характерных для Мирового океана.

    реферат [4,4 M], добавлен 07.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.