Нефтепромысловое оборудование

Рассмотрение гидравлических машин и компрессоров. Ознакомление с оборудованием для фонтанной и газлифтной эксплуатации скважин, а также с принципом работы установок для механизированной добычи нефти. Изучение наземного оборудования и его внешнего вида.

Рубрика Геология, гидрология и геодезия
Вид учебное пособие
Язык русский
Дата добавления 02.05.2014
Размер файла 9,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3.6 Многоступенчатое сжатие

Принцип получения высоких давлений в поршневом компрессоре

При необходимости сжимать газ до давления, превышающего 0,4...0,7 МПа по манометру, применяют многоступенчатое сжатие, сущность которого состоит в том, что процесс сжатия газа разбивается на несколько этапов, или ступеней. В каждой из этих ступеней газ сжимается до некоторого промежуточного давления и, перед тем как поступать в следующую ступень, охлаждается в межступенчатом холодильнике. В последней ступени газ дожимается до конечного давления. В современных компрессорах высокого давления число ступеней сжатия достигает семи.

Введение многоступенчатого сжатия позволяет:

- уменьшить работу, затраченную на сжатие;

- ограничить температуру в конце сжатия;

- обеспечить более высокий коэффициент подачи.

Как было сказано выше, работа при адиабатическом сжатии значительно превышает работу при изотермическом сжатии. При увеличении степени сжатия это расхождение быстро увеличивается. Значительное увеличение давления газа в одном цилиндре приводит к тому, что самое тщательное охлаждение цилиндра не приближает процесс сжатия к изотермическому, и он становится близок или практически идентичен адиабатическому процессу. Это устанавливает предел повышения давления в одном цилиндре компрессора.

Для уменьшения работы сжатия применяется ступенчатое сжатие газа с охлаждением его в охладителях, расположенных между ступенями компрессора.

В результате охлаждения газа устраняется и другая причина, обусловливающая применение ступенчатого сжатия - это недопустимое повышение температуры газа при большой степени повышения давления одноступенчатым компрессором. Температура на этапе сжатия газа не должна достигать значений, при которых про исходит изменение свойств компрессорного масла. С повышением температуры газа вязкость масла уменьшается, ухудшаются условия смазки и увеличивается износ трущихся деталей компрессора. При достижении температур порядка 180...200 °С масло разлагается, в результате чего поверхности деталей цилиндра компрессора и нагнетательный трубопровод покрываются нагаром. Это ухудшает охлаждение компрессора и нарушает его нормальную работу (увеличивается трение между поршневыми кольцами и цилиндром, ухудшается работа клапанов; возможны поломки колец и задиры поверхности цилиндра, возникает опасность самовозгорания и взрыва в нагнетательной линии).

В одной ступени компрессора можно достичь только определенных значений. Так, чрезмерное повышениеможет привести к значительному уменьшению коэффициента подачи и, следовательно, к уменьшению производительности компрессора. Предельный случай, когда компрессор перестает перемещать газ, будет приПри этом критическое значение Ј исходя из формулы (3.15), будет определяться по формуле:

Так, при а = 0,1 и показателе политропы т = 1,2 критическое значениекомпрессор будет работать вхолостую. Это объясняется тем, что при достижении определенных давленийпо сравнению сгаз, содержагцийся в «мертвом» пространстве, при расширении будет заполнять весь объем цилиндра. При этом не будет происходить процесс всасывания, а следовательно, и нагнетания.

На рис. 3.4. приведена диаграмма р -- V, иллюстрирующая зависимость всасывающих объемов от давления нагнетанияпри . Из этой диаграммы следует, что увеличение давления нагнетания доприводит к уменьшению объема всасываемого газа до. При повышении давления нагнетания дообъем всасываемого газа становится равным нулю. Процесс сжатия и расширения газа в этом случае характеризуется кривой

Указанные причины ограничивают степень повышения давления одной ступени компрессора значениямив пределах 4...5,5.

Рис. 3.4. График зависимости объема всасывания от давления нагнетания

Индикаторная диаграмма двухступенчатого компрессора

На рис. 3.5. показана индикаторная диаграмма идеального рабочего процесса в двухступенчатом компрессоре. В первой ступени сжатие происходит так же, как и в одноступенчатом компрессоре. Когда газ из первой ступени подается в охладитель, во второй осуществляется этап всасывания газа после охладителя. Подача газа второй ступенью происходит при закрытом всасывающем клапане этой ступени.

Температура газа, поступающего после сжатия из первой ступени в охладитель, понижается в нем до температуры газа на входе в первую ступень компрессора(пунктирная линия 1--а соответствует изотермическому процессу сжатия газа). Таким образом, состояние газа после охладителя соответствует сжатию его в первой ступени по изотермическому процессу. Изобарический процесс, т. е. процесс, протекающий при постоянном давлении (линия), характеризуется охлаждением газа при его движении от первой до второй ступени компрессора через охладитель. Этапу сжатия во второй ступени соответствует линия

Рис. 3.5. Индикаторная диаграмма идеального цикла двухступенчатого сжатия

Процессу одноступенчатого сжатия без промежуточного охлаждения соответствует линия 1--b. Таким образом, в двухступенчатом компрессоре работа сжатия газа меньше работы сжатия газа в одноступенчатом компрессоре на величину площади индикаторной диаграммы.

Работа сжатия газа в двухступенчатом компрессоре определяется по формуле:

Если температура газа после охладителя становится равной температуре газа на входе в первую ступень компрессора, то

Тогда

Исходя из равенства (3.18) минимальное значение работы получается при условиях:

Степени повьппения давления в каждой из ступеней компрессора равны между собой, а температура на выходе из компрессора имеет при этом наименьшее значение.

В зависимости отприменяются компрессоры со следующими числами ступеней z.

При реальном процессе работа сжатия увеличивается за счет потерь мощности в клапанах, недостаточного охлаждения газа, изменения свойств газа при сжатии и других факторов. Практически реальный рабочий процесс ступенчатого сжатия соответствует идеальному рабочему процессу.

3.7 Мощность и коэффициент полезного действия поршневого компрессора

Мощность привода компрессора слагается из индикаторной мощности сжатия, мощности, затрачиваемой на механические потери в механизмах компрессора и передачах от привода к компрессору, и мощности, затрачиваемой на привод вспомогательных устройств (например, насосов системы смазки).

Таким образом, общая мощность привода равна:

Индикаторная мощность, затрачиваемая на сжатие газа, определяется по удельной индикаторной работе:

где t - время, с.

Индикаторная работа определяется в зависимости от характера процесса сжатия (изотермический, адиабатический или политропический).

Индикаторная мощность многоступенчатого компрессора определяется как сумма индикаторных мощностей всех ступеней компрессора. Мощность, затрачиваемая на механические потери в компрессоре, слагается из потерь мощности в опорах скольжения или качения, в местах трения в уплотнительных устройствах и у поршня. Потери мощности учитываются механическим КПДкоторый колеблется в пределах 0,9.. .0,93 для вертикальных компрессоров, 0,88...0,92 - для горизонтальных компрессоров и 0,8.. .0,85 - для небольших горизонтальных компрессоров.

Потери мощности в передачеучитываются механическим КПДкоторый равен 0,9...0,95 для ременной передачи и 0,85.. .0,92 - для зубчатой.

Мощность, затрачиваемая на привод вспомогательных механизмов определяется в зависимости от типа механизма, учитывая КПД Мощность привода выбирают с запасом на 10... 12 % мощности компрессора.

3.8 Охлаждение компрессора, схема систем охлаждения

При сжатии воздуха и газов неизбежно выделяется большое количество тепла. Если это тепло будет уноситься со сжимаемым газом, то будет происходить адиабатический процесс сжатия. Ранее показывалось, что для такого процесса необходимо затратить работу большую, чем при изотермическом или политропическом сжатии. Поэтому для того, чтобы сделать компрессор более экономичным, предусматривают принудительное охлаждение. Чаще оно бывает водяным, иногда воздушным. В одноступенчатых компрессорах делают охлаждение цилиндров компрессора, в многоступенчатых, кроме того, охлаждают газ в промежуточных холодильниках.

В цилиндрах удается отвести небольшое количество тепла; главным образом, отводится тепло, выделенное при трении в поршневых кольцах и сальнике. Основная цель охлаждения - снижение температуры стенок цилиндра с тем, чтобы улучшить условия смазки. Основное количество тепла отнимается у газа в промежуточных холодильниках.

Часто после компрессора устанавливают конечные холодильники. Эти холодильники на процесс сжатия не влияют, и их предусматривают, исходя из требований техники безопасности и технологических нужд, для охлаждения газа и отделения от него влаги и масла. Расход воды, необходимый для этих холодильников, мы в дальнейшем не учитываем.

Вода, поступающая в холодильник, может идти по проточной системе при достаточном ее количестве или по замкнутой. В последнем случае воду, нагретую в холодильнике, необходимо охлаждать. На рис. 3.6. показаны системы охлаждения: проточная (а) и циркуляционная (б) с брызгальным бассейном. Вода подается для охлаждения цилиндров первой и второй ступеней компрессора К ив холодильник X. Нагретая вода направляется в сборный бассейн. При циркуляционной системе вода нагнетается насосом Н к местам охлаждения, а в брызгальном бассейне - в систему разбрызгивания. Капли и струи воды охлаждаются воздухом, и охлажденная вода собирается во втором бассейне.

Рис. 3,6. Проточная (а) и циркуляционная (б) системы подачи воды для охлаждения компрессора

Охлаждение воды разбрызгиванием требует больших площадей и сопровождается непродуктивным расходованием воды. Поэтому в некоторых случаях для охлаждения применяются гра дирни - деревянные башни с решетчатыми перекрытиями. Вода поступает в башню сверху и стекает, разбиваясь на капли. Встречный поток воздуха охлаждает воду.

Открытые системы охлаждения воды приводят к значительному испарению воды, повышению концентрации солей и отложению их на стенках трубопроводов. В закрытой системе циркуляции воды этого недостатка нет.

3.9 Принцип расчета системы охлаждения

Детали компрессора и сжимаемый газ охлаждаются водой или воздухом. Основным охлаждаемым узлом в компрессоре является цюшндр. Здесь отводится теплота, получаемая в результате сжатия газа, трения поршневых колец о поверхность цилиндра и штока в сальнике. Газ охлаждается в охладителях, расположенных между ступенями компрессора.

Количество теплотыотводимой от сжатого газа в единицу времени в межступенчатом охладителе, определяется по формуле:

где G - массовая подача ступени компрессора;

- массовая теплоемкость газа при постоянном давлении;

- температура газа на выходе из цилиндра после сжатия;

- температура газа на входе в следующую ступень после охладителя.

Количество теплотыотводимой от цилиндра компрессора в единицу времени, обычно принимается равным 0,7 от мощности, затрачиваемой на механические потери:

Количество воды W, необходимой для отвода теплоты в единицу времени, определяется по формуле:

где- удельная теплоемкость воды;

- температуры воды на выходе из охладителя;

- температуры воды на входе в охладитель.

Величинуопределяют таким образом, чтобы

температура охлаждающей воды не превьппала 30...45 °С, так как при температуре больше 45 °С начинается повышенное выпадение солей, загрязняющих поверхности теплообмена, и чтобы скорость воды была не меньше 1,0... 1,5 м/с, иначе будет происходить быстрое заиливание поверхностей теплообмена.

Применяются различные типы межступенчатых охладителей - многотрубные, ребристые, змеевиковые, типа «труба в трубе», оросительные и другие. Определение площади поверхности охладительного устройства представляет собой сложную задачу, так как должны быть учтены многие факторы: степень влажности газа, скорость газа, теплопроводность газа в зависимости от его температуры и давления, плотность газа, коэффициент теплообмена в прямой и изогнутой трубах, оребренность труб и т.д. Необходимая поверхность охлаждения обычно устанавливается по допускаемым скоростям проходных сечений и числу труб в пачке, а затем по количеству теплоты, которое должно быть отобрано, рассчитывается длина трубного пучка. Если длина труб получается неприемлемой, расчет повторяют, изменяя скорости движения газа, диаметры труб и другие параметры охладителя.

3.10 Конструкции поршневых компрессоров

На рис. 3.1. была представлена схема простейшего компрессора с одним цилиндром одинарного действия, рабочая камера которого находится с одной стороны поршня. В реальном компрессоре таких цилиндров имеется несколько, со сдвинутым по времени циклом работы одного щ*линдра по отношению к другому. Этим достигается равномерность загрузки двигателя при повороте его вала на один оборот.

В промышленности применяется большое число компрессоров с несколькими ступенями сжатия. В этом случае схема компрессора усложняется На рис. 3.7. показано несколько таких схем.

Римскими цифрами обозначены ступени сжатия газа В схемах характерно:

1. Расположение цилиндров под углом друг к другу (схемы д, е), что позволяет экономить площадь, занимаемую компрессором, и достигать лучшей загрузки двигателя.

2. Использование полости цилиндра не только перед поршнем, но и со стороны приводного штока (цилиндр двойного действия - схемы а, б, в, г, е, ж, з). Это вызывает необходимость иметь уплотнение штока, но при этом увеличивается подача воздуха компрессором.

3. Расположение цилиндров друг против друга в одной плоскости (схема з\ что позволяет лучше уравновесить инерционные силы, возникающие от движущихся масс компрессора.

Значительное разнообразие в схемы установок вносит тип привода компрессора. В основном применяются компрессоры с приводом от электродвигателя через клиноременную передачу и с приводом от двигателя внутреннего сгорания, встроенного в конструкцию компрессора.

Рис. 3.7. Схемы поршневых компрессоров

3.11 Основные узлы и детали компрессора

Цилиндры компрессора для давления до 6 МПа изготавливаются литыми из чугуна, для давления до 15 МПа и более - литыми или кованными из стали. Цилиндры компрессоров с воздушным охлаждением имеют ребра на внешней поверхности, с водяным охлаждением - полости для охлаждающей воды (охлаждающие рубашки). Цилиндры могут иметь сменные втулки из износостойкого чугуна. Рабочая поверхность цилиндра должна быть хорошо обработана, иметь низкую шероховатость и высокую износостойкость.

Поршни компрессоров имеют различное исполнение. Это связано с тем, что в компрессоре большое значение имеют массы движущихся деталей: с увеличением массы увеличиваются силы инерции. Поэтому поршни больших диаметров изготавливают полыми (тронковый поршень, рис. 3.8.).

Рис. 3.8. Поршень компрессора

Такой поршень гщлжндра одинарного действия состоит из корпуса 1, поршневых уплотнительных колец 2 , маслосъемных колец 3, препятствующих попаданию масла в полость сжатия, и пальца 4 для соединения с головкой шатуна в безкрейцкопфных компрессорах (рис. 3.7. д). Кроме того, поршни могут быть дисковыми (закрытого типа), ступенчатыми (дифференциального типа) для работы в цилиндрах различного диаметра и других конструктивных исполнений. Материалом для поршней служат алюминиевые сплавы, чугун СЧ 24-44 или СЧ 28-48 и сталь. Поршневые кольца делают ггоужинящими, с разрезом. Кольца делают из высококачественного перлитного чугуна.

В компрессорах без смазки цилиндров имеются опорные кольца, исключающие трение корпуса поршня о цилиндр, и у плотните льные поршневые кольца, обеспечивающие длительную работу при трении о цилиндр без смазки. Кольца в этом случае изготавливаются из пластмасс (фторопласт с коксом, графитофторопла-сты).

Клапаны служат для пропуска газа в одну сторону и исключения движения его в обратном направлении. Основными требованиями к клапанам являются: плотность в закрытом состоянии, своевременное открытие при малом усилии и своевременное закрытие, малое сопротивление потоку газа и износоустойчивость. В большинстве конструкций компрессоров применяют самодействующие всасывающие и нагнетательные клапаны, которые изготавливаются четырех типов:

- К - кольцевой - запорное устройство выполнено в виде кольца, расположенного перпендикулярно к направлению потока газа в клапане (рис. 3.9. а);

- Д - дисковый - запорное устройство выполнено в виде диска, снабженного дуговыми окнами для прохода газа, расположенного перпендикулярно к направлению потока газа в клапане;

-П - прямоточный - запорное устройство выполнено в виде пластины, расположенной параллельно направлению потока газа в клапане (рис. 3.9. б);

- Л - ленточный - запорное устройство выполнено в виде прямоугольной полосы или пластины с одним или несколькими параллельными окнами для прохода газа, расположенной перпендикулярно к потоку газа в клапане (рис. 3.9. в).

Прямоточные и ленточные клапаны используются при разности давлений на клапан не более 4 МПа, а кольцевые и дисковые - при разности давлений до 40 МПа.

В кольцевом и дисковом клапанах запорное устройство 3 прижимается пружинами 4, расположенными в ограничителе подъема запорного устройства 2, к седлу клапана 1.

Прямоточные и ленточные клапаны не имеют пружин; запорное устройство, перекрывающее проходное сечение клапана, само обладает пружинящими свойствами и в результате разности давлений отгибается и открывает проходное сечение.

Кроме клапанов указанных типов, применяются тарельчатые клапаны (запорное устройство выполнено в виде тарелки), клапаны с различными модификациями запорного устройства, комбинированные клапаны (объединяют в себе всасываюпщй и нагнетательный клапаны).

Седла и ограничители подъема клапанов изготавливаются в зависимости от давления в цилиндре компрессора из чугуна, стали, алюминиевых сплавов. Запорные устройства кольцевых и дисковых клапанов изготавливаются из износостойкой легированной стали с большой ударной вязкостью, подвергаются термической обработке, шлифуются и притираются по седлу клапана. Запорные устройства прямоточных и ленточных клапанов, а также пружины изготавливаются из пружинной стали.

Рис. 3.9. Клапаны поршневых компрессоров: а -- кольцевой; б -- прямоточный; в - ленточный; 1 - седло; 2 - ограничитель подъема запорного устройства; 3 -- запорное устройство; 4 - пружина; 5-стяжной болт

Уплотнительные устройства в компрессоре предназначаются для герметизации полости цилиндра у штока, вывода вала приводящего двигателя, штока - регулятора вредного пространства цилиндра. В последних двух случаях используются уплотнения из мягкого материала, резиновые уплотнительные манжеты. Уплотнительные устройства штоков выполняются с уплотнениями из различных материалов. На рис. 3.10. а показано уплотнительное устройство штока с плоскими чугунными кольцами в качестве уплотнений. Сила, с которой газ прижимает кольца к штоку, является результатом разности давлений в уплотнитель ном устройстве и зазоре между кольцами и штоком.

Рис. 3.10. Уплотнительные устройства штоков

Уплотнительное устройство 1 расположено со стороны картера и препятствует попаданию масла из него в цилиндр. В обоймах 2 расположены дроссельное кольцо 3 и уплотнительные разрезные кольца 4 и 5, обеспечивающие компенсацию износа уплотняющей поверхности. Радиально разрезанное уплотнительное кольцо 4 не устраняет прохода газа, а перекрывает торцевые зазоры уплотнительного кольца 5, имеющего ступенчатые разрезы. Уплотнительные кольца прижимаются к штоку пружинами 6. Дроссельные кольца перекрывают разрезы уплотнительных колец, чем затрудняют проход газа через уплотнительное устройство и способствуют лучшему удержанию масла, которое подается в его полость по отверстию 7 с помощью лубрикатора.

Аналогичную конструкцию имеют уплотнительные устройства с плоскими фторопластовыми кольцами (рис. 3.10. б). Конструкция таких уплотнительных устройств не предусматривает подачи в них смазки и состоит из секций, каждая из которых включает: обойму 1, нажимное 2 и дроссельное 5 кольца, уплотнение б, стягивающую упругую муфту 3, поджимающие пружины 4.

Уплотнения штоков компрессоров со смазкой цилиндров изготавливается из асбестового шнура, пропитанного суспензией фторопласта, компрессоров без смазки цилиндров - из тех же марок антифрикционных пластмасс, что и поршневые кольца. Нажимные и дроссельные кольца изготавливаются из стеклопластика, муфты - из резины.

Для предотвращения попадания газа в атмосферу уплотнительные устройства выполняются с отводом газа протечки; применяются гидрозатворы, продувка уплотнительных устройств нейтральным газом (при подаче токсичных и взрывоопасных газов). В компрессорах для подачи газа с механическими примесями конструкция уплотнительных устройств предусматривает предохранение трущихся поверхностей от попадания абразивных частиц.

3.12 Системы смазки компрессора

Узлы компрессора смазываются разбрызгиванием, циркуляцией масла под давлением, создаваемым масляным насосом, лубрикаторами и консистентной смазкой через шприц-масленки.

Разбрызгиванием смазываются коренные подшипники коленчатого вала и некоторые другие детали компрессора. Разбрызгиванию масла способствуют детали, которые периодически погружаются в масляную ванну картера при вращении коленчатого вала.

Циркуляция масла под давлением осуществляется шестеренчатым насосом и лубрикаторами. Шестеренчатый насос забирает масло из картера и направляет его в холодильник, где оно охлаждается водой. Из холодильника масло идет в фильтры грубой и тонкой очистки. Основная часть масла идет к кривошипному валу. Внутри вала имеются каналы, соединяющие места его трения о подшипники, и каналы или трубки, ведущие к головкам шатунов. Таким образом смазывается весь кривошипно-шатунный механизм. Масло, вытекающее из подшипников, стекает в картер компрессора. Часть масла идет на смазку вспомогательных механизмов, как, например, регулятор скорости. Часть масла из напорной линии направляется через клапан в картер при увеличении давления.

До пуска компрессора шестеренчатый насос не работает, так как он приводится в действие от кривошипного вала. Поэтому перед пуском надо прокачать масло ручным насосом.

Лубрикаторная смазка предназначена для подачи масла к цилиндрам компрессора и двигателя. Поскольку в этих местах излишек масла вреден, то подача масла идет строго ограниченными порциями. Порции подаются поршневыми насосами лубрикатора, управляемыми кулачками распределительного вала. Число лубрикаторов равно числу мест лубрикаторной смазки.

Следует отметить, что выпускаются компрессоры без системы смазки цилиндров и сальников. Такие компрессоры полнее отвечают требованиям безопасности, поскольку исключается возможность образования нагара, взрывоопасных смесей перекачиваемого газа и масла Кроме того, в некоторых технологических процессах практически недопустимо применение компрессоров со смазкой. В этом случае система смазки с помощью лубрикатора отсутствует.

Для смазки компрессоров применяются, в зависимости от частоты вращения вала компрессора и температуры газа при сжатии, масла с.вязкостью 10...30 * 10-6 м2/с при 100 °С и температурой застывания не выше 10 °С, а также турбинные, авиационные масла и др.

3.13 Регулирование производительности поршневых компрессоров

Расход сжатого газа часто изменяется в широких пределах в зависимости от нужд потребителя, особенностей режима работы аппаратов и машин, к которым подается газ. Кроме того, номинальная подача выпускаемых компрессоров не всегда соответствует требованиям потребителя. Возникает необходимость регулировать подачу компрессора. Регулирование возможно следующими способами:

1. Изменением частоты ходов поршней.

2. Изменением «мертвого» пространства в цилиндре.

3. Перепуском газа с выкида во всасывающую линию.

4. Дросселированием потока на приеме у компрессора.

5. Воздействием на клапаны компрессора.

6. Остановками компрессора.

Для изменения частоты ходов поршней необходимо изменить частоту вращения коленчатого вала. При этом регулировании подачи не возникает перераспределение отношения давления между ступенями, конструкция компрессора не усложняется. Обычные приводы компрессора (электродвигатель переменного тока и двигатель внутреннего сгорания) не допускают изменения частоты вращения вала в необходимых пределах и с достаточной экономичностью.

Влияние «мертвого» пространства на объем жидкости, всасываемой в цилиндр, было рассмотрено выше. При многоступенчатом сжатии дополнительное пространство, увеличивающее «мертвую зону», должно быть у первой ступени, так как именно ее характеристика влияет в этом случае на подачу.

Перепуск газа с выкида на всасывание естественно ведет к значительному увеличению удельной работы. Выгодно осуществлять перепуск после I ступени компрессора, что существенно сокращает потери энергии. Устройство для перепуска устанавливается после межступенчатого холодильника для уменьшения объема газа, проходящего через перепускной вентиль.

Дросселирование потока на приеме компрессора также приводит к увеличению расхода удельной работы и росту степени сжатия и температуры у последней ступени.

На нагнетательный (или всасывающий) клапан компрессора можно воздействовать, удерживая его в открытом состоянии после перехода цилиндра к периоду всасывания (или нагнетания при воздействии на всасывающий клапан). Этим достигается обратный переток газа из нагнетательного патрубка в цилиндр или из цилиндра во всасывающий патрубок. От длительности удержания клапана в открытом состоянии зависят эффективность наполнения цилиндра новой порцией газа и подача компрессора.

В компрессорной станции с большим числом компрессоров рационально изменять подачу газа, останавливая необходимое число машин. Такой способ экономичен и удобен при необходимости перехода на новую подачу на длительный период.

В практике использования компрессоров чаще применяют регулировку подачи отключением компрессоров на компрессорной станции и изменением «мертвого» пространства подсоединением к цилиндру дополнительных полостей.

3.14 Турбокомпрессоры. Принцип работы, схема

Лопастные компрессоры подобны по принципу действия лопастным насосам, в которых повышение давления воздуха или газа основано на принципе сообщения им большой скорости, преобразуемой затем в давление.

Лопастные компрессоры бывают одноступенчатые и многоступенчатые.

Рис. 3.11. Турбокомпрессор: а - продольный разрез; б--установка на фундаменте; 1 -- компрессор; 2 - мультипликатор; 3 -- электродвигатель; 4 -- фундамент; 5 - маслобак; 6-внутренняя газовая коммуникация

Турбокомпрессоры создают низкие и средние давления и обладают большой производительностью. В них также применяются центробежные и осевые типы лопастных машин.

Как и во всякой центробежной машине, основной частью их являются рабочие колеса, при помощи которых передается энергия от двигателя к сжимаемому газу.

Уравнение для определения теоретического напора, создаваемого колесом центробежного насоса, и формула Эйлера (уравнение 2.5) справедливы и при расчете центробежных компрессорных машин.

Правда, через колесо турбокомпрессора протекает не капельная жидкость, а газ, вследствие чего рассматриваемые нами процессы несколько усложняются из-за изменения плотности газа при изменении его давления. Однако существующие внутри колеса разности давлений так малы, что расчет можно вести по средней удельной плотности.

Рабочее колесо центробежной машины сообщает протекающему газу тем больший напор, чем больше будет окружная скорость на выходе из колеса. Величина окружной скорости зависит от прочности колеса. При изготовлении колес из легированной стали можно достичь степени сжатия ж в каждом из них в пределах 1,25...1,5.

Если требуется получить большие степени сжатия, то сжатие газа осуществляется последовательно в нескольких колесах. Скорость газа при выходе его из рабочего колеса достигает 160... 170 м/с, т. е. газ обладает большой кинетической энергией. Для преобразования кинетической энергии газа в давление в неподвижном корпусе турбомашины обычно предусматривают на-ггоавляюпгяй аппарат, реже безлопаточный диффузор, в котором скорость газа уменьшается и увеличивается его напор.

Компрессор типа 43ГЦ2-100/5-100 предназначен для сжатия нефтяного газа и подачи его в высоконапорную систему распределения при газлифтной эксплуатации скважин. Состоит он из электродвигателя, соединенного через мультипликатор с двумя корпусами сжатия - низкого (КНД) и высокого (КВД) давлений.

Корпус - стальной кованый цилиндр с вертикальным разъемом, закрываемый толстостенными крышками. Внутри него расположен аэродинамический узел с ротором неразборного типа, рабочие колеса которого крепятся на валу на горячей посадке. Для предотвращения утечек газа предусмотрены гидравлические (масляные) концевые уплотнения. Опоры валов компрессора и мультипликатора - подшипники скольжения.

Мультипликатор - одноступенчатый, горизонтального типа, с эвольвентным зацеплением. Охлаждение сжимаемого газа - воздушное. Охлаждение приводного электродвигателя осуществляется антифризом (смесь 60 % триэтиленгликоля с водой) или в летнее время водой с расходом 0,02 м3/с при давлении 0,294 МПа и температуре 30 °С.

Система смазки - циркуляционная, принудительная, со свободным сливом масла в бак. Во избежание износа подшипников во время пуска и остановки в маслосистеме и системе уплотнений предусмотрены рабочие и резервные маслонасосы с приводом от электродвигателей.

В зависимости от молекулярной массы сжимаемого нефтяного газа изготавливают пять модификаций компрессоров, различающихся зубчатыми парами мультшшикатора, обеспечивающими соответствующую частоту вращения роторов.

В комплект поставки компрессора 43ПД2-100/5-10О входят блоки промежуточного и концевого сепараторов, блоки промежуточного и концевого аппаратов воздушного охлаждения масла, арматура, системы автоматики и зашиты.

Рис. 3.12. Центробежный компрессор 43ГЦ2-100/5-100: 1 -- корпус высокого давления; 2 -- корпус низкого давления; 3 - мультипликатор;4 - электродвигатель; 5 - агрегат смазки,; 6 - блок маслоотводчиков низкого давления; 7 - блок масловодоотводчиков высокого давления; 8 - агрегат уплотнений

Система автоматики и КИП обеспечивают дистанционный пуск и остановку компрессора; антипомпажную защиту; регулирование и контроль основных параметров; предупредительную и аварийную сигнализации; блокировку, разрешающую пуск компрессора после выполнения всех предпусковых операций; отключение компрессора при аварийных режимах.

3.15 Особенности конструкции турбокомпрессора. Сравнение с поршневым компрессором

Для сжатия газа лопастной машиной требуются большие окружные скорости. Скорости газа в проходных каналах велики, и поэтому требования к рабочим колесам компрессора отличны от требований к рабочему колесу насоса. Необходимы высокие чистота поверхности каналов и прочность колеса. Обычно их делают из стали, составными из дисков и лопаток так, чтобы можно было точно и чисто обработать их поверхности.

Необходимость иметь высокие окружные скорости приводит к большой частоте вращения валов лопастных компрессоров (до 13000 об/мин и более). Поэтому ротор компрессора обычно подвергают динамической балансировке, а вал тщательно рассчитывают на критическую частоту вращения.

При работе центробежного компрессора между ступенями, а также внутри каждой ступени возникают перепады давления, которые вызывают перетоки газа из зоны повышенного давления в зону пониженного давления. Для предотвращения утечек газа в зазорах применяют лабиринтовые уплотнения.

Рабочие колеса многоступенчатого турбокомпрессора, в отличие от колес многоступенчатого насоса, могут быть неодинаковыми по размерам. При сжатии газа его объем уменьшается и необходимость сохранения скорости потока приводит к необходимости уменьшать площадь проходного сечения колес и их диаметры.

Основные преимущества турбокомпрессора по сравнению с поршневым компрессором, проявляющиеся при сжатии больших количеств газа, следующие:

- турбокомпрессор имеет меньшие основные размеры и массу при такой же мощности, как и у соответствующего поршневого компрессора;

- вал турбокомпрессора соединяется непосредственно с валом двигателя без механизмов, преобразующих частоту вращения;

-подача турбокомпрессора равномерна и непрерывна, что снимает необходимость устанавливать большие резервуары со стороны нагнетания;

- инерционные усилия уменьшаются до минимума, что позволяет строить более легкие фундаменты;

- всасывающие и нагнетательные клапаны отсутствуют, что обеспечивает большую надежность работы турбокомпрессора;

- подаваемый газ не загрязнен смазкой рабочих органов.

К недостаткам турбокомпрессора можно отнести более низкий КПД и незначительный напор.

3.16 Характеристика турбокомпрессора

Так же как и для центробежных насосов, работа центробежного компрессора характеризуется соотношением основных параметров: р, N, и Q. Зависимость давления, мощности и КПД от подачи называется характеристикой центробежного компрессора.

Рис. 3.13. Характеристика турбокомпрессора

На рис. 3.13. приведена характеристика центробежного компрессора при . Там же нанесена и характеристика сети (кривая Д При работе в данной сети параметрами компрессора являютсяПри уменьшении сопротивления сети производительность компрессора возрастает. При отсутствии сопротивления сети, когда компрессор работает на «выброс», его производительность достигает максимального значения.

Как видно из рис. 3.13., при работе центробежного компрессора его параметры могут достигать критических значенийи (например, в точке К будет максимальное давление). При подаче, меньшей критической, возникает явление помпажа, характеризующееся чередованием прекращения и возобновления подачи газа и сопровождающееся вибрациями машины и сотрясениями трубопроводов.

Явление помпажа объясняется следующим образом. При сокращении подачи турбокомпрессора до критической давление нагнетания становится максимальным. При дальнейшем уменьшении подачи давление, развиваемое компрессором, падает ниже критического. В этом случае машина прекращает подачу и даже возможно обратное движение газа с линии нагнетания в линию всасывания. Поскольку расход сжатого газа остается прежним, давление на линии нагнетания быстро падает, и компрессор возобновляет подачу. Таким образом в сети возникают пульсации подачи и давления, период которых зависит от емкости сети, а амплитуда - от характеристики турбокомпрессора.

3.17 Винтовые компрессоры

На рис 3.14. представлен винтовой компрессор. Работа компрессора осуществляется следующим образом. В корпусе компрессора 3 вращаются два ротора - ведущий 1 и ведомый 2. Поверхности роторов выполнены в виде винтов и находятся в зацеплении таким образом, что выступы ведомого вала входят во впадины ведущего. При всасывании из зоны а газ попадает во впадины ведущего ротора, которые выполняют роль цилиндров. Роль поршня выполняют выступы ведомого вала, которые, заполняя последовательно всю длину канала, образованного впадинами, постепенно осуществляют сжатие газа. В момент, когда сечение впадин оказывается перед нагнетательным отверстием, газ, сжатый до конечного давления, поступает в систему нагнетания (зона б).

Рис. 3.14. Винтовой компрессор

Процесс сжатия газа осуществляется и во впадинах ведущего ротора при попадании в них выступов ведомого ротора. Ввиду этого винтовые компрессоры относятся к компрессорам объемного типа.

Винтовые компрессоры могут развивать производительность от 0,06 до 0,4 м3/с при конечном давлении 0,3 МПа для одноступенчатого компрессора и до 10 МПа - для двухступенчатого компрессора. Частота вращения ротора - 50...200 об/с. Винтовые компрессоры могут применяться для подачи газа с наличием в нем жидкости, например, конденсата.

Технологическая схема компрессорных установок типов 7ВКГ-30/7 и 7ВКГ-50/7 показана на рис. 3.15.

Рис. 3.15. Технологическая схема компрессорных установок типов 7ВКГ-50/7 (а, б) и 7ВКГ-30/7 (в): 1 - задвижка; 2 - впускной клапан; 3 - электродвигатель; 4 - муфта сцепления; 5 - компрессор; б - масляный фильтр; 7 -- отсечной клапан; 8 -- вентиль угловой; 9 - масляный фильтр грубой очистки; 10, 13, 17, 19- вентили; 11 - блок маслоохладителя 7ВГК-50/7; 12, 18 - перепускные клапаны; 14 - предохранительный клапан; 15 -- компенсатор; 16-обратный клапан; 20 - блок маслоохладителя; I - газ на прием компрессора; II-- газомасляная смесь в приемный сепаратор; III-- газомасляная смесь к потребителю; IV-- слив масла в емкость; V-- масло на охладитель; А -- газ; Б -- газомасляная смесь; В -- масло

Нефтяной газ с сепарационных установок поступает на компрессор 5 через приемную задвижку 1 и впускной клапан 2. Процесс сжатия происходит аналогично процессу сжатия в компрессоре 5ВКГ.

Маслогазовая смесь из компрессора поступает в сепаратор (в комплект поставки не входит), где газ отделяется от масла и направляется в газопровод по назначению, а масло или нефть под давлением нагнетания, пройдя через холодильник 11, фильтры 9 и б, поступает вновь на компрессор. При неработающем компрессоре для случая, когда масляная система находится под давлением, на компрессорной установке предусмотрен отсечной клапан 7, перекрывающий вход масла в компрессор.

Отсечной клапан необходим для предотвращения подачи масла в компрессор при его остановке. В противном случае масло заполнит рабочие полости компрессора, что затруднит последующий запуск установки и может привести к гидравлическому удару.

Клапан закрывается с понижением давления на выходе из компрессора после его остановки. Снижение давления происходит в результате утечки газа из компрессора по зазорам в винтах на линии всасывания.

Смазка подшипников, создание затвора в запорных втулках, разгрузочном устройстве и концевом уплотнении осуществляются тем же маслом, которое дополнительно пропускается через сетчатый фильтр тонкой очистки б. При запуске компрессорной установки в холодное время года, когда в холодильнике имеется загустевшее масло, подвод масла осуществляется через перепускные клапаны 12 и 18, минуя холодильник.

3.18 Ротационные компрессоры

Газ, поступающий в компрессор через всасывающий патрубок, отсекается пластинами при вращении ротора в тот момент, когда происходит соприкосновение камеры с краем цилиндрической расточки корпуса. По мере поворота ротора расстояние между ним и корпусом, а следовательно, и объем камеры сжатия уменьшаются. Пластины при этом утапливаются в пазы ротора. Сжатие происходит до тех пор, пока пластина не дойдет до окна, имеющегося в цилиндрической части корпуса со стороны камеры нагнетания (точка b). Затем газ поступает в напорный патрубок (линия bс). От точки с до точки d происходит расширение газа, оставшегося в «мертвом» пространстве.

Благодаря большой скорости вращения пластины под воздействием центробежной силы всегда прижаты к цилиндрической расточке корпуса, а в момент прохождения над окнами удерживаются специально предусмотренными направляющими.

Ротационные компрессоры бывают одно- и двухступенчатыми. Они имеют производительность от 0,083 до 1,1 м3/с и развивают давление: одноступенчатые - до 0,4 МПа, двухступенчатые -до 1 МПа.

При вращении вала в противоположную сторону ротационный компрессор может работать как вакуумная машина.

Особенность ротационного компрессора заключается в том, что степень сжатия в нем не зависит от давления в нагнетательном трубопроводе, а зависит от геометрических размеров компрессора. Если компрессор рассчитан на давление нагнетания 0,4 МПа, то при давлении нагнетания, равном 0,2 МПа, он будет потреблять такую же мощность, что и при 0,4 МПа. В тот момент, когда камера сжатия будет сообщена с нагнетательным патрубком, газ расширится и работа, затраченная на излишнее сжатие, пропадет без пользы. Для того чтобы избавиться от этого недостатка, на цилиндрической части корпуса предусматриваются нагнетательные клапаны.

Регулирование производительности ротационных компрессоров достигается либо изменением числа оборотов ротора, либо дросселированием на всасывании. Машины, имеющие нагнетательные клапаны, переводятся на холостой ход соединением нагнетательного патрубка со всасывающим.

По сравнению с поршневыми компрессорами ротационные имеют ряд преимуществ:

- компактность и небольшой вес (ротационный компрессор занимает площадь меньше поршневого компрессора той же производительности);

- спокойная уравновешенная работа, обусловленная отсутствием кривошипно-шатунного механизма (благодаря этому под компрессор требуется небольшой фундамент);

- большое число оборотов компрессора, допускающее применение многооборотных электродвигателей; большая равномерность подачи;

- простота конструкции (меньшее, чем у поршневой машины, число деталей).

Наряду с этим ротационные компрессоры имеют следующие недостатки:

- меньший КПД, чем у поршневых машин;

- более сложная технология изготовления;

- ограниченное конечное давление.

Газомотокомпрессоры запускаются энергией сжатого воздуха и имеют несколько периодов, когда надо включать и отключать некоторые устройства. Для ручного управления пуск и остановка газомотокомпрессора сложны, поэтому часть периода пуска автоматизирована. Перед пуском компрессора необходимо вручную подать насосом масло к движущимся и трущимся узлам. После этого нажимается кнопка «Пуск». Автоматический пуск производится в следующем порядке:

1. Из пусковых баллонов в пусковое устройство (им оснащается часть цилиндров двигателя компрессора) подается воздух, раскручивающий двигатель.

2. По мере повышения давления масла включается зажигание (давление масла 0,02 МПа), подается топливный газ (0,04 МПа), включается защита (0,15 МПа).

З.При достижении давления топливного газа 0,05.. .0,07 МПа прекращается подача сжатого воздуха.

4. При нагреве масла до 25 °С давление топливного газа поднимается до 0,3 МПа и подается воздух в систему регулировки частоты вращения вала.

5.При нагреве масла до 40...45 °С и нагреве конденсата на выходе из двигателя до 57...60 °С (машина прогрелась) устанавливается рабочий режим компрессора; закрывается перепуск и по-вышается давление сжатия газа. Эта операция выполняется кранами с пневматическим приводом.

Основные требования по техническому обслуживанию га-зомотокомпрессоров:

1. Содержать компрессор в чистоте.

2. Ежедневно проверять уровень масла пгупом и при необходимости доливать. Масло заменять через 300 ч работы, а у нового и отремонтированного компрессора - через 60 ч работы дважды. Применяемое компрессорное масло должно иметь сертификаты. Масло надо сливать сразу после остановки компрессора, пока оно не остыло.

3.Продувать водомаслоотделитель через 3...4 чработы.

4. Ежедневно проверять натяжение ремня вентилятора. Нормальный прогиб ремня между шкивами должен быть равен 10.. .15 мм при нажатии на него с усилием 30...40 Н.

5. Следить за промежуточным и конечным давлениями воздуха. В случаях повышения промежуточного давления более чем на 0,23 МПа или понижения до 0,2 МПа необходимо остановить компрессор и сделать ревизию клапанов, сменить поломанные пластины. В случае повышения конечного давления в воздухосборнике более чем на 0,85 МПа следует остановить компрессор, сбросить давление в воздухосборнике, сделать ревизию предохранительного клапана и отрегулировать на давление сброса 0,82 - 0,85 МПа.

6. Периодически проверять затяжку всех болтовых соединений.

7. Через каждые 40 ч работы набивать масленку вентилятора смазкой до появления ее из контрольного отверстия.

8. Периодически разбирать воздушные фильтры и промывать фильтрующие элементы в керосине.

9. У нового и отремонтированного компрессоров первое подтягивание шатунных болтов выполнять через 50 ч работы, а последующие - через 150 ч. Несвоевременное подтягивание может привести к аварии.

Причины неполадок в работе газомотокомпрессора следующие:

- ненормальное повышение давления в какой-либо ступени вызывается неисправностью клапанов на следующей ступени;

-ненормальное повышение температуры сжимаемого газа может быть следствием неправильного распределения дав-ления по ступеням или неисправности системы охлаждения;

- неисправность системы охлаждения характеризуется образованием накипи в водяных рубашках компрессора и в трубах холодильника;

- внезапное падение давления масла в циркуляционной системе смазки может быть вызвано поломкой шестеренного насоса с внутренним зацеплением, разрывом маслопровода, поломкой пружины предохранительного клапана;

- постепенное падение давления в циркуляционной системе может быть обусловлено засорением масляного фильтра или приемной сетки насоса, неплотностью предохранительного клапана, большой выработкой вкладышей подшипников скольжения, разжижением смазки вследствие перегрева;

-повышение температуры масла вызывается загрязнением масляного холодильника или повышением температуры движущихся частей компрессора вследствие их износа;

- резкий стук в цилиндре компрессора может быть следствием ряда неполадок: попадания куска пружины, обломков клапана между поршнем и крышкой; ударов поршня о крышку; ослабления соединения поршня со штоком; ослабления поршневых колец в канавках поршня; ослабления соединения штока с крейцкопфом; попадания в цилиндр жидкости или чрезмерной его смазки; большого износа продувочного 1щлиндра или крейцкопфа и увеличенного зазора между ними; износа пальца крейцкопфа или разработки его бронзовых втулок; слабой посадки клапанов в гнезда цилиндра;

- снижение подачи компрессора является следствием негерметичности клапанов, износа поршневых колец, цилиндров или сальников;

- газомотокомггоессор не запускается или запускается с трудом - необходимо проверить давление пускового воздуха; продуть линию пускового воздуха от конденсата, загрязняющего свечи; продуть газовую линию от воздуха; проверить, правильно ли установлено начало открытия клапанов воздухораспределителя; проверить, не заедают ли пусковые клапана воздухораспределителя и не пропускает ли пусковой трубопровод; отрегулировать систему зажигания (свечи зажигания должны быть сухими и иметь прав иль-ный зазор; контакты магнето не должны быть обгоревшими, щетки изношенными);

- цилиндры двигателя перегреваются, если пропускают поршневые кольца продувочного насоса; установлено позднее зажигание; засорен воздушный фильтр или загрязнены выхлопной коллектор и глушитель; недостаточно давление охлаждающей воды или на стенках рубашек охлаждения имеется накипь (перегрев цилиндров обнаруживают по температуре выхлопных газов);

- повышенная дымность двигателя наблюдается в следующих случаях: велика подача масла лубрикатором в цилиндры двигателя и к газорегулирующему клапану; неисправен маслосбрасьшающий клапан продувочного насоса; в ресивере и выхлопном тракте скопилось значительное количество несгоревшего масла;

-двигатель не принимает нагрузку, т. е. под нагрузкой уменьшаются обороты вала и ручной регулировкой натяжения пружины центробежного регулятора не удается довести частоту вращения до нормальной. В этом случае необходимо проверить давление топливного газа, систему зажигания, работу топливных клапанов, клапаны продувочных цилиндров, воздушные фильтры, состояние поршней и цилиндров двигателя.

3.20 Эксплуатация поршневых компрессоров

Во время работы компрессора необходимо наблюдать за:

- подачей смазки лубрикатором и количеством масла в резервуаре;

- давлением масла в циркуляционной системе смазки;

- распределением давления по ступеням компрессора и давлением за последней ступенью;

- температурой газа, воды и масла.

Холодильники и газосборник следует периодически продувать, а исправность предохранительных клапанов проверять ежедневно.

При эксплуатации компрессорных установок запрещается:

- работать, если температура конца сжатия в какой-либо из ступеней возросла выше 200 °С при смазке 1тилиндров маслом «компрессорное 12» и 210 °С - при смазке маслом «компрессорное 19»; - работать, если в каком либо из узлов слышатся стуки;

- крепить на ходу фундаментные болты и подтягивать фланцевые соединения, находящиеся под давлением;

- подтягивать или заглушать предохранительные клапаны; -допускать работу компрессора при неисправной системе

охлаждения;

-смазывать компрессор загрязненным маслом или маслом неподходящего качества;

- допускать загазованность помещения при сжатии газов;

- нарушать общие правила техники безопасности: работать без ограждений или заземления, с неисправной электропроводкой, при недостаточной освещенности и т. д.

Остановка компрессора происходит в несколько этапов:

1. Компрессор переводится на холостой ход, при этом открываются продувочные вентили холодильников с тем, чтобы остановка компрессора производилась без нагрузки.

2. Происходит остановка двигателя.

3. Выключается охлаждающая вода; выключение воды следует производить общим вентилем, так как при этом не нарушается регулировка подачи воды. Если есть опасность замерзания воды, ее надо спустить из всех холодильников и рубашек цилиндра.

После остановки компрессора проверяют отсутствие нагрева подшипников и нагшавляющих крейцкопфа.

При необходимости срочной остановки компрессора прежде всего надо остановить привод и затем выполнять остальные операции, указанные выше.

3.21 Типы компрессоров, их применение

При разработке нефтяной залежи газлифтным способом газ подается к газлифтной скважине обычно под давлением до 5...8 МПа. В пусковой период давление должно быть поднято в среднем до 10 МПа. Большие объемы газа и воздуха под высоким давлением требуется подавать также при поддержании пластового давления газом и для создания внутрипластового движущегося очага горения. Для этих целей применяются в основном газомотокомпрессоры 8ГКМ, 10ГКМ(рис. 3.17.).

Для освоения нефтяных скважин компрессорным способом применяются компрессорные установки ДКС-7/200А, ДКС-3,5/200Д, ДКС-3,5/200Т1Х 'сД-9/101, КПУ-16/100, КПУ-16/250идр.

Для сбора газа используются компрессоры с давлением на выходе 0,4...0,5 МПа и на входе 0,06...0,08 МПа. Подача таких компрессоров обычно не превышает 0,42 м3/с.

Для транспортирования газа по территории нефтепромысла требуются компрессоры с давлением на выходе до 0,4...0,8 МПа при подачах до 0,5 м3/с. Для транспортирования больших объемов газа, кроме поршневых, применяются центробежные и винтовые компрессоры. Подача центробежных компрессоров достигает 1,7...2 м3/с при давлении на выходе 0,5 МПа, а винтовых - около 0,2 м3/с при том же давлении.

Для многих вспомогательных устройств и для различных целей (например, для пневматических муфт, для привода устройств с пневматическими двигателями, для снабжения сжатым воздухом КИП и средств автоматики, для испытания оборудования опрессовкой, для строительного и дорожного инструмента и т. п.) используются компрессоры с давлением на выходе 0,4...0,8 МПа при подачах от 0,05 до 0,5 м3/с. Так, например, для дожатия нефтяного газа в системе внутрипромыслового сбора, и транспорта, а также для систем малогабаритных газобензиновых установок применяется одноступенчатый винтовой маслозаполненный компрессор 6ГВ-1Ш-П.


Подобные документы

  • Рассмотрение схемы и принципов действия гидравлической поршневой насосной установки. Анализ спуска и подъема погружного агрегата. Расчет оборудования при фонтанной эксплуатации скважин. Определение глубины спуска, давления в скважине, диаметра штуцера.

    курсовая работа [631,3 K], добавлен 22.04.2015

  • Теоретические основы подъема газожидкостной смесив скважине и основные, принципиальные схемы непрерывного и периодического газлифта. Правила безопасности при газливтной и фонтанной эксплуатации. Определение производительности и мощности компрессора.

    дипломная работа [92,6 K], добавлен 27.02.2009

  • Выбор способов добычи нефти. Схема оборудования фонтанной скважины. Газлифтный и насосные способы добычи нефти. Устройство скважинной струйной насосной установки. Критерии оценки технологической и экономической эффективности способов эксплуатации.

    презентация [1,9 M], добавлен 03.09.2015

  • Комплект устройств, монтируемый на устье фонтанирующей скважины для его герметизации и управления потоками продукции. Условия эксплуатации и виды фонтанной арматуры. Конструктивные особенности, устройство машин и оборудования для добычи нефти и газа.

    презентация [596,6 K], добавлен 17.02.2015

  • Классификация способов эксплуатации скважин при подъёме скважинной продукции. Изучение видов фонтанирования и типов фонтанных скважин. Характеристика механизированной добычи нефти. Технологический расчет и особенности конструкции газлифтного подъемника.

    контрольная работа [322,0 K], добавлен 21.08.2016

  • Процесс добычи нефти и природного газа. Эксплуатация скважин с помощью штанговых глубинно-насосных установок. Исследование процесса эксплуатации скважин Талаканского месторождения. Анализ основных осложнений, способы их предупреждения и ликвидация.

    курсовая работа [2,2 M], добавлен 11.06.2014

  • Назначение устьевого оборудования скважин и колонных головок. Способы монтажа и транспортировки буровых установок. Схемы работы комплексов механизмов для механизации АСП-3. Модуль компрессоров в системе пневмоуправления буровой установки БУ-2900/175.

    контрольная работа [467,8 K], добавлен 17.01.2011

  • Теория подъема жидкости в скважин. Эксплуатация фонтанных скважин, регулирование их работы. Принципы газлифтной эксплуатации скважин. Методы расчета промысловых подъемников. Расчет кривой распределения давления в подъемных трубах газлифтной скважины.

    курсовая работа [1,5 M], добавлен 07.05.2015

  • Применение газлифта с высокими газовыми факторами и забойными давлениями ниже давления насыщения. Оборудование устья компрессорных скважин. Газлифтный способ добычи нефти и техника безопасности при эксплуатации скважин. Селективные методы изоляции.

    реферат [89,1 K], добавлен 21.03.2014

  • Описание Хохряковского месторождения. Физико-химические свойства нефти газа и воды в пластовых условиях. Технология добычи нефти. Характеристика добывающего фонда скважин и базовые показатели эксплуатации. Расчет и подбор оборудования УЭЦН к скважине.

    курсовая работа [663,7 K], добавлен 08.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.