Основы геодезии

Изображение рельефа на топографических картах (крутизна и направление ската). Расчет расстояний, недоступных для измерения лентой. Гидростатическое нивелирование. Геодезические изыскания линейных сооружений. Порядок полевого трассирования автодороги.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 18.09.2013
Размер файла 143,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Изображение рельефа на топографических картах (крутизна и направление ската)

Основные формы рельефа. Несмотря на большое разнообразие неровностей земной поверхности, можно выделить основные формы рельефа: гора, котловина, хребет, лощина, седловина.

Гора (или холм) - это возвышенность конусообразной формы. Она имеет характерную точку - вершину, боковые скаты (или склоны) и характерную линию - линию подошвы. Линия подошвы - это линия слияния боковых скатов с окружающей местностью. На скатах горы иногда бывают горизонтальные площадки, называемые уступами.

Котловина - это углубление конусообразной формы. Котловина имеет характерную точку - дно, боковые скаты (или склоны) и характерную линию - линию бровки. Линия бровки - это линия слияния боковых скатов с окружающей местностью.

Хребет - это вытянутая и постепенно понижающаяся в одном направлении возвышенность. Он имеет характерные линии: одну линию водораздела, образуемую боковыми скатами при их слиянии вверху, и две линии подошвы.

Лощина - это вытянутое и открытое с одного конца постепенно понижающееся углубление. Лощина имеет характерные линии: одну линию водослива (или линию тальвега), образуемую боковыми скатами при их слиянии внизу, и две линии бровки.

Седловина - это небольшое понижение между двумя соседними горами; как правило, седловина является началом двух лощин, понижающихся в противоположных направлениях. Седловина имеет одну характерную точку - точку седловины, располагающуюся в самом низком месте седловины.

Существуют разновидности перечисленных основных форм. Например разновидности лощины: долина, овраг, каньон, промоина, балка и т.д. Иногда разновидности основных форм характеризуют особенности рельефа конкретного участка местности, например, в горах бывают пики - остроконечные вершины гор, ущелья, теснины, щеки, плато, перевалы и т.д.

Вершина горы, дно котловины, точка седловины являются характерными точками рельефа; линия водораздела хребта, линия водослива лощины, линия подошвы горы или хребта, линия бровки котловины или лощины являются характерными линиями рельефа.

Способы изображения рельефа. Способ изображения рельефа должен обеспечивать хорошее пространственное представление о рельефе местности, надежное определение направлений и крутизны скатов и отметок отдельных точек, решение различных инженерных задач. За время существования геодезии было разработано несколько способов изображения рельефа на топографических картах. Перечислим некоторые из них:

Перспективный способ. Способ отмывки. Этот способ применяется на мелкомасштабных картах. Поверхность Земли показывается коричневым цветом: чем больше отметки, тем гуще цвет. Глубины моря показывают голубым или зеленым цветом: чем больше глубина, тем гуще цвет. Способ штриховки. Способ отметок. При этом способе на карте подписывают отметки отдельных точек местности. Способ горизонталей.

В настоящее время на топографических картах применяют способ горизонталей в сочетании со способом отметок, причем на одном квадратном дециметре карты подписывают, как правило, не менее пяти отметок точек.

Способ горизонталей. Сущность способа горизонталей можно понять из рис. 1.

Рис. 1

Рис. 2

топографический геодезический трассирование карта

Мысленно рассечем участок местности горизонтальной плоскостью на высоте H. Линия пересечения этой плоскости с поверхностью Земли называется горизонталью. Горизонталь на местности - это замкнутая кривая линия, все точки которой имеют одинаковые отметки. Уменьшенное изображение на карте горизонтальной проекции горизонтали местности также называют горизонталью. Для того чтобы изобразить горизонталями рельеф участка местности, нужно рассечь его не одной, а несколькими горизонтальными плоскостями, расположенными на одинаковом расстоянии по высоте одна от другой. Это расстояние называется высотой сечения рельефа и обозначается буквой h. На местности горизонтали не пересекаются, так как они лежат в разных параллельных плоскостях; на карте они тоже, как правило, не пересекаются. Все основные формы рельефа имеют свой рисунок горизонталей; при этом и гора и котловина изображаются системами замкнутых горизонталей (рис. 2). Чтобы различить эти формы рельефа, а также для некоторых других целей на карте принято показывать направление скатов вниз; для этого применяются бергштрихи - короткие штрихи, перпендикулярные горизонталям и направленные по скату вниз. Основные горизонтали имеют отметки, кратные высоте сечения рельефа h, начиная от нуля счета высот. Для выражения характерных особенностей рельефа рекомендуется проводить полугоризонтали и четвертьгоризонтали; они проводятся штриховыми линиями через половину и четверть сечения рельефа на отдельных участках карты (где расстояние между основными горизонталями слишком большое).

Каждая пятая основная горизонталь при h = 1, 2, 5, 10 м и каждая четвертая при h = 0.5 и 2.5 м утолщаются. Отметки некоторых горизонталей на карте подписывают, ориентируя основания цифр вниз по склону.

Крутизна и направление скатов. На рис. 1 видно, что расстояние a между горизонталями на горизонтальной проекции участка зависит от крутизны ската. При одинаковой высоте сечения рельефа расстояние между горизонталями тем меньше, чем круче скат. Крутизна ската характеризуется углом наклона н:

tg(н) = h/a (1)

Тангенс угла наклона называется уклоном и обозначается буквой i; уклон обычно выражают в процентах или промилле (промилле - это тысячная часть целого). Рассечем скат горы горизонтальными плоскостями при высоте сечения h (рис. 3); на участке BC скат имеет угол наклона н 1, на участке CD - угол наклона н2. Расстояние a1 - это горизонтальное проложение линии ската BC; оно называется заложением.

Рис. 3

Рис. 4

Заложение, перпендикулярное к горизонталям, называется заложением ската, то есть, заложение ската - это горизонтальная проекция линии наибольшей крутизны ската в данной точке; оно принимается за направление ската. Измерив на карте отрезок a и зная высоту сечения рельефа h, по формуле (1) можно вычислить тангенс угла наклона, а затем и сам угол наклона н. График заложений. Для быстрого определения угла наклона по карте пользуются специальным графиком, который называется графиком заложений. Он строится следующим образом (рис. 4):

1.вычисляют заложение ската по заданной высоте сечения рельефа для разных углов наклона 0.5o, 1o, 2o и т.д.,

2. проводят прямую линию и откладывают на ней равные отрезки длины, которые

3. подписывают в градусах угла наклона,

4. перпендикулярно этой линии откладывают в масштабе карты заложения ската,

5. вычисленные для каждого значения угла наклона,

6. соединяют полученные точки плавной кривой.

2. Определение расстояний, недоступных для непосредственного измерения лентой. Измерение расстояний светодальномерами

Если препятствие (река, обрыв, здание) делает расстояние недоступным для измерения лентой, то его измеряют косвенным методом.

Так, для определения недоступного расстояния d измеряют лентой длину базиса b (рис. 5, а, б) и углы a и b. Из DABC находят

d = b sin a / sin (a + b),

где учтено, что sin g = sin (180°-a-b) = sin (a + b).

Рис. 5 Определение недоступного расстояния

Для контроля расстояние d определяют ещё раз из треугольника ABC1 и при отсутствии недопустимых расхождений вычисляют среднее.

Светодальномер - прибор для измерения расстояний по времени прохождения оптическим излучением (светом) измеряемого расстояния.

Светодальномер также относится к группе геодезических приборов. Но с популяризацией электронных тахеометров (в которых дальномер уже встроен) как отдельный прибор утратил свое значение. Светодальномер содержит источник оптического излучения, устройство управления его параметрами, передающую и приемную системы, фотоприемное устройство и устройство измерения временных интервалов. Светодальномеры делятся на импульсные и фазовые в зависимости от методов определения времени прохождения излучением расстояния от объекта и обратно. В импульсном дальномере источником излучения чаще всего является лазер, излучение которого формируется в виде коротких импульсов. Для измерения медленно меняющихся расстояний используют одиночные импульсы, при быстро изменяющихся расстояниях применяется импульсный режим излучения. Твердотельные лазеры допускают частоту следования импульсов излучения до 50-100 Гц, полупроводниковые - до 104-105 Гц. Формирование коротких импульсов излучения в твердотельных лазерах осуществляется механическими, электрооптическими или другими затворами или их комбинациями. Инжекционные лазеры управляются током инжекции. В фазовых дальномерах в качестве источников света применяются накальные или газосветные лампы, светодиоды и почти все виды лазеров. Светодальномеры со светодиодами обеспечивают дальность действия до 2-5 км, с газовыми лазерами при работе с оптическими отражателями на объекте - до 100 км, а при диффузном отражении от объектов - до 0,8 км; аналогично, светодальномеры с полупроводниковыми лазерами обеспечивает дальность действия 15 и 0,3 км. В фазовых излучение модулируется интерференционными и электрооптическими модуляторами. В СВЧ фазовых светодальномерах преимущественно применяются электрооптические модуляторы на резонаторных и волноводных СВЧ структурах. В импульсных светодальномерах обычно в качестве фотоприемного устройства применяются фотодиоды, в фазовых фотоприем осуществляется на фотоэлектронные умножители. Чувствительность фотоприемного тракта может быть увеличена на несколько порядков применением оптического гетеродинирования. Дальность действия такого светодальномера ограничивается длиной когерентности передающего лазера, при этом возможна регистрация перемещений и колебаний объектов до 0,2 км. Измерение временных интервалов чаще всего осуществляется счетно-импульсным методом.

3. Дешифрарование аэроснимков

Дешифрирование аэроснимков, один из методов изучения местности по её изображению, полученному посредством аэросъёмки. Заключается в выявлении и распознавании заснятых объектов, установлении их качественных и количественных характеристик, а также регистрации результатов в графической (условными знаками), цифровой и текстовой формах. Дешифрирование имеет общие черты, присущие методу в целом, и известные различия, обусловленные особенностями отраслей науки и практики, в которых оно применяется наряду с др. методами исследований.

Для получения аэроснимков с наилучшими для данного вида дешифрирования информационными возможностями определяющее значение имеют учёт при аэрофотографировании природных условий (облика ландшафтов, освещённости местности), размерности и отражательной способности объектов, выбор масштаба, технических средств (тип аэроплёнки и аэрофотоаппарата) и режимов аэросъёмки (лётносъёмочные и фотолабораторные работы).

Эффективность дешифрирования., т.е. раскрытия содержащейся в аэроснимках информации, определяется особенностями изучаемых объектов и характером их передачи при аэросъёмке (дешифровочными признаками), совершенством методики работы, оснащённостью приборами и свойствами исполнителей дешифрирования. В ряду дешифровочных (демаскирующих) признаков различают прямые и косвенные (нередко с выделением комплексных). К прямым признакам относят: размеры, форму, тени собственные и падающие (иногда их считают косвенным признаком), фото тон или цвет и сложный признак рисунок или структуру изображения. К косвенным, указывающие на наличие или характеристику объекта, хотя он и не получил непосредственного отображения на аэроснимке в силу условий съёмки или местности. Например, растительность и микрорельеф являются индикаторами при дешифрировании задернованных почв.

В методическом отношении для дешифрирования характерно сочетание полевых и камеральных работ, объём, и последовательность которых зависят от их назначения и изученности местности.

Полевое дешифрирование заключается в сплошном или выборочном обследовании территории с установлением необходимых сведений при непосредственном изучении дешифрируемых объектов. На труднодоступных территориях полевое дешифрирование осуществляют с применением аэровизуальных наблюдений.

Камеральное дешифрирование заключается в определении объектов по их дешифровочным признакам на основе анализа аэроснимков с использованием различных приборов, справочно-картографических материалов, эталонов (полученных путём полевого дешифрирования «ключевых» участков) и установленных по данному району географических взаимозависимостей объектов («ландшафтный метод»). Хотя камеральное дешифрирование значительно экономичнее полевого, но его полностью не заменяет, т.к. некоторые данные могут быть получены только в натуре.

Для дешифрирования используются приборы: увеличительные лупы и оптические проекторы, измерительные параллактические линейки и микрофотометры и стереоскопические полевые переносные и карманные стереоскопы и стереоскопические очки и камеральные настольные стереоскопы, частью с бинокулярными и измерительными (например, стереометр СТД) устройствами. Стационарным прибором, разработанным специально для целей дешифрирования, является интерпретоскоп. Дешифрирование аэроснимков проводят и на универсальных стереофотограмметрических приборах в комплексе работ по составлению оригинала карты. В зависимости от задачи дешифрирования может выполняться по негативам аэроснимков или их отпечаткам (на фотобумаге, стекле или позитивной плёнке), на смонтированных по маршруту или площадям фотосхемах и на точных фотопланах. Дешифрирование осуществляют в проходящем или отражённом свете с вычерчиванием (или гравированием) его результатов в одном или нескольких цветах на самих материалах аэросъёмки или наложенных на них листах прозрачного пластика.

К исполнителям дешифрирования предъявляются особые профессиональные требования в отношении восприятия яркостных и цветовых контрастов и стереоскопичности зрения, а также способностей к эффективному опознаванию и определению объектов по их специфическому изображению на аэроснимках. Наряду с этим исполнители дешифрирования должны знать особенности природы и хозяйства данной территории и иметь сведения об условиях её аэросъёмки.

Различают общегеографическое и отраслевое дешифрирование. К первому относят топографическое и ландшафтное дешифрирование, ко второму ? все остальные его виды. Топографическое дешифрирование, характеризующееся наибольшим применением и универсальностью, имеет своими объектами гидрографическую сеть, растительность, грунты, угодья, формы рельефа, ледниковые образования, населённые пункты, строения и сооружения, дороги, местные предметы, геодезические пункты, границы. Ландшафтное дешифрирование завершается региональным или типологическим районированием местности. В ряде отраслей науки и практики наряду с дешифрированием аэрофотоснимков ведутся работы по дешифрированию космических фотоснимков, выполняемых с пилотируемых космических кораблей и орбитальных станций, а также с искусственных спутников Земли. В последнем случае получение фотоснимков полностью автоматизировано; доставка их на Землю осуществляется с помощью контейнеров или передачей изображения телевизионным путём. Благодаря снимкам из космоса обеспечивается возможность непосредственного дешифрирования объектов глобального и регионального характера и дешифрирование динамики природных процессов и проявлений хозяйственной деятельности сразу на значительных пространствах за короткий промежуток времени.

4. Форма Земли и определение положения точек на земной поверхности

Форма Земли. Мысль о том, что Земля имеет форму шара, впервые высказал в VI в. до н.э. древнегреческий ученый Пифагор, а доказал это и определил радиус Земли египетский математик и географ Эратосфен, живший в III в. до н.э. Впоследствии ученые уточнили, что Земля сплюснута у полюсов. Такая фигура в математике называется эллипсоидом вращения, она получается от вращения эллипса вокруг малой оси. В земном эллипсоиде полярная ось меньше экваториальной.

Земля не является правильным геометрическим телом - ее поверхность представляет собой сочетание возвышенностей и углублений. Большая часть углублений заполнена водой океанов и морей - из 510 млн км2 общей площади поверхности Земли 71% занимает океан. Поверхность воды в нем под действием силы тяжести образует уровенную поверхность, перпендикулярную в каждой точке направлению силы тяжести. Линию, совпадающую с направлением силы тяжести, называют отвесной линией. Если уровенную поверхность мысленно продолжить под материками, то образуется фигура, называемая геоидом. Казалось бы, геоид наилучшим образом определяет математическую фигуру

Земли, так как в каждой точке его поверхности существует одно вполне определенное направление - отвесная линия, составляющая с касательной плоскостью прямой угол. Однако из-за неравномерного распределения масс внутри Земли поверхность геоида имеет сложную, неправильную форму. Поэтому за математическую фигуру для Земли принимают эллипсоид вращения, наиболее приближенный к геоиду. Земной эллипсоид соответствующим образом мысленно располагают (ориентируют) в теле Земли.

Земной эллипсоид с установленными размерами, ориентированный определенным образом, называют референц-эллипсоидом. В нашей стране размеры референц-эллипсоида были получены под руководством выдающегося геодезиста Ф.Н. Красовского. Эти размеры утверждены для использования в работах по высшей геодезии и картографии. Референц-эллипсоиду присвоено имя Красовского. Размеры референц-эллипсоида Красовского составляют: большая полуось а = 6378245 м, малая полуось Ь = 6356863 м, полярное сжатие а = (а - Ь)/а = 1/298,3.

В инженерной геодезии и работах по топографии условно считают, что Земля имеет форму шара, объем которого равен объему земного эллипсоида, а радиус шара Я = 6371,11 км.

Определение местоположения точек. Чтобы определить положение точек на земной поверхности, на ней условно проводят линии - меридианы и параллели, которые образуют систему географических координат.

Меридиан - это воображаемая линия, образованная секущей плоскостью, проходящей через ось РРХ вращения Земли.

Параллель - это воображаемая линия, образованная на поверхности Земли секущей плоскостью, перпендикулярной оси вращения Земли. Параллель, образованная плоскостью, проходящей через центр Земли, называется экватор.

Один из меридианов, например меридиан PNM0P1 принимают за начальный. Тогда положение меридиана точки M определяется двугранным углом между меридианной плоскостью, проходящей через эту точку, и плоскостью начального меридиана. Этот угол называют долготой данной точки и обозначают буквой л. Положение параллели точки М определяется углом между радиусом ОМ земного шара и плоскостью экватора. Этот угол называют широтой данной тонки и обозначают буквой ц. Долготу точки М можно измерить также дугой NM параллели, а широту той же точки - дугой M1M меридиана. Долгота л и широта ц называются географическими координатами данной точки.

Начальным меридианом на поверхности Земли принято считать меридиан, проходящий через центр меридианного зала старейшей в Европе астрономической обсерватории в Гринвиче, вблизи Лондона. Долготы отсчитывают к востоку и западу от начального меридиана в пределах 0… 180° и обозначают, например, так: 62° в. д. (восточной долготы) или 124° з. д. (западной долготы) от Гринвича; широты - 0…900 к северу и югу от экватора, например 56° с. ш. (северной широты) или ю. ш. (южной широты).

Положение любой точки на поверхности Земли можно определить с помощью астрономических наблюдений (астрономические координаты), вычислить по результатам геодезических измерений на местности или по наблюдению спутников (геодезические координаты).

Если геодезические работы ведут на небольшом участке, что позволяет не принимать во внимание сферичность поверхности Земли, для определения положения точки используют систему плоских прямоугольных координат. Систему образуют две взаимно-перпендикулярные линии (оси), лежащие в горизонтальной плоскости, причем ось абсцисс х, как правило, совмещают с меридианом какой-либо точки. Точка О - начало координат. Положительное направление оси х - на север от экватора, оси у - на восток от меридиана. Оси абсцисс и ординат образуют координатные четверти I…IV, которые нумеруют по ходу часовой стрелки; северо-восточная четверть считается первой.

Например, положение точки А определяется координатами хАуА. В зависимости от четверти, в которой расположена точка, перед координатами ставят знаки «+» или «-».

Для полной характеристики положения точки на поверхности Земли необходимо знать еще третью координату - высоту. Высотой точки называется расстояние по отвесному направлению от этой точки до уровенной поверхности. Числовое значение высоты точки называется ее отметкой.

Высоты бывают абсолютные, условные и относительные. Абсолютные высоты, например На, Нв, отсчитывают от исходной уровенной поверхности - среднего уровня океана или моря (в России это нуль Кронштадтского футштока - горизонтальная черта на медной пластине, прикрепленной к устою моста через обводной канал в г. Кронштадте). Условной высотой, например НВусл, называется отвесное расстояние от точки земной поверхности до условной уровенной поверхности - любой точки, принятой за исходную (нулевую).

5. Гидростатическое нивелирование, строение НШТ - 1

Гидростатическое нивелирование - определение высот точек земной поверхности относительно исходной точки с помощью сообщающихся сосудов с жидкостью.

Гидростатическое нивелирование основано на том, что свободная поверхность жидкости в сообщающихся сосудах находится на одном уровне. Гидростатический нивелир состоит из двух стеклянных трубок, вставленных в рейки с делениями, соединённых резиновым или металлическим шлангом и заполненных жидкостью (вода, спирт, диметилфталат и т.п.). Разность высот определяют по разности уровней жидкости в стеклянных трубках, причём учитывают различие температуры и давления в различных частях жидкости гидростатического нивелира. Погрешности определения разности высот этим методом составляют 1-2 мм. Гидростатическое нивелирование применяют для непрерывного изучения деформаций инженерных сооружений, высокоточного определения разности высот точек, разделённых широкими водными преградами, и др.

Рис. 6 Схема гидростатического нивелирования

Существует несколько систем гидростатических нивелиров. Распространенным является НШТ-1 - нивелир шланговый технический 1-ой модели. Технические характеристики: длина шкал измерительных элементов 200 мм, цена деления шкалы 1 мм, диапазон измерения превышений 200 мм, длина шланга 10 м, диаметр сосудов 50 мм, средняя квадратическая погрешность определения превышения 0.5 мм. Гидростатическое нивелирование применяется при установке и монтаже технического оборудования, при определении осадок фундаментов различных агрегатов - там, где другими методами измерить превышение между точками невозможно.

6. Геодезические изыскания линейных сооружений. Полевое трассирование автодороги

Проведение инженерных изысканий трасс линейных сооружений имеет особенность, заключающуюся в том, что процесс изысканий и проектирования неразрывен: для разработки и обоснования проектных решений необходимы материалы изысканий, а определение состава и объемов изысканий невозможно без предварительных проектных проработок. Масштабы топографических съемок при изысканиях линейных сооружений устанавливаются с зависимости от характеристики участков съемки и видов проектируемых сооружений. Границы и площади участков, подлежащих топографической съемке, должны устанавливаться в программе изысканий с учетом потребностей других видов инженерных изысканий. Ширина полосы тахометрической съемки вдоль трассы устанавливается в программе изысканий в зависимости от конкретных условий и не превышает, как правило, 300 м.

При изысканиях для линейных сооружений определяют плановое и высотное положение трассы - продольной оси линейного сооружения, закрепленной на местности, топографическом плане, карте или на цифровой модели местности. Основные элементы трассы: план и продольный профиль. Трасса по возможности должна быть прямолинейной и не превышать допустимый уклон. На местности трассу приходится искривлять для обхода препятствий, участков с большими уклонами и неблагоприятных по геологическим и гидрогеологическим характеристикам. Следовательно, трасса состоит из прямых, соединенных между собой кривыми с различными радиусами. Продольный профиль трассы состоит из линий разных уклонов, связанных вертикальными кривыми. Некоторые трассы (электропередач и т.п.) являются пространственными ломаными линиями (кривые не проектируют).

Линейные сооружения имеют много общего, поэтому целесообразно на примере изысканий одного из них, например автомобильной дороги (АД), показать все этапы изысканий. Изыскания трасс АД выполняются в соответствии с требованиями ВСН-208-89, СНиП 11-02-96. Комплекс работ по выбору трассы с учетом предъявляемых требований называют трассированием. На начальном этапе выполняют камеральное трассирование на картах и по материалам специальной аэрофотосъемки. Полученную таким образом трассу переносят и закрепляют на местности, т.е. выполняют полевое трассирование.

Камеральное трассирование выполняют обычно на картах в масштабе 1:25 000,1:50 000. Если трасса не помещается на одном листе карты, то сначала используют карту более мелкого масштаба, на которой вблизи прямой, соединяющей начало и конец трассы, выбирают опорные точки, через которые обязательно должна пройти дорога. Отрезки между опорными точками должны помещаться на карте более крупного масштаба, на которой и выполняют камеральное трассирование.

В равнинной местности при уклонах меньше допустимых выполняют «свободное» проектирование, при котором направление и положение дороги зависит только от естественных и искусственных препятствий.

Всхолмленной и горной местности крутизна скатов превышает допустимые уклоны дороги, и в таких условиях трассу прокладывают «напряженным ходом», т.е. отыскивают такие ее направления, которые имеют предельно допустимый уклон. В результате получают извилистую трассу, которую на отдельных участках спрямляют, заменив ломаную линию на прямую. В горной местности для обеспечения допустимого уклона трассу прокладывают в виде серпантин и петель.

Кроме рельефа на выбор трассы влияют геологические, экологические другие условия. Построив с учетом всех условий трассу на карте, определяют координаты углов поворота, наносят пикеты, рассчитывают сопрягающие кривые, составляют продольный профиль по отметкам, определенным по горизонталям.

Полевое трассирование начинают с рекогносцировки, при котором изучают состояние геодезической основы и полосы трассы. Затем переносят камеральный проект в натуру. В первую очередь методом полярных координат, линейных засечек и т.п. определяют и закрепляют на местности углы поворота трассы, используя для этого плановые геодезические сети и твердые контуры, имеющиеся на карте и местности вблизи углов поворота.

Следующий этап - провешивание прямолинейных участков между углами поворота трассы (вехи устанавливают через 100-150 м) и детальное обследование, в результате которого учитывают все особенности местности, по которой будет проходить дорога, и находят оптимальный вариант трассы.

Следует обратить внимание на долговременное закрепление углов поворота, чтобы они сохранились до начала строительства, кроме того, долговременными знаками закрепляют ряд других точек, таких как примыкание к существующим дорогам, места перехода через препятствие и др. На каждую закрепленную точку составляют абрис с указанием ее положения относительно долговременных местных предметов.

Следующий этап - измерение углов поворота трассы и расстояния между их вершинами. Расстояния между вершинами трассы измеряют стальной мерной лентой или дальномером с относительной ошибкой 1:2000. Поправки за наклон линии вводят при углах наклона v > 2°. Трассу с измеренными расстояниями и углами и привязанную к пунктам геодезической основы называют магистралью, ее можно рассматривать как теодолитный ход, позволяющий определять дирекционные углы и координаты вершин.

При измерении сторон от начала магистрали откладывают отрезки длиной 100 м горизонтального проложения, концы отрезков закрепляют пикетами (колышек длиной 15-25 см забивают вровень с землей, рядом забивают сторожок длиной 40-50 см, выступающий над землей на 15-20 см, на сторожке подписывают номер пикетной точки, например ПК 15, это соответствует расстоянию 1500 м от начала магистрали).

Кроме пикетных точек на магистрали отмечают характерные точки рельефа, контуров и вершин углов поворота трассы, называемые плюсовыми, их положение определяют от ближайших предыдущих пикетов. На поворотах трассы между прямолинейными участками разбивают сопрягающие кривые, чаще всего дуги окружностей. Радиус закругления зависит категории дороги. Имеется пять категорий автомобильных дорог, радиусы закруглений для которых равны 1000, 600,400, 250,125 м соответственно.

Для получения сведений о рельефе в поперечном трассе направлении строят поперечные профили длиной 15-30 м. На таких профилях вправо и влево от трассы намечают характерные точки рельефа, а при их отсутствии фиксируют точки через 5-10 м. Поперечные профили должны отражать особенности рельефа в полосе трассы; при углах наклона 10° и больше поперечные профили строят на каждом пикете и плюсовых точках. Все сведения о пикетаже отражают в пикетажном журнале. На участках со сложными геологическими условиями, в местах перехода через препятствие, на площадках под строительство придорожных сооружений и т.п. создают планы в масштабе 1:500, 1:1000.

Одним из этапов изысканий линейных сооружений является нивелирование трассы, которое в равнинной и всхолмленной местности выполняют методом геометрического нивелирования. При больших углах наклона используют тригонометрическое нивелирование.

Геометрическое нивелирование трассы выполняют независимо две бригады: первая нивелирует все точки трассы и реперы, а вторая - только километровые пикеты, временные и постоянные реперы. Кроме того, чтобы уравнять объемы работ, второй бригаде могут поручить нивелирование поперечников. На трассах до 50 км геометрическое нивелирование выполняет одна бригада, которая прокладывает прямой и обратный нивелирные ходы. В прямом ходе нивелируют все точки, а в обратном - только связующие точки, реперы, километровые пикеты. Если нивелирный ход длиной до 16 км привязан с обеих сторон к опорным высотным пунктам, то повторное нивелирование можно не выполнять, при этом высоты всех точек определяют из одиночного хода. При использовании односторонней рейки нивелирование выполняют при двух горизонтах нивелира. В качестве связующих точек обычно используют пикеты. При крутых склонах расстояние от нивелира до рейки приходится сокращать, и в качестве связующих точек используют иксовые точки, они не имеют пикетажного обозначения, не участвуют при построении профиля трассы. Точки трассы между связующими точками называют промежуточными, отсчёт по рейке на промежуточных точках берут по черной стороне или при одном горизонте прибора после взятия отсчетов по рейкам на связующих точках. Точки на поперечниках нивелируют как промежуточные.

Камеральную обработку начинают с проверки полевых журналов. Затем составляют ведомости прямых и кривых. По данным ведомости прямых и кривых составляют план трассы в масштабе 1:2000-1:10000.

Вместо дирекционных углов и длин сторон для нанесения трассы на план можно использовать координаты углов поворота. Масштаб плана зависит от длины трассы и сложности ситуации в ее полосе. На плане отмечают углы поворота трассы, пикетные и плюсовые точки, главные точки круговых кривых и др. Подписывают длину и ориентировку прямых участков трассы, параметры круговых кривых и пикетаж главных точек. Условными знаками для планов данного масштаба изображают ситуацию в полосе трассы. Высоты точек трассы вычисляют в нивелирном журнале. Выполняют постраничный контроль. Постраничный контроль подтверждает правильность только вычислений превышений между связующими точками и не выявляет ошибок отсчетов, установки реек, некачественного прибора и т.п. Продольный профиль дороги составляют на миллиметровой бумаге в горизонтальном масштабе 1:2000-1:10 000, вертикальный масштаб обычно в 10 раз крупнее горизонтального. Графическое построение профиля дополняют различными данными, которые размещают в отдельных графах, в совокупности называемых сеткой профиля.

Список используемой литературы:

топографический геодезический трассирование карта

1. Дубенок, Н.Н., Шуляк, А.С. Землеустройство с основами геодезии/Н.Н. Дубенок, А.С. Шуляк. - М.: Колос, 2002. - 320 с.: ил.

2. Поклад, Г.Г. практикум по геодезии/ Г.Г. Поклад, М.: Академ. проект, 2011. - 470 с.

3. Инженерная геодезия. Учеб. для вузов/ Е.Б. Клюшин, М.И Киселев, Д.Ш. Михелев, В.Д. Фельдман; Под ред. Д.Ш. Михелева. - 2-е изд. Испр. - М.: Высш. шк., 2001. - 464 с.: ил.

4. Юнусов, А.Г. Геодезия: Учебник для вузов/ А.Г. Юнусов, М.: Академ. проект, 2011 - 409 с.

Размещено на Allbest.ru


Подобные документы

  • Трассирование линейных сооружений. Цели инженерно-геодезических изысканий для линейных сооружений. Геодезические работы при проектировании линейных коммуникаций и при прокладке трасс сооружений. Установление положения автодороги в продольном профиле.

    контрольная работа [319,9 K], добавлен 31.05.2014

  • Переход от магнитного азимута к дирекционному углу. Графический способ определения площадей на планах и картах. Порядок работы при измерении теодолитом горизонтального угла "от нуля". Гидростатическое нивелирование. Построение топографического плана.

    контрольная работа [276,8 K], добавлен 02.06.2011

  • Классификация трасс по топографическим условиям. Способ попыток и способ построения линий с заданными уклонами при выполнении камерального трассирования. Нивелирование трассы и методы топографических съёмок. Требования к составлению отчётных материалов.

    реферат [197,0 K], добавлен 05.12.2013

  • Предмет и задачи геодезии, понятия о форме и размерах Земли. Системы координат, принятые в геодезии. Система плоских прямоугольных координат Гаусса-Крюгера. Изображение рельефа на топографических картах и планах. Решение инженерно-геодезических задач.

    курс лекций [2,8 M], добавлен 13.04.2012

  • Выполнение геодезических работ для строительства площадных и линейных сооружений. Планировка участка под горизонтальную плоскость. Составление топографического плана участка и картограммы земляных масс. Обработка журнала тригонометрического нивелирования.

    курсовая работа [249,4 K], добавлен 29.11.2014

  • Физико-географический анализ района работ. Инженерно-геодезические изыскания в сложно-пересеченной местности. Создание опорной сети, съемочного обоснования. Топографическая съемка оползневых участков. Камеральная обработка результатов полевых работ.

    дипломная работа [721,7 K], добавлен 25.02.2016

  • Инженерно-геодезические изыскания для строительства площадных сооружений. Подготовка исходных данных. Обработка ведомости вычисления прямоугольных координат, высотных ходов нивелирования, журнала тахеометрической съёмки. Построение топографического плана.

    курсовая работа [207,1 K], добавлен 17.05.2015

  • Понятие о геодезии как о науке, её разделы и задачи. Плоская прямоугольная и полярная системы координат. Абсолютные, условные, относительные высоты точек. Понятие об ориентировании, истинный и магнитный азимуты, геодезические измерения, их виды, единицы.

    шпаргалка [23,7 K], добавлен 23.10.2009

  • Основные типы нивелиров. Геодезическое трассирование линейных сооружений. Высотная сеть сгущения. Геометрическое нивелирование из "середины" и "вперед". Порядок снятия отсчетов при работе с двусторонними рейками. Контроль наблюдений и их обработка.

    презентация [644,3 K], добавлен 08.12.2014

  • Полевые изыскания для уточнения трассы объезда. Создание локальной спутниковой геодезической сети. Топографическая съемка местности. Прокладка полигонометрических и нивелирных ходов. Камеральная обработка результатов измерений. Кроки закрепления трассы.

    дипломная работа [10,8 M], добавлен 10.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.