Свойства кристаллов

Разнообразие кристаллов по форме и строению. Особенности граней кварца. Применение кристаллов флюорита, турмалина, исландского шпата и рубина. Физико-химические условия искусственного выращивания кристаллов в аппаратах. История происхождения алмаза.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 11.09.2012
Размер файла 25,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат на тему:

Свойства кристаллов

Содержание

Введение

1. Название "алмаз" произошло от слова "адамас"

2. Строение кристаллов

3. Физические и химические свойства алмазов

4. Лабораторная работа

Вывод

Использованные литературы

Введение

Кристаллические тела являются одой из разновидностей минералов. Кристаллическими называют твердые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях.

Семейство кристаллических тел состоит из двух групп - монокристаллов и поликристаллов. Первые иногда обладают геометрически правильной внешней формой, а вторые, подобно аморфным телам, не имеют присущей данному веществу определенной формы. Но в отличие от аморфных тел структура поликристаллов неоднородна, зерниста. Они представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов. Поликристаллическую структуру чугуна, например, можно обнаружить, если рассмотреть с помощью лупы образец на изломе.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.

1. Название "алмаз" произошло от слова "адамас"

Алмаз занял первое место в ряду драгоценных камней с тех пор, как его искусно ограненные формы, известные под названием бриллиантов, выявили все совершенство удивительных свойств этого минерала. И действительно, ведь он сочетает исключительную твердость, высокое светопреломление, сильную дисперсию и яркий блеск.

Сырой алмаз имеет довольно невзрачный вид и непривлекателен для глаз. Поэтому легко понять, почему персы в XIII веке помещали алмаз в ряду драгоценных камней за жемчугом, рубином, изумрудом и даже хризолитом.

Индийские камнерезы, которые первые поняли, что алмаз можно полировать алмазным же порошком, обнаружили, сколь замечательный внешний вид приобретает этот камень при удалении "рубашки". Однако они не придавали камню определенную форму, а лишь полировали естественные грани и добавляли многочисленные небольшие площадки в тех случаях, когда хотели скрыть изъяны. Ослепительная красота алмаза открывается лишь тогда, когда он огранен в форму бриллианта.

Название "алмаз" произошло от слова "адамас" - так называли минерал, который, как полагали во времена Плиния, превосходил по по качеству прочие камни; однако термин "адамас" Плиний явно использовал для обозначения и других минералов, помимо того несравненного камня, который со времен Средневековья известен как diamond (алмаз). ("Вещество, которое отличается наибольшей ценностью не только среди Драгоценных камней, но и среди всего, чем может обладать человек, есть адамас - минерал, который на протяжении веков принадлежал лишь царям, да и то лишь немногим из них. Таково название, данное узловатым самородкам золота, которые иногда, хотя и редко, находят в рудниках в тесном соседстве с обычным золотом и которые, как полагают, только там и встречаются"). Название diamond происходит от латинского слова adamantem и. его распространенной формы adiamentem, которые созвучны греческому слову adamas, означающему "несокрушимый", что содержит намек не только на значительную твердость, но и на ошибочное представление о том, что алмаз может противостоять любому удару. "Карбонадо" - португальское слово, означающее "углистый", оно употреблялось для обозначения плотных зернистых разновидностей алмаза, встречающихся в Бразилии.

Из всех драгоценных камней алмаз имеет наиболее простой химический состав - он представляет собой просто кристаллический углерод С. В нем часто присутствуют примеси, главным образом окись железа и кремнезем со следами извести и магнезии, но количество примесей обычно не превышает 5%. Именно примесь окислов железа обусловливает желтоватый оттенок, который столь характерен для алмазов нечистой воды, особенно для камней из Южной Африки, и который снижает их ценность.

Кристаллические тела являются одой из разновидностей минералов.

Кристаллическими называют твердые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях.

Семейство кристаллических тел состоит из двух групп -- монокристаллов и поликристаллов. Первые иногда обладают геометрически правильной внешней формой, а вторые, подобно аморфным телам, не имеют присущей данному веществу определенной формы. Но в отличие от аморфных тел структура поликристаллов неоднородна, зерниста. Они представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов.

Поликристаллическую структуру чугуна, например, можно обнаружить, если рассмотреть с помощью лупы образец на изломе.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.

2. Строение кристаллов

кристалл алмаз кварц

Разнообразие кристаллов по форме очень велико. Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами.

Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же -- 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах -- кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала. Простейшим прибором для измерения углов кристаллов является прикладной гониометр. Применение прикладного гониометра возможно только для исследования крупных кристаллов, невелика и точность измерений, выполненных с его помощью. Различить, например, кристаллы кальцита и селитры, сход по форме и имеющие углы между соответственными гранями, равные 101°55' первого и 102°41,5' у второго, с помощью прикладного гониометра очень трудно. Поэтому в лабораторных условиях измерений углов между гранями кристалла обычно выполняют с помощью более сложных и точных приборов.

Кристаллы правильной геометрической формы встречаются в природе редко.

Совместное действие таких неблагоприятных факторов, как колебания температуры, тесное окружение соседними твердыми телами, не позволяют растущему кристаллу приобрести характерную для него форму. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела.

Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Существует несколько способов, позволяющих узнать, является ли твердое тело кристаллом. Самый простой из них, но очень малопригодный для использования, был открыт в результате случайного наблюдения в конце XVIII в. Французский ученый Ренне Гаюи нечаянно уронил один из кристаллов своей коллекции.

Рассмотрев осколки кристалла, он заметил, что многие из них представляют собой уменьшенные копии исходного образца.

Замечательное свойство многих кристаллов давать при дроблении осколки, подобные по форме исходному кристаллу, позволило Гаюи высказать гипотезу, что все кристаллы состоят из плотно уложенных рядами маленьких, невидимых в микроскоп, частиц, имеющих присущую данному веществу правильную геометрическую форму. Многообразие геометрических форм Гаюи объяснил не только различной формой «кирпичиков», из которых они состоят, но и различными способами их укладки.

Гипотеза Гаюи правильно отразила сущность явления -- упорядоченное и плотное расположение структурных элементов кристаллов, но она не ответила на целый ряд важнейших вопросов. Существует ли предел сохранению формы? Если существует, то что представляет собой самый маленький «кирпичик»? Имеют ли атомы и молекулы вещества форму многогранников?

Еще в XVIII в. английский ученый Роберт Гук и голландский ученый Христиан Гюйгенс обратили внимание на возможность построения правильных многогранников из плотно укладываемых шаров. Они предположили, что кристаллы построены из шарообразных частиц -- атомов или молекул. Внешние формы кристаллов согласно этой гипотезе являются следствием особенностей плотной упаковки атомов или молекул. Независимо от них к такому же выводу пришел в 1748 г. великий русский ученый М.В. Ломоносов.

При плотнейшей укладке шаров в один плоский слой каждый шар оказывается окруженным шестью другими шарами, центры которых образуют правильный шестиугольник. Если укладку второго слоя вести по лункам между шарами первого слоя, то второй слой окажется таким же, как и первый, только смещенным относительно него в пространстве.

Но этими двумя формами многообразие мира кристаллов вовсе не ограничивается.

Существование форм кристаллов, не соответствующих принципу плотнейшей упаковки равновеликих шаров, может иметь разные причины.

В основе кристаллической решетки лежит элементарная ячейка -- фигура наименьшего размера, последовательным переносом которой можно построить весь кристалл. Длину одного из ребер называют постоянной кристаллической решетки, а всю совокупность шести величин, задающих ячейку, -- параметрами ячейки.

Монокристаллы ряда элементов и многих химических веществ обладают замечательными механическими, электрическими, магнитными и оптическими свойствами. Так, например, алмаз тверже любого другого минерала, встречающегося на Земле. Кристаллы кварца и слюды обладают рядом электрических свойств, обеспечивающих им широкое применение в технике.

Кристаллы флюорита, турмалина, исландского шпата, рубина и многие другие находят применение при изготовлении оптических приборов.

К сожалению, в природе монокристаллы большинства веществ без трещин, загрязнений и других дефектов встречаются редко. Это привело к тому, что многие кристаллы на протяжении тысячелетий люди называют драгоценными камнями, алмаз, рубин, сапфир, аметист и другие драгоценные камни долгое время ценились людьми очень высоко в основном не за особые механические пли другие физические свойства, а лишь из-за своей редкости.

Развитие науки и техники привело к тому, что многие драгоценные камни или просто редко встречающиеся в природе кристаллы стали очень нужными для изготовления деталей приборов и машин, для выполнения научных исследований.

Потребность во многих кристаллах возросла настолько, что удовлетворить ее за счет расширения масштабов выработки старых и поисков новых природных месторождений оказалось невозможно.

Кроме того, для многих отраслей техники и особенно для выполнения научных исследований все чаще требуются монокристаллы очень высокий химической чистоты с совершенной кристаллической структурой. Кристаллы, встречающиеся в природе, этим требованиям не удовлетворяют, так как они растут в условиях, весьма далеких от идеальных.

Таким образом, возникла задача разработки технологии искусственного изготовления монокристаллов многих элементов и химических соединений.

Разработка сравнительно простого способа изготовления «драгоценного камня» приводит к тому, что он перестает быть драгоценным. Объясняется это тем, что большинство драгоценных камней является кристаллами широко распространенных в природе химических элементов и соединений. Так, алмаз -- это кристалл углерода, рубин и сапфир -- кристаллы окиси алюминия с различными примесями.

При искусственном выращивании кристаллов в аппаратах создаются те же физико-химические условия, которые характерны для природных процессов. Даже некоторые термины, которые издавна используются геологами и минералогами, нашли применение в техническом языке, например термин «гидротермальные условия».

Монокристаллы ряда элементов и многих химических веществ обладают замечательными механическими, электрическими, магнитными и оптическими свойствами. Так, например, алмаз тверже любого другого минерала, встречающегося на Земле. Кристаллы кварца и слюды обладают рядом электрических свойств, обеспечивающих им широкое применение в технике.

Кристаллы флюорита, турмалина, исландского шпата, рубина и многие другие находят применение при изготовлении оптических приборов.

Алмаз, рубин, сапфир, аметист и другие драгоценные камни долгое время ценились людьми очень высоко в основном не за особые механические или другие физические свойства, а лишь из-за своей редкости. Развитие науки и техники привело к тому, что многие драгоценные камни или просто редко встречающиеся в природе кристаллы стали очень нужными для изготовления деталей приборов. Потребность во многих кристаллах возросла настолько, что удовлетворить ее за счет расширения масштабов выработки старых и поисков новых природных месторождений оказалось невозможно.

Кроме того, для многих отраслей техники и особенно для выполнения научных исследований все чаще требуются монокристаллы очень высокой химической чистоты с совершенной кристаллической структурой. Кристаллы, встречающиеся в природе, этим требованиям не удовлетворяют, так как они растут в условиях, весьма далеких от идеальных. Таким образом, возникла задача разработки технологии искусственного изготовления монокристаллов. Первые попытки искусственно получить замечательные минералы человек предпринимал с давних пор. Еще в средние века алхимики с помощью философского камня пытались превратить простые вещества в драгоценные камни. Но все это были попытки с негодными средствами, потому что алхимики совершенно не представляли законов строения вещества. Успех пришел лишь тогда, когда был в достаточной мере познан процесс минералообразования. В настоящее время существует целый ряд способов выращивания кристаллов. Исходное вещество может быть твердым, растворенным или расплавленным, даже может находиться в газообразном состоянии. Из более чем 3000 минералов, существующих в природе, искусственно удалось получить уже несколько сот. Трудности синтеза связаны с необходимостью очень точного соблюдения режима выращивания кристаллов. Но даже искусственно выращенные кристаллы часто имеют дефекты. Сейчас производятся опыты по выращиванию кристаллов в космосе в условиях невесомости. Первые опыты, проведенные на палубе космического корабля «Салют», показали, что это направление является весьма перспективным. Из всех замечательных минералов наиболее высокие температуры и давления необходимы для образования алмазов. В природе их находят в так называемых кимбёрлитовых трубках, которые образуются в результате взрыва газов на глубинах свыше 50 км. Кимберлит представляет собой ультраосновную породу, получившую название по руднику Кимберли в Южной Африке. Температура на этих глубинах составляет 1000--1100°С, а давление превышает несколько десятков атмосфер. Но и таких высоких давлений оказывается недостаточно. Как показывает синтез искусственных алмазов, для их образования необходимы поистине чудовищные давления в десятки тысяч атмосфер. Только в таких условиях углерод, хорошо известный нам по графиту, из которого делают карандаши, может перейти в гексагональную модификацию и дать вместо черной массы прозрачные кристаллы. Как же достигаются такие сверхвысокие давления в глубинах Земли? Предполагают, например, что это осуществляется за счет механизма кавитации локального повышения давления в результате взрыва газовых пузырьков. Полуразрушенный материал кимберлитов при взрыве с большой силой устремляется к поверхности Земли по тектоническим трещинам. Вместе с алмазами в кимберлитах находят скопления ювелирного граната -- пиропа фиолетово-красного и оранжево-красного цвета, а также хризолита. Однако хризолит ювелирного качества, как менее устойчивый минерал, сохраняется лишь в свежих невыветренных породах. Первые алмазоносные трубки взрыва были открыты в 1870 г. в Южной Африке. В последние десятилетия алмазные трубки открыты у нас в Якутии. Алмазы добываются также из россыпей, образовавшихся в результате размыва коренных месторождений.

Кристалл алмаза, имеющий минимальное количество примесей (алмаз чистой воды), прозрачен для излучения в видимой части спектра и встречается редко. Чаще всего алмазы окрашены в различные цвета - от желтого до серого и черного. Синтетические алмазы обычно зеленые. Введение примесей в исходную шихту позволяет изменять цвет синтетического алмаза.

Рост потребления минералов не обеспечивается природными месторождениями, поэтому все более и более расширяется синтез минералов, их искусственное производство на заводах.

Самый ценный камень -- алмаз -- в настоящее время является больше техническим камнем, чем камнем красоты. Алмазы используют для шлифовки, резки, с помощью специальных приспособлений -- буровых коронок, усаженных алмазами, сверлят Землю в поисках полезных ископаемых. Образно говоря, прошли времена алмазных корон -- настали времена алмазных коронок. Электротехника, оптика, радиотехника, военное дело, точная механика и многие другие отрасли народного хозяйства претендуют на драгоценные камни вовсе не из-за их красоты, а именно из-за их замечательных свойств. Использование минералов для технических целей началось уже давно, может быть раньше, чем их применение в качестве украшений. Когда первобытный человек взял в руку обломок нефрита и стал рубить им дерево -- это и было первое техническое применение камня. Позже человек усовершенствовал свой инструмент: привязав обломок нефрита к палке, он получил каменный топор. Разумеется, современнее применение минералов в технике намного сложнее.

Какие же свойства определили широкое применение минералов в современной технике?

Твердость. Твердость минералов -- это комплексное физическое свойство, зависящее от внутренней структуры, значений межатомных расстояний, валентности ионов и атомов, слагающих минерал, и т. д. В практической минералогии для определения твердости пользуются произвольной нелинейной шкалой Мооса. Все минералы по этой шкале делятся на десять групп с твердостью от 1 до 10. Более точные количественные значения твердости определяют с помощью специальных приборов -- склерометров. Алмазную или стальную пирамидку вдавливают в пришлифованную поверхность минерала, а затем изменяют длину диагонали образовавшейся ямки. Затем эти значения рассчитываются в килограммах на 1 мм.

3. Физические и химические свойства алмазов

Физические свойства алмаза связаны с его структурой и содержанием примесей, количество которых в природных алмазах достигает 5%, в синтетических 8-10%. В качестве структурных примесей достоверно зафиксированы N, В, Ni. В процессе синтеза можно легировать алмаз путем введения в шихту различных добавок. Спайность граней алмаза по (111) совершенная. Критическое напряжение скалывания по (111) -10,50,1 ГПа, по (100) -13,50,1 ГПа. Предел прочности на сжатие кристаллов синтетических алмазов без видимых включений 17-17,5 ГПа. Алмаз имеет максимальную среди всех известных материалов твердость, которая превышает твердость корунда в 150 раз. Кристалл алмаза анизотропен, для разных граней его твердость различна (для грани (111) природного алмаза - 110 - 135 ГПа, для (100) - 56-60 ГПа; для грани (111) синтетического алмаза - 91-101 ГПа, для (100) - 60-68 ГПа].

Кристаллическими называют твердые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях.

Из всех драгоценных камней алмаз имеет наиболее простой химический состав - он представляет собой просто кристаллический углерод С. В нем часто присутствуют примеси, главным образом окись железа и кремнезем со следами извести и магнезии, но количество примесей обычно не превышает 5%. Именно примесь окислов железа обусловливает желтоватый оттенок, который столь характерен для алмазов нечистой воды, особенно для камней из Южной Африки, и который снижает их ценность.

4. Лабораторная работа

ВЫРАЩИВАНИЕ КРИСТАЛЛОВ

Для изучения свойств тех или иных кристаллов необходимо приготавливать (выращивать) хорошие образцы - часто в форме монокристаллов самой высокой, насколько возможно, степени совершенства и химической чистоты. Для изучения же влияния различных физических или химических несовершенств на свойства твердых тел такие несовершенства (дефекты) требуется тем или иным способом контролируемо вводить в твердое тело. При этом в качестве исходных необходимо использовать материалы высокой химической чистоты. Помимо обычных химических методов очищения, многие металлы и полупроводники могут быть очищены методом зонной плавки. Кристаллы можно выращивать, медленно выпаривая растворитель из раствора, охлаждая расплав или конденсируя пары. Кристаллы выращиваются из расплава по методу Бриджмена или Чохральского. При использовании метода Чохральского небольшой кристалл-затравка, укрепленный на вертикальной проволоке или стержне, погружается в расплав и затем медленно выводится из него. При соответствующем контроле за температурой и скоростью вытягивания из затравочного кристалла может вырасти крупный монокристалл. По методу Бриджмена расплав находится в вертикально закрепленном тигле с остроконечным дном. При медленном опускании тигля из горячей зоны печи в более холодную на его остром дне образуется кристалл-зародыш, который в ходе дальнейшего опускания тигля может вырасти в крупный монокристалл. Метод молекулярной эпитаксии (ММЭ) позволяет последовательно слой за слоем наращивать полупроводниковые чипы на подходящей кристаллической подложке. В каждом слое (толщина которого может не превышать диаметра одного атома) точно повторяется кристаллическая структура подложки. Нагревая ионный кристалл в парах его металлического компонента или какого-либо другого металла, в него можно ввести избыток этого металла. Во многих случаях такие легированные кристаллы обнаруживают новые интересные свойства, обусловленные именно этими внедренными на атомном уровне металлическими компонентами. Например, при нагревании хлорида натрия в парах натрия кристалл из прозрачного становится желто-коричневым; в этом случае говорят, что в кристалле появились центры окраски. В ряде случаев атомы металла, введенные в кристалл при его нагревании в металлических парах, могут коагулировать в небольшие металлические кристаллы, внедренные в исходный ионный кристалл.

Вывод

Недаром его название произошло от греческого слова адамас, что означает «непобедимый». Такая «непобедимость» алмаза определила его широкое применение для изготовления режущих инструментов.

Кристалл алмаза, имеющий минимальное количество примесей (алмаз чистой воды), прозрачен для излучения в видимой части спектра и встречается редко. Чаще всего алмазы окрашены в различные цвета - от желтого до серого и черного. Синтетические алмазы обычно зеленые. Введение примесей в исходную шихту позволяет изменять цвет синтетического алмаза, кристаллический алмаз люминесцирует под действием УФ-излучения, рентгеновского и гамма-излучения, а также пучков быстрых частиц.

Алмазы применяют в различных инструментах для обработки цветных металлов и сплавов, в буровой технике, камнеобработке, ювелирной промышленности.

В физике и электронике используют полупроводниковые свойства алмаза, в аппаратах высокого давления - его твердость и прозрачность. В решетке типа алмаза кристаллизуются Si, Ge, серое олово, а также ряд соединений (CuF, BeS, CuCl, ZnS - решетка типа цинковой обманки) области применения минералов, все более расширяются, дальнейшее развитие науки продолжает выявлять в них все новые и новые свойства.

Рубиновые стекла в иллюминаторах и приборах космических кораблей, световоды из горного хрусталя, позволяющие практически мгновенно передавать с помощью лазерного луча громадное количество информации, алмазы в качестве детекторов ядерных излучений -- даже простое перечисление показывает, что замечательные минералы находятся на самом переднем крае науки и техники.

Рост потребления минералов не обеспечивается природными месторождениями, поэтому все более и более расширяется синтез минералов, их искусственное производство на завода

Список использованной литературы

5. «Физическая Энциклопедия»

6. «Энциклопедия для детей Аванта +». Физика Том 16. Москва - 2000г. В.А. Володин. Часть 1

7. «Энциклопедия для детей Аванта +» . Физика Том 16. Москва - 2001г. В.А. Володин. Часть 2

8. «Алмаз, драгоценные камни и другие полезные минералы». К.М. Ермолаев. г. Якутск - 2003г.

9. «Проблема происхождения алмазов». В.Г. Васильев. В.В. Ковальский. Н.В. Черский. г. Якутск - 1961г.

10. «Цветные камни Якутии и их месторождения» В.Г. Падиятов, В.К. Маршинцев. Екатеринбург - 2000г.

11. «Электричество» С.Г. Калашников. Москва - 1977г.

Размещено на Allbest.ru


Подобные документы

  • Исследование основных законов геометрической кристаллографии. Характеристика строения кристаллов по типу пространственной решётки. Закономерные сростки кристаллов. Простые формы кристаллов высшей категории и кубической сингонии. Комбинации простых форм.

    реферат [2,3 M], добавлен 01.07.2016

  • Изучение моделей кристаллов, их классификация и виды симметрии. Правила выбора системы кристаллографических координат. Способы графического изображения кристаллов при помощи стереографической проекции. Методы расчета символов граней и простых форм.

    методичка [1,7 M], добавлен 01.10.2010

  • Исследование генезиса минералов как процесса происхождения каких-либо геологических образований. Основные типы генезиса: эндогенный, экзогенный и метаморфический. Методы выращивания кристаллов: из пара, гидротермального раствора, жидкой и твердой фазы.

    реферат [2,6 M], добавлен 23.12.2010

  • Структура кристаллов. Применение алмаза с древних времен до наших дней. Происхождение алмаза. Обработка алмазов. Самые крупные, известные и ценные алмазы. Атомная структура, правильное, симметричное, закономерное расположение атомов.

    реферат [111,9 K], добавлен 14.06.2003

  • Исторические свойства и химический состав. Структура и диагностические признаки минерала. Генезис и месторождения. Габитус и изменения кристаллов антимонита. Определение рентгенометрических характеристик. Моделирование структуры кристаллов антимонита.

    курсовая работа [2,0 M], добавлен 25.03.2014

  • Принципы классификации кристаллов. Физические свойства, происхождения и применение минералов класса вольфраматов. Особенности аморфных тел. Свойства кристаллических веществ. Минералы черной металлургии осадочного происхождения, механизм их образования.

    контрольная работа [1,4 M], добавлен 03.04.2012

  • Гипотезы происхождения природных алмазов, их свойства и применение. Алмазоносные провинции мира. Мантийная гипотеза. Немагматическая теория. Метеоритная гипотеза. Флюидная гипотеза. Диатремы, кимберлитовые трубки. Форма кристаллов. Синтез балласов.

    дипломная работа [75,9 K], добавлен 12.06.2008

  • Описание свойств алмаза и его кристаллизация в кубической сингонии. Изучение морфологии и внутреннего строения кристаллов для восстановления истории их образования. Идентификация и диагностика алмазов, методы их добычи. Создание синтетического минерала.

    реферат [41,0 K], добавлен 11.10.2011

  • Изучение физических и химических свойств минералов сфалерита и кварца. Определение твердости по Моопсу; спайность, цвет, магнитность кристаллов; характеристика излома, цвет черты. Диагностика в полевых условиях на растворимость в воде; реакция с HCl.

    лабораторная работа [317,7 K], добавлен 09.10.2013

  • Понятие и распространенность монтмориллонита, его общая характеристика и отличительные особенности, а также отрасли практического применения. Описание и основные сферы использования доломита, опала, мирабилита, флюорита, апатита, алмаза, серы и кварца.

    презентация [1,8 M], добавлен 16.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.