Происхождение нефти и газа, их состав

Факторы процесса нефтеобразования и формирования нефти в концентрированную залежь. Наиболее благоприятные условия для формирования нефти, теории образования. Физические свойства газа. Алканы, нафтены и арены - главные химические составляющие нефти.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 28.11.2011
Размер файла 34,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

На тему «Происхождение нефти и газа, состав нефти и газа»

2011 г.

СОДЕРЖАНИЕ

нефть газ химический образование

Введение

1. Происхождение нефти и газа

1.1 Современный взгляд

1.2 Другие теории образования нефти

2. Состав и физические свойства нефти и газа

2.1 Физические свойства нефти и газа

2.2 Химический состав нефти и газа

Заключение

Список использованной литературы

Введение

Бурный научно-технический прогресс и высокие темпы развития различных отраслей науки и мирового хозяйства в XIX - XX вв. привели к резкому увеличению потребления различных полезных ископаемых, особое место среди которых заняла нефть.

Нефть начали добывать на берегу Евфрата за 6 - 4 тыс. лет до нашей эры. Использовалась она и в качестве лекарства. Древние египтяне использовали асфальт (окисленную нефть) для бальзамирования. Нефтяные битумы использовались для приготовления строительных растворов. Нефть входила в состав "греческого огня". В средние века нефть использовалась для освещения в ряде городов на Ближнем Востоке, Южной Италии и др. В начале XIX в. в России, а в середине XIX в. в Америке из нефти путем возгонки был получен керосин. Он использовался в лампах. До середины XIX в. нефть добывалась в небольших количествах из глубоких колодцев вблизи естественных выходов ее на поверхность. Изобретение парового, а затем дизельного и бензинового двигателя привело к бурному развитию нефтедобывающей промышленности.

1. Происхождение нефти и газа

1.1 Современный взгляд

Вопросы об исходном веществе, из которого образовалась нефть, о процессах нефтеобразования и формирования нефти в концентрированную залежь, а отдельных залежей в месторождения до сего времени ещё не являются окончательно решёнными. Существует множество мнений как об исходных для нефти веществах, так и о причинах и процессах, обусловливающих её образование. В последние годы благодаря трудам главным образом советских геологов, химиков, биологов, физиков и исследователей других специальностей удалось выяснить основные закономерности в процессах нефтеобразования. В настоящее время установлено, что нефть органического происхождения, т.е. она, как и уголь, возникла в результате преобразования органических веществ.

Наиболее благоприятные условия для формирования нефти - морские, с так называемым некомпенсированным прогибанием. В теплых водах, на дне доисторического моря, веками накапливалась сапропель - глинистая почва, перемешанная с органическими останками умерших рыб, водорослей, моллюсков и прочей живности. В ней шла биохимическая стадия образования нефти. Микроорганизмы при ограниченном доступе кислорода перерабатывали белки, углеводы и т.д. При этом образовывался метан, углекислый газ, вода и немного углеводородов. Данная стадия происходила в нескольких метрах от дна моря. Затем осадок уплотнился: произошел диагенез.

Вследствие природных процессов дно моря опускалось, а сапропель накрывали материалы, которые из-за природных разрушений или потоками воды сносились с гор. Органика попадала в застойные, бескислородные условия. Когда сапропель опустилась до глубины в 1,5 км, подземная температура достигла 100°C и стала достаточной для нефтеобразования. Начинаются химические реакции между веществами под действием температуры и давления. Сложные вещества разлагаются на более простые. Биохимические процессы затухают. Потом породу должна накрыть соль (в Прикаспийской впадине ее толщина достигает 4 км) или глина. С увеличением глубины растет содержание рассеянной нефти. Так, на глубине до 1,5 км идет газообразование, на интервале 1,5-8,5 км идет образование жидких углеводородов - микронефти - при температуре от 60 до 160°С. А на больших глубинах при температуре 150-200°С образуется метан. По мере уплотнения сапропели микронефть выжимается в вышележащие песчаники. Это процесс первичной миграции. Затем под влиянием различных сил микронефть перемещается вверх по наклону. Это вторичная миграция, которая является периодом формирования самого месторождения. Весь процесс занимает сотни миллионов лет.

1.2 Другие теории образования нефти

Один из первых, кто высказал научно обоснованную концепцию о происхождении нефти, был М.В. Ломоносов. В середине XVIII века в своём тракте «О слоях земных» великий русский учёный писал, что нефть произошла из каменного угля. Исходное вещество было одно: органический материал, преобразованный сначала в уголь, а потом в нефть. М.В. Ломоносов первый указал на связь между горючими полезными ископаемыми - углём и нефтью и выдвинул первую в мире гипотезу о происхождении нефти из растительных остатков.

В XIX в. среди ученых были распространены идеи, близкие к представлениям М.В. Ломоносова. Споры велись главным образом вокруг исходного материала: животные или растения?

Немецкие ученые Г. Гефер и К. Энглер в 1888 г. поставили опыты, доказавшие возможность получения нефти из животных организмов. Была произведена перегонка сельдевого жира при температуре 400 °С и давлении 1 МПа. Из 492 кг жира было получено масло, горючие газы, вода, жиры и разные кислоты. Больше всего было отогнано масла (299 кг, или 61 %) плотностью 0,8105 г/см3, состоящего на 9/10 из УВ коричневого цвета. Последующей разгонкой из масла получили предельные УВ (от пентана до нонана), парафин, смазочные масла, в состав которых входили олефины и ароматические УВ. Позднее, в 1919 г. академиком Н.Д. Зелинским был осуществлен похожий опыт, но исходным материалом служил органогенный ил преимущественно растительного происхождения (сапропель) из озера Балхаш. При его перегонке были получены: сырая смола - 63,2 %; кокс - 16,0%; газы (метан, оксид углерода, водород, сероводород) - 20,8 %. При последующей переработке смолы из нее извлекли бензин, керосин и тяжелые масла.

Академик В.И. Вернадский обратил внимание на наличие в нефти азотистых соединений, встречающихся в органическом мире.

Предшественники академика И.М. Губкина, русские геологи Андрусов и Михайловский также считали, что на Кавказе нефть образовалась из органического материала. По мнению И.М. Губкина, родина нефти находится в области древних мелководных морей, лагун и заливов. Он считал, что уголь и нефть - члены одного и того же генетического ряда горючих ископаемых.

Уголь образуется в болотах и пресноводных водоёмах, как правило, из высших растений. Нефть получается главным образом из низших растений и животных, но в других условиях. Нефть постепенно образовывалась в толще различных по возрасту осадочных пород, начиная от наиболее древних осадочных пород - кембрийских, возникших 600 млн. лет назад, до сравнительно молодых - третичных слоёв, сложившихся 50 млн. лет назад. Накопление органического материала для будущего образования нефти происходило в прибрежной полосе, в зоне борьбы между сушей и морем.

По вопросу об исходном материале существовали разные мнения. Некоторые учёные полагали, что нефть возникла из жиров погибших животных (рыбы, планктона), другие считали, что главную роль играли белки, третьи придавали большое значение углеводам. Теперь доказано, что нефть может образоваться из жиров, белков и углеводов, т.е. из всей суммы органических веществ.

И.М. Губкин дал критический анализ проблемы происхождения нефти и разделил органические теории на три группы: теория, где преобладающая роль в образовании нефти отводится погибшим животным; теория, где преобладающая роль отводится погибшим растениям, и, наконец, теория смешанного животно-растительного происхождения нефти.

Последняя теория, детально разработанная И.М. Губкиным, носит название сапропелитовой от слова “сапропель” - глинистый ил - и является господствующей. В природе широко распространены различные виды сапропелитов.

Различие в исходном органическом веществе является одной из причин существующего разнообразия нефтей. Другими причинами являются различие температурных условий вмещающих пород, присутствие катализаторов и др., а также последующие преобразования пород, в которых заключена нефть.

В СССР были проведены исследования, в результате которых удалось установить роль микроорганизмов в образовании нефти. Т.Л. Гинзбург-Карагичева, открывшая присутствие в нефти разнообразнейших микроорганизмов, привела в своих исследованиях много новых, интересных сведений. Она установила, что в нефтях, ранее считавшихся ядом для бактерий, на больших глубинах идёт кипучая жизнь, не прекращавшаяся миллионы лет подряд.

Целый ряд бактерий живёт в нефти и питается ею, меняя, таким образом, химический состав нефти. Академик И.М. Губкин в своей теории нефтеобразования придавал этому открытию большое значение. Гинзбург-Карагичевой установлено, что бактерии нефтяных пластов превращают различные органические продукты в битуминозные.

Под действием ряда бактерий происходит разложение органических веществ и выделяется водород, необходимый для превращения органического материала в нефть.

15 октября 1876 года, на заседании Русского химического общества выступил с обстоятельным докладом Д.И.Менделеев. Он изложил свою гипотезу образования нефти. Ученый считал, что во время горообразовательных процессов по трещинам-разломам, рассекающим земную кору, вглубь поступает вода. Просачиваясь в недра, она в конце концов встречается с карбидами железа, под воздействием окружающих температур и давления вступает с ними в реакцию, в результате которой образуются оксиды железа и углеводороды, например этан. Полученные вещества по тем же разломам поднимаются в верхние слои земной коры и насыщают пористые породы. Так образуются газовые и нефтяные месторождения.

В своих рассуждениях Менделеев ссылается на опыты по получению водорода и ненасыщенных углеводородов путем воздействия серной кислоты на чугун, содержащий достаточное количество углерода.

Правда, идеи "чистого химика" Менделеева поначалу не имели успеха у геологов, которые считали, что опыты, проведенные в лаборатории, значительно отличаются от процессов, происходящих в природе.

Однако неожиданно карбидная или, как ее еще называют, а биогенная теория о происхождении нефти получила новые доказательства - от астрофизиков. Исследования спектров небесных тел показали, что в атмосфере Юпитера и других больших планет, а также в газовых оболочках комет встречаются соединения углерода с водородом. Ну, а раз углеводороды широко распространены в космосе, значит в природе все же идут и процессы синтеза органических веществ из неорганики. Но ведь именно на этом и построена теория Менделеева.

Итак, на сегодняшний день налицо две точки зрения на природу происхождения нефти. Одна - биогенная. Согласно ей, нефть образовалась из остатков животных или растений. Вторая теория - абиогенная. Подробно разработал ее Д.И.Менделеев, предположивший, что нефть в природе может синтезироваться из неорганических соединений.

И хотя большинство геологов придерживается все-таки биогенной теории, отзвуки этих споров не затихли и по сей день. Уж слишком велика цена истины в данном случае. Если правы сторонники биогенной теории, то верно и опасение, что запасы нефти, возникшие давным-давно, вскоре могут подойти к концу. Если же правда на стороне их оппонентов, то вероятно, эти опасения напрасны. Ведь землетрясения и сейчас приводят к образованию разломов земной коры, воды на планете достаточно, ядро ее, по некоторым данным, состоит из чистого железа… Словом, все это позволяет надеяться, что нефть образуется в недрах и сегодня, а значит, нечего опасаться, что завтра она может кончиться.

Давайте посмотрим, какие доводы приводят в защиту своих точек зрения сторонники одной и другой гипотез.

Но прежде несколько слов о строении Земли. Это поможет нам быстрее разобраться в логических построениях ученых. Упрощенно говоря, Земля представляет собой три сферы, расположенные внутри друг друга. Верхняя оболочка - это твердая земная кора. Глубже расположена мантия. И наконец, в самом центре - ядро. Такое разделение вещества, начавшееся 4,5 миллиарда лет тому назад, продолжается и по сей день. Между корой, мантией ядром осуществляется интенсивный тепло- и массообмен, со всеми вытекающими отсюда геологическими последствиями - землетрясениями, извержениями вулканов, перемещениями материков...

Первые попытки объяснить происхождение нефти относится еще ко временам античности. Сохранилось, например, высказывание древнегреческого ученого Страбона, жившего около 2000 лет тому назад: "В области аполлонийцев есть место под названием Нимфей, - писал он, - это скала, извергающая огонь, а под ней текут источники теплой воды и асфальта, вероятно, от сгорания асфальтовых глыб под землей...".

Страбон объединил в целое два факта: извержение вулканов и образование асфальтов (так он называл нефть). И... ошибся! В упомянутых им местах нет действующих вулканов. Не было их и двадцать столетий назад. То, что Страбон принял за извержения, на самом деле - выбросы, прорывы подземных вод (так называемые грязевые вулканы), сопровождающие выходы нефти и газа на поверхность. И в наши дни подобные явления можно наблюдать на Апшероне и Таманском полуострове.

Впрочем, несмотря на ошибку, в рассуждениях Страбона было здравое зерно - его толкование происхождения нефти имело под собой материалистическую почву. Эта линия прервалась надолго. Лишь в 1805 году, основываясь на собственных наблюдениях, сделанных в Венесуэле, на описаниях извержения Везувия, известный немецкий естествоиспытатель А.Гумбольд снова возвращается к материалистической точке зрения. "...Мы не можем сомневаться в том, - пишет он, - что нефть представляет продукт перегонки на громадных глубинах и происходит из примитивных горных пород, под которыми покоится энергия всех вулканических явлений."

Неорганическая теория происхождения нефти выкристаллизовывалась постепенно, и к тому моменту, когда Менделеев выдвинул свою теорию карбидного происхождения нефти, неорганики накопили достаточное количество фактов и рассуждений. И последующие годы добавляли в их копилку новые сведения.

В 1877-1878 годах французские ученые, воздействуя соляной кислотой на зеркальный чугун и водяными парами на железо при белом калении, получили водород и значительное количество углеводородов, которые даже по запаху напоминали нефть.

Кроме вулканической гипотезы у сторонников абиогенного происхождения нефти есть еще и космическая. Геолог В.Д.Соколов в 1889 году высказал предположение, что в тот далекий период, когда вся наша планета еще представляла собой газовый сгусток, в составе этого газа присутствовали и углеводороды. По мере охлаждения раскаленного газа и перехода его в жидкую фазу, углеводороды постепенно растворялись в жидкой магме. Когда же из жидкой магмы стала образовываться твердая земная кора, она, согласно законам физики, уже не могла удержать в себе углеводороды. Они стали выделяться по трещинам в земной коре, поднимались в верхние ее слои, сгущаясь и образуя здесь скопления нефти и газа.

Уже в наше время обе гипотезы - вулканическая и космическая - были объединены в единое целое новосибирским исследователем В.Сальниковым. Он использовал предположение, что планетка, имевшая в своем составе большое количество углеводородов, находясь на чересчур низкой орбите, постепенно тормозилась о верхние слои атмосферы и в конце концов упала на Землю, как это происходит с искусственными спутниками. Резкий толчок активизировал вулканическую и горообразовательную деятельность. Миллиарды тонн вулканического пепла, мощнейшие грязевые потоки завалили принесенные из космоса углеводороды, похоронили их в глубоких недрах, где под действием высоких температур и давлений они превратились в нефть и газ.

В качестве обоснования своих выводов Сальников указывает на необычное расположение месторождений нефти и газа. Соединив между собой крупные зоны обнаруженных месторождений, он получил систему параллельных синусоидальных линий, которая, по его мнению, весьма напоминает проекции траекторий искусственных спутников Земли.

Рассказ о неорганических гипотезах нельзя будет считать полным, если не упомянуть известного геолога-нефтника Н.А.Кудрявцева. В 50-е годы он собрал и обобщил огромный геологический материал по нефтяным и газовым месторождениям мира.

Прежде всего Кудрявцев обратил внимание на то, что многие месторождения нефти и газа обнаруживаются под зонами глубинных разломов земной коры. Сама по себе такая мысль не была новой: на это обстоятельство обратил еще Д.И.Менделеев. Но Кудрявцев намного расширил географию применения таких выводов, глубже обосновал их.

Например, на севере Сибири, в районе так называемого Мархининского вала, очень часто встречаются выходы нефти на поверхность. На глубину до двух километров все горные породы буквально пропитаны нефтью. В то же время, как показал анализ, количество углерода, образовавшегося одновременно с породой чрезвычайно невелико - 0,02-0,4%. Но по мере удаления от вала количество пород, богатых органическими соединениями, возрастает, а вот количество нефти резко уменьшается.

На основании этих и других данных Кудрявцев утверждает, что нефтегазоносность Мархининского вала скорее всего связан не с органическим веществом, а с глубинным разломом, который и поставляет нефть из недр планеты.

Подобные же образования имеются в других регионах мира. Скажем, в штате Вайоминг (США) жители издавна отапливают дома кусками асфальта, который они берут в трещинах горных город соседних Медных гор. Но сами по себе граниты, из которых состоят те горы, не могут накапливать нефть и газ. Эти полезные ископаемые могут поступить только из земных глубин по образовавшимся трещинам.

Более того, найдены следы нефти в кимберлитовых трубках - тех самых, в которых природа осуществила синтез алмазов. Такие каналы взрывного разлома земной коры, образовавшиеся в результате прорыва глубинных газов и магмы, могут оказаться вполне подходящим местом и для образования нефти и газа.

Обобщив эти и множество других фактов, Кудрявцев создал свою магматическую гипотезу происхождения нефти. В мантии Земли под давлением и при высокой температуре из углерода и водорода сначала образуются сначала углеводородные радикалы СН, СН2 и СН3. Они движутся в веществе мантии от области высокого к области низкого давления. А так как в зоне разломов перепад давлений особенно ощутим, углероды и направляются в первую очередь именно сюда. Поднимаясь в слои земной коры, углеводороды в менее нагретых зонах реагируют друг с другом и с водородом, образуя нефть. Затем образовавшаяся жидкость может перемещаться как вертикально, так и горизонтально по имеющимся в породе трещинам, скапливаясь в ловушках.

Исходя из теоретических представлений, Кудрявцев советовал искать нефть не только в верхних слоях, но и глубже. Этот прогноз блестяще подтверждается, и глубина бурения с каждым годов возрастает.

В середине 60-х годов удалось ответить на такой важный вопрос: "Почему столь "нежные" углеводородные соединения, из которых состоит нефть, не распадаются в недрах Земли на химические элементы при высокой температуре?" Действительно, такое разложение вполне можно наблюдать даже в школьной лаборатории. На подобных реакциях зиждется деструктивная переработка нефти. Оказалось, что в природе дело обстоит как раз наоборот - из простых соединений образуются сложные... Математическим моделированием химических реакций доказано, что подобный синтез вполне допустим, если к высоким температурам мы добавим еще и высокие давления. То и другое, как известно, в избытке имеется в земных недрах.

В ученом споре о возникновении нефти другая сторона - это адепты биогенной теории.

Биогенной теории придерживались многие серьезные отечественные и зарубежные ученые. Академик В.И.Вернадский, основоположник современной геохимии нефти, еще в начале века писал: "Организмы, несомненно, являются исходным веществом нефтей".

Академик И.М.Губкин в своей книге "Учение о нефти", впервые увидевшей свет в 1932 году, наиболее обстоятельно и полно подвел научный итог тогдашней истории нефтяного и газового дела.

В качестве исходного вещества для образования нефти Губкин рассматривал уже знакомый нам сапропель - битуминозный ил растительно-животного происхождения. В прибрежной полосе моря, где жизнь особенно активна, происходит сравнительно быстрое накапливание этих органических остатков. Через какое-то время они перекрываются более молодыми отложениями, которые предохраняют их от окисления. Дальнейшие процессы идут уже без доступа кислорода под воздействием анаэробных бактерий.

По мере погружения пласта, обогащенного органическими остатками, под воздействием последующего наноса и тектонических перемещений в глубину, в нем возрастают температуры и давления. Эти процессы, которые впоследствии получили название катагенеза, и приводят в конце концов к преобразованию органики в нефть.

Взгляды Губкина на образование нефти лежат в основе современной гипотезы ее органического происхождения. В наше время многие ее положения расширены и дополнены. Так, скажем, долгое время считалось, что первоначальное накопление органического вещества обязательно должно идти в океане. Но, видимо, нефть может формироваться и в континентальной обстановке, ведь в болотах, озерах, реках достаточно органического вещества.

Детально рассмотрен и сам процесс формирования нефтяных месторождений. Выделяют пять основных стадий осадконакопления и преобразования органических остатков в нефть.

Первая стадия: в осадок, образующийся в море или в пресном водоеме, вносятся органические вещества с небольшим количеством углеводородного нефтяного ряда, синтезированных живыми организмами.

Вторая стадия: накопленный на дне осадок преобразуется, уплотняется, частично обезвоживается. При этом часть вещества разлагается с выделением диоксида углерода, сероводорода, аммиака и метана. Словом, получается картина, частенько наблюдаемая на болотах.

Третья стадия: биохимические процессы постепенно затухают. Сравнительно небольшая температура земных недр на данной глубине (порядка 50 С) определяет низкую скорость реакций. Концентрация битумов и нефтяных углеводородов возрастает слабо, в составе газовых компонентов преобладает диоксид углерода.

Четвертая стадия: осадок погружается на глубину 3-4 километров, окружающие температуры возрастают до 150 С. Происходит отгонка нефтяных углеводородов из рассеянного органического вещества в пласт. Попав в проницаемые породы-коллекторы, нефть начинает новую жизнь, образует промышленные залежи.

И наконец, пятая стадия: на глубине 4,5 километра и более при температурах свыше 180 С органическое вещество прекращает выделение нефти и продолжает генерировать лишь газ.

Кроме температуры и давления в природных процессах принимает участие и электричество. Член-корреспондент АН СССР А.А.Воробьев выдвинул предположение, что в развитии нашей планеты немалую роль играли именно электрические процессы. По его мнению, горные породы обладают гораздо большими диэлектрическими свойствами, чем атмосфера. А если так, то грозы могут бушевать не только над, но и под землею.

В результате сильных электрических разрядов возникают частицы плазмы, которые обладают высокой химической активностью. Это обстоятельство, в свою очередь, создает предпосылки для протекания таких реакций, которые невозможны при обычных условиях. По мнению Воробьева, метан, выделяющийся из органических соединений, при воздействии подземного электрического разряда может подвергнуться частичному дегидрированию, образуются свободные углеводородные радикалы СН, СН2, и СН3. Соединяясь между собой, они образуют ацетилен, этилен и другие углеводороды, входящие в состав нефти.

Одним из основных механизмов электризации горных пород, согласно рассуждениям Воробьева, является трение в месте контакта горных пород при взаимном перемещении в ходе тектонических процессов. Таким образом, процессы трещинообразования в земной коре могут способствовать превращению механической энергии в электрическую.

И представьте себе, эти весьма неожиданные рассуждения нашли подтверждение в геологической практике. Еще в 1933 году было отмечено, что формы облаков в зонах разломов земной коры резко отличаются от облаков в тех местах, где трещин нет. Современные геофизические приборы указывают, что в приземном слое воздуха над зонами разломов земной коры увеличена электропроводимость.

Есть и еще одна интересная гипотеза. В соответствии с ней, нефть образуется также из органических остатков, затянутых вместе с океаническими осадками в зону, где происходил подвиг океанической плиты под континентальную. Говоря другими словами, существуют тектонические процессы, которые позволяют органическим веществам оказаться на весьма больших глубинах. При этом механизм затягивания осадков в зону подвига жестких плит аналогичен механизму попадания жидких смазочных масел в зазоры между трущимися жесткими деталями в различных технических устройствах и машинах.

Ну а дальше образовавшаяся нефть может подвергаться различным воздействиям. Например, под тяжестью литосферного выступа, наползающий с материка плиты углеводороды могут быть "выжаты" из осадочных пород и активно мигрировать в сторону надвига. Этим эффектом "горячего утюга" может быть объяснено формирование больших залежей нефти на равнительно небольшой площади, как в районе Персидского залива.

В результате затягивания органических веществ в мантию, их последующей переработки и выброса образовавшихся углеводородов геотермальными водами в верхние слои земной коры их обнаруживают в вулканических газах во время извержений.

Такая теория, учитывающая глобальную тектонику плит земной коры, оказалась весьма продуктивной и с практической точки зрения. В США, к примеру, ведется бурение в так называемых поднаддвиговых зонах Скалистых гор. И здесь были обнаружены как нефтяные, так и газовые месторождения. А ведь по старым, классическим меркам, их здесь не должно было быть.

В 1980 году в штате Вайоминг поисковая скважина на глубине 1888 метров вошла в докембрийский фундамент, сложенный из гранита. Затем в скальных породах геонефтеразведчики прошли еще 2700 метров и обнаружили осадочные отложения мелового периода. Необъяснимое, казалось бы, чередование пород разного геологического возраста объяснялось весьма просто: на осадочные породы в свое время была надвинута плита гранита.

Бурение было продолжено, и на глубинах 5,5 километров разведчики обнаружили промышленные залежи газа. К настоящему времени в Скалистых горах ведется промышленная разработка, а прогнозные запасы оцениваются в 2,8 миллиарда тонн условного топлива. Это уникальное месторождение.

2. Состав и физические свойства нефти и газа

2.1 Физические свойства нефти и газа

Нефть -- горючая маслянистая жидкость со специфическим запахом.

Представляя собой жидкость, более легкую, чем вода, нефть разных мест, иногда даже и соседних, различна по многим свойствам: цвету, плотности, летучести, температуры кипения. Однако любая нефть это жидкость почти нерастворимая в воде и по элементарному составу содержащая преимущественно углеводороды с подмесью небольшого количества кислородных, сернистых, азотистых и минеральных соединений, что видно не только по элементарному составу, но и по всем свойствам углеводородов.

Состоит она в основном из жидких углеводородов, которые образованы только углеродом и водородом. Причём в составе нефти углерод преобладает -- его содержится 79--88%, а водорода всего 11--14%. Кроме жидких углеводородов нефть в небольших количествах (до 5%) содержит серу, кислород и азот. В очень незначительных концентрациях (до 0,03% ) в нефти присутствуют металлы -- ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, калий, натрий, цинк, кальций, серебро, галлий, а также бор, мышьяк, йод.

Одна из важных характеристик сырой (непереработанной) нефти -- плотность. Она возрастает с увеличением процентного содержания в ней тяжёлых углеводородов (например, смол).

По плотности выделяют лёгкую (800-- 870 кг/м3, среднюю (871--910 кг/м3) и тяжёлую (свыше 910 кг/м3) разновидности нефти.

Для специалистов важны и такие показатели, как температура начала кипения (выше 28° С), удельная теплота сгорания (43,7--46 МДж/кг)и температура вспышки (35--120° С).

Вязкость -- показатель текучести сырой нефти-- возрастает с увеличением её плотности.

Основу горючих газов составляет смесь газообразных углеводородов -- метана, этана, пропана, бутана и пентана. Доля углерода в горючих газах составляет 42--78%, водорода -- 14--24%. Обычно содержание азота в виде примеси не превышает 11%, но иногда достигает 30--50% и более. Кроме того, присутствуют углекислый газ, водяные пары. Содержание углекислого газа колеблется от долей процента до 2--4%, реже до 10--15% и более. В горючих газах содержатся также гелий, аргон, водород, ртуть. Концентрации гелия в большинстве случаев составляют сотые и тысячные доли процента, но имеются месторождения горючих газов с содержанием гелия 5--8%. Кислород находится в связанном состоянии в составе углекислого газа.

Природный горючий газ обычно бесцветный и, как правило, без запаха. Исключением является газ, в состав которого входит сероводород.

Горючие газы состоят в основном из метана (85--99,5%). В залежах газа иногда присутствуют газоконденсаты, представляющие собой природную смесь газообразных и легкокипящих жидких углеводородов. При больших давлениях и высоких температурах, господствующих в недрах, газоконденсаты находятся в парообразном состоянии. Но в условиях низких температур и обычного атмосферного давления из них выпадает жидкая составляющая -- конденсат. Это -- бесцветная или светло-коричневая жидкость. Природный газ помимо главного своего назначения -- служить топливом используется в химической промышленности для производства синтетического каучука и полиэтилена.

Наиболее ценное свойство нефти и горючего газа -- то, что они выделяют при горении значительное количество тепла. Отношение количества теплоты, выделяющейся при горении, к массе сгоревшего до конца (т.е. до образования углекислоты и воды) вещества называется теплотой сгорания топлива. Нефть, природный горючий газ и их производные обладают наивысшей среди всех видов топлива теплотой сгорания. Теплота сгорания природных горючих газов в среднем равна 38--40 МДж/кг, а нефти -- 42--47 МДж/кг.

2.2 Химический состав нефти и газа

Что такое нефть и газ известно всем. И в то же время даже специалисты не могут договориться между собой о том, как образуются нефтяные залежи. Такая ситуация покажется не столь уж странной, если начать знакомиться с «биографией» этого полезного ископаемого.

В лучшем сорте угля - антраците, например, на углерод приходится 94%. Остальное достается водороду, кислороду и некоторым другим элементам.

Конечно, чистого угля в природе практически не бывает: его пласты всегда засорены пустой породой, различными вкраплениями и включениями… Но в данном случае мы говорим не о пластах, месторождениях, а лишь об угле как таковом.

В нефти содержится почти столько же углерода, сколько и в каменном угле - около 86%, а вот водорода побольше - 13% против 5-6% в угле. Зато кислорода в нефти совсем мало - всего 0,5%. Кроме того, в ней есть также азот, сера и другие минеральные вещества.

Такая общность по элементному составу, конечно, не могла пройти незамеченной для ученых. И потому нефть вместе с газом относят к тому же классу горных пород, что уголь (антрацит, каменный и бурый), торф и сланцы, а именно - к классу каустобиолитов.

Это замысловатое слово составлено из трех греческих слов: kaustikos - жгучий, bios - жизнь и lithos - камень. Можете теперь перевести сами.

Такое название может показаться не совсем точным. Как это к классу камней, пусть органического происхождения, пусть даже и горючих, можно отнести жидкую нефть , а тем более природный газ?...

Замечание вполне резонное. Однако, наверное, Вы удивитесь еще больше, когда узнаете, что нефть специалисты относят к минералам (хотя латинское слово minera означает «руда»). Вместе с газом она относится к числу горючих полезных ископаемых. Так уж сложилось исторически, и не нам с Вами эту классификацию менять. Просто давайте иметь ввиду, что минералы бывают не только твердыми.

В химическом отношении нефть - сложнейшая смесь углеводородов, подразделяющаяся на две группы - тяжелую и легкую нефть. Легкая нефть содержит примерно на два процента меньше углерода, чем тяжелая, зато соответственно, большее количество водорода и кислорода.

Нефть - это горная порода. Она относится к группе осадочных пород вместе с песками, глинами, известняками, каменной солью и др. Мы привыкли считать, что порода - это твердое вещество, из которого состоит земная кора и более глубокие недра Земли. Оказывается, есть и жидкие породы, и даже газообразные. Одно из важных свойств нефти - способность гореть.

В зависимости от месторождения нефть имеет различный качественный и количественный состав. Нефти состоят главным образом из углерода - 79,5-87,5% и водорода - 11,0-14,5% от массы нефти. Кроме них в нефтях присутствуют еще три элемента - сера, кислород и азот. Их общее количество обычно составляет 0,5-8%. В незначительных концентрациях в нефтях встречаются элементы: ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий. Их общее содержание не превышает 0,02-0,03% от массы нефти. Указанные элементы образуют органические и неорганические соединения, из которых состоят нефти. Кислород и азот находятся в нефтях только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.

Главную часть нефтей составляют три группы углеводородов - алканы, нафтены и арены.

Алканы (в литературе Вы можете также столкнуться с названиями предельные углеводороды, насыщенные углеводороды, парафины) химически наиболее устойчивы. Их общая формула СnH(2n+2). Если число атомов углерода в молекуле не более четырех, то при атмосферном давлении алканы будут газообразными. При 5-16 атомах углерода это жидкости, а свыше - уже твердые вещества, парафины.

К нафтенам относят алициклические углеводороды состава CnH2n, CnH(2n-2) и CnH(2n-4). В нефтях содердится преимущественно циклопентан С5Н10, циклогексан С6Н10 и их гомологи.

И наконец, арены (ароматические углеводороды). Они значительно беднее водородом, соотношение углерод/водород в аренах самое высокое, намного выше, чем в нефти в целом. Содержание водорода в нефтях колеблется в широких пределах, но в среднем может быть принято на уровне 10-12% тогда как содержание водорода в бензоле 7,7%. А что говорить о сложных полициклических соединениях, в ароматических кольцах которых много ненасыщенных связей углерод-углерод! Они составляют основу смол, асфальтенов и других предшественников кокса, и будучи крайне нестабильными, осложняют жизнь нефтепереработчикам.

Посмотрите, как устроены молекулы пентана С5Н10, циклогексана С6Н12 и бензола С6Н6 - типичных представителей каждого из этих классов:

Кроме углеродной части в нефти имеются асфальто-смолистая составляющая, порфирины, сера и зольная часть.

Асфальто-смолистая часть - темное плотное вещество, которое частично растворяется в бензине. Растворяющуюся часть называют асфальтеном, а нерастворяющуюся, понятно, смолой. В составе смол содержится кислород до 93 % от общего его количества в нефтях.

Асфальтены представляют собой черное твердое вещество. По составу они сходны со смолами, но характеризуются иными соотношениями элементов. Они отличаются большим содержанием железа, ванадия, никеля и др. Если смолы растворяются в жидких углеводородах всех групп, то асфальтены нерастворимы в метановых углеводородах, частично растворимы в нафтеновых и лучше растворяются в ароматических. В “белых” нефтях смолы содержатся в малых количествах, а асфальтены вообще отсутствуют.

Порфирины - особые органические соединения, имеющие в своем составе азот. Многие ученые полагают, что когда-то они образовались из хлорофилла растений и гемоглобина животных. При температуре 200-250оС порфирины разрушаются.

Наряду с углеводородами в нефтях присутствуют химические соединения других классов. Обычно все эти классы объединяют в одну группу гетеросоединений (греч. “гетерос” - другой). В нефтях также обнаружено более 380 сложных гетеросоединений, в которых к углеводородным ядрам присоединены такие элементы, как сера, азот и кислород. Большинство из указанных соединений относится к классу сернистых соединений - меркаптанов. Это очень слабые кислоты с неприятным запахом. С металлами они образуют солеобразные соединения - меркаптиды. В нефтях меркаптаны представляют собой соединения, в которых к углеводородным радикалам присоединена группа SH. Сера широко распространена в нефтях и в углеводородном газе и содержится либо в свободном состоянии, либо в виде соединений (сероводород, меркаптаны). Количество ее колеблется от 0,1% до 5%, но бывает и значительно больше

Меркаптаны разъедают трубы и другое металлическое оборудование буровых установок и промысловых объектов.

Сера широко распространена в нефтях и в углеводородном газе и содержится либо в свободном состоянии, либо в виде соединений (сероводород, меркаптаны). Количество ее колеблется от 0,1% до 5%, но бывает и значительно больше, она приносит немало хлопот нефтяникам, вызывая коррозию металлов. Так, например, в газе Астраханского месторождения содержание Н2S достигает 24 %.

И, наконец, зольная часть. Это то, что остается после сжигания нефти. В золе, обычно содержатся соединения железа, никеля, ванадия и некоторых других веществ.

Кислород в нефтях встречается в связанном состоянии также в составе нафтеновых кислот (около 6%) - CnH2n-1(COOH), фенолов (не более 1%) - C6H5OH, а также жирных кислот и их производных - C6H5O6(P). Содержание азота в нефтях не превышает 1%. Основная его масса содержится в смолах. Содержание смол в нефтях может достигать 60% от массы нефти, асфальтенов - 16%.

К сказанному, пожалуй, можно добавить, что геологический сосед нефти - природный газ - тоже непростое по своему составу вещество. Больше всего - до 95% по объему - в этой смеси метана. Присутствуют также этан, пропан, бутаны и другие алканы - от С5 и выше. Более тщательный анализ, позволил обнаружить в природном газе и небольшие количества гелия.

Заключение

Нефть - ценнейшее природное ископаемое, открывшее перед человеком удивительные возможности "химического перевоплощения". Всего производных нефти насчитывается уже около 3 тысяч. Нефть занимает ведущее место в мировом топливно-энергетическом хозяйстве. Ее доля в общем потреблении энергоресурсов непрерывно растет. Нефть составляет основу топливно-энергетических балансов всех экономически развитых стран. В настоящее время из нефти получают тысячи продуктов.

Нефть останется в ближайшем будущем основой обеспечения энергией народного хозяйства и сырьем нефтегазохимической промышленности. Здесь будет многое зависеть от успехов в области поисков, разведки и разработки нефтяных месторождений. Но ресурсы нефти в природе ограничены. Бурное наращивание в течение последних десятилетий их добычи привело к относительному истощению наиболее крупных и благоприятно расположенных месторождений.

В проблеме рационального использования нефти большое значение имеет повышение коэффициента их полезного использования. Одно из основных направлений здесь предполагает углубление уровня переработки нефти в целях обеспечения потребности страны в светлых нефтепродуктах и нефтехимическом сырье. Другим эффективным направлением является снижение удельного расхода топлива на производство тепловой и электрической энергии, а также повсеместное снижение удельного расхода электрической и тепловой энергии во всех звеньях народного хозяйства.

Список использованной литературы

1. Судо М. М. Нефть и горючие газы в современном мире. - М.: Недра, 1984.

2. Тарасенко Г.В. Образование нефти и тектоника плит скольжения// Международная конференция "Геология, поиск нефтяных и газовых месторождений Прикаспийской впадины и территорий Каспийского моря". 18-20 сентября 2007 г. РГУ нефти и газа им. Губкина, г. Москва.

3. Стадников Г.Л. Происхождение углей и нефти // М.: - третье переработанное и дополненное издание АН СССР, - 1937, - с. 544.

4. Парменов К.Я., Сморгонский Л.М., Цветков Л.А. Книга для чтения по химии (часть вторая) Москва, "Просвещение" 1993 г.

Размещено на Allbest.ru


Подобные документы

  • Исторические сведения о нефти. Геология нефти и газа, физические свойства. Элементный состав нефти и газа. Применение и экономическое значение нефти. Неорганическая теория происхождения углеводородов. Органическая теория происхождения нефти и газа.

    курсовая работа [3,2 M], добавлен 23.01.2013

  • Исследование геологической природы нефти и газа. Изучение плотности, вязкостных свойств, застывания и плавления, загустевания и размягчения, испарения, кипения и перегонки нефти. Групповой химический состав нефти. Физические свойства природного газа.

    реферат [363,1 K], добавлен 02.12.2015

  • Концепции неорганического происхождения нефти: гипотеза Менделеева, Кудрявцева, Соколова. Основные аргументы в пользу биогенного происхождения нефти. Образование природного газа. Условия нефтеобразования: время, умеренные температуры, давление.

    реферат [178,7 K], добавлен 16.06.2015

  • Физические и химические свойства нефти. Теория возникновения газа. Применение продуктов крекинга. Внутреннее строение Земли. Геодинамические закономерности относительного изменения запасов и физико-химических свойств нефти различных месторождений.

    дипломная работа [3,8 M], добавлен 06.04.2014

  • Условия залегания и свойства газа, нефти и воды в пластовых условиях. Физические свойства нефти. Главные свойства нефти в данных условиях, принципы и этапы отбора проб. Нефтенасыщенность пласта, характер и направления движения нефти внутри него.

    курсовая работа [1000,9 K], добавлен 19.06.2011

  • Залежи нефти в недрах Земли. Нефтеразведка с помощью геологических, геофизических, геохимических и буровых работ. Этапы и способы процесса добычи нефти. Химические элементы и соединения в нефти, ее физические свойства. Продукты из нефти и их применение.

    реферат [16,9 K], добавлен 25.02.2010

  • Факторы миграции нефти и газа в земной коре. Проблема аккумуляции углеводородов. Граничные геологические условия этого процесса. Главное свойство геологического пространства. Стадии выделения воды, уплотнения глин. Формирование месторождений нефти и газа.

    презентация [2,5 M], добавлен 10.10.2015

  • Анализ неорганической и органической теорий происхождения нефти и газа. Залегание нефти и газа в месторождении, состав коллекторов, их формирование и свойства. Проблемы коммерческой нефте- и газодобычи на шельфе Арктики, устройство ледостойких платформ.

    презентация [3,5 M], добавлен 30.05.2017

  • Понятие природного газа и его состав. Построение всех видов залежей нефти и газа в ловушках различных типов. Физические свойства природных газов. Сущность ретроградной конденсации. Технологические преимущества природного газа как промышленного топлива.

    контрольная работа [2,0 M], добавлен 05.06.2013

  • Образование нефти и газа в недрах Земли. Физические свойства пластовых вод, залежей нефти, газа и вмещающих пород. Геофизические методы поисков и разведки углеводорода. Гравиразведка, магниторазведка, электроразведка, сейсморазведка, радиометрия.

    курсовая работа [3,3 M], добавлен 07.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.