Распределение и круговорот воды на Земле

Роль Солнца как главного энергетического двигателя круговорота воды на Земле. Формирование речных наносов, их классификация по характеру движения в потоке. Происхождение болот и их распространение на территории России. Образование и строение ледников.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 11.09.2011
Размер файла 31,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Контрольная работа

по предмету: Гидрология и водное хозяйство

Вопросы

1. Распределение и круговорот воды на земном шаре

2. Движение речных наносов. Характеристики речных наносов

3. Происхождение болот и распространение на территории России

4. Типы ледников. Образование и строение ледников

5. Использование пресных вод

1. Распределение и круговорот воды на земном шаре

Круговорот воды на Земле.

Круговорот воды на Земле, или глобальный гидрологический цикл, - это непрерывный процесс циркуляции воды на планете, обмен водой между всеми составляющими гидросферы. В нем участвуют поверхность земного шара, недра, толща воды и атмосферы.

Главный энергетический двигатель круговорота воды - Солнце. Солнечные лучи нагревают воду, и она интенсивно испаряется. Молекулы воды оказываются в атмосфере, причем половина их сосредоточена в нижнем полуторакилометровом слое воздуха. С высотой температура воздуха постепенно падает, поэтому пары воды на определенной высоте насыщаются и конденсируются в капельки воды или кристаллы снега, формируя облака. Облака проливаются дождем или выпадают в виде снега. Этот процесс идет непрерывно. Испарившаяся вода находится в атмосфере всего 8-9 дней, затем снова возвращается в океан, озеро, болото, реку или недра Земли.

Круговорот воды на Земле возник при образовании гидросферы. Океан стал основным поглотителем солнечного тепла и поставщиком водяного пара. Часть пара воздушными течениями переносится на сушу и после конденсации выпадает в виде дождей и снегопадов. Потоки дождевой и талой воды стекают к руслам рек, а затем по рекам к океану. На этом цикл водообмена между сушей и океаном заканчивается, но сам процесс бесконечен.

Глобальный круговорот воды не замкнут, так как через рифовые трещины идет дополнительный приток воды из недр планеты, увеличивающей объем гидросферы ежегодно на 0,25 км. А часть паров воды, попадая в верхние слои атмосферы под действием солнечного излучения, разлагается на водород и кислород и уходит в космос. За счет круговорота идет непрерывный водообмен в реках, озерах, морях, т.е. непрерывное обновление воды. Так. в Мировом океане вода полностью сменяется за счет испарения за 2400 лет, а речной сток требует 31 тыс. лет В полярных ледниках, которые питаются атмосферной влагой, а сами, подобно рекам, стекают в океан, выбрасывая в него айсберги, смена льда происходит примерно за 10 тыс. лет. В подземных же водах это происходит в среднем за 5 тыс. лет, а в реках - всего за 12 дней. Таким образом, круговорот обеспечивает доставку воды буквально во все уголки земного шара. В результате вода пронизывает все, поддерживая на Земле жизнь.

Каждый живой организм можно рассматривать как часть гидросферы, участвующей в круговороте воды. Благодаря воде в организмах происходят реакции, необходимые для поддержания жизни, и формируется само тело организма. Поэтому любой организм должен пропускать через себя воду, осуществлять свой собственный круговорот воды. Как писал русский исследователь В.Г. Богоров (1904-1971), «никакой воды, которая бы не соприкасалась с живыми существами, в океане нет». Можно добавить - и на суше тоже нет. Практически вся масса воды на суше проходит через растительность и почвенные организмы, а это означает, что биота суши весь объем гидросферы планеты пропускает через себя примерно за 20 тыс. лет. В океане, где вода - это среда обитания, источник пищи и кислорода, морские организмы пропускают через себя весь объем Мирового океана всего за полгода.

Вода - идеальный растворитель, поэтому любая природная вода содержит растворенные газы и вещества, в том числе необходимые для жизни.

Потоки воды в реках, волны и течения в озерах и морях разрушают горные породы и переносят частицы и обломки на большие расстояния. Основная часть их в конце концов оказывается на дне морей и озер. Таким образом, вода формирует круговорот вещества в природе. Растения за счет воды, углекислого газа и солнечной энергии создают органическое вещество для поддержания жизни остальных организмов на планете, которые питаются этим органическим веществом. Для того чтобы создать массу органического вещества, требуется ежегодно около 1 тыс. км3 воды. Следовательно, можно утверждать, что гидросфера - это продукт живых организмов, среда, которую они создали сами для себя.

Вода нужна всем. Животные тоже участвуют в круговороте воды.

Глобальный круговорот воды разделяется на океанический и континентальный.

Океанический круговорот воды

Океанический круговорот воды - это непрерывный процесс испарения, перенос влаги воздушными течениями над океаном и выпадение ее в виде осадков на поверхность океана. За время существования планеты круговорот меняется в зависимости от площади океана и объема гидросферы. Сейчас ежегодно в океаническом круговороте участвует 458 тыс. км3 воды. Это почти шесть таких водоемов, как Каспийское море. Но испаряется с поверхности океана каждый год 505 тыс. км3. Разница в 47 тыс. км3 уходит на континенты, выпадая в виде дождя и снега на суше. Но благодаря этой небольшой части океанического круговорота воды на суше возник континентальный круговорот, положивший начало жизни на Земле, а затем и появлению человека.

Континентальный круговорот воды

Континентальный круговорот воды - это непрерывный процесс испарения с поверхности суши и ее водоемов, образование облаков, выпадение осадков, а также поверхностный и подземный сток воды. Не вся вода, принесенная с океана на сушу, выпадает в виде осадков - от 20 до 75% ее проходит над материками транзитом и снова уносится в океаны. Чем крупнее материк и выше на нем горы, тем больше он перехватывает океанической влаги. Поэтому максимальный перехват наблюдается в Евразии, а минимальный - в Австралии.

В континентальном круговороте ежегодно участвует 119 тыс. км3 воды. Из этой массы 47 тыс. км3 составляет влага, приносимая с океана, которая в процессе многократного выпадения в виде осадков и испарения на суше в сумме образует 119 тыс. км3 осадков. В процессе круговорота на суше ежегодно испаряется 72 тыс. км3 воды.

Осадки на суше выпадают неравномерно. Наибольшее количество осадков в виде дождей отмечается в тропиках, в среднем за год это составляет слой воды толщиной 1 м. На плато Шиллонг в Индии за год выпадает 12 м осадков, а на горе Маези (Гавайские острова) - 14 м. В 1861 г. на Черрапунджи (Индия) - 23 м осадков (семиэтажный дом!). В самом засушливом месте на Земле, в Арике (Чили), в среднем на год приходится всего 0,8 мм осадков.

Континентальный круговорот воды, как и океанический, за время своего существования варьировался в зависимости от изменения площади поверхности океана и объема гидросферы. Но в его геологическом прошлом (не столь отдаленном) произошли перемены, которые резко усилили этот круговорот.

2. Движение речных наносов. Характеристики речных наносов

Формирование речных наносов.

Речными наносами называются твердые минеральные частицы, переносимые потоком и формирующие русловые и пойменные отложения. Речные наносы образуются из продуктов выветривания, денудации и эрозии горных пород и почв. Водная эрозия, разрушение земной поверхности под действием текучих вод, представляет собой наиболее активный процесс, обогащающий реки наносами. Она подразделяется на склоновую и русловую. Склоновая эрозия - размыв и смыв почв и горных пород снеговыми и дождевыми водами, стекающими по склону. Русловая эрозия - размыв водными потоками, протекающими в руслах, коренных пород дна и берегов русла и склонов долин. В процессе склоновой эрозии текущая вода разрушает связность частиц почв и горных пород и смывает (сносит) их в понижения -ложбины стока, которые и являются основными путями выноса продуктов эрозии с водосбора. Вместе со снеговыми и дождевыми водами материал смыва с водосбора поступает в следующие за ложбинами звенья временно действующей гидрографической сети - лощины, суходолы. В них процессы эрозии усиливаются и также осуществляется размыв, перенос и в конечном итоге вынос продуктов размыва в реки.

Очевидно, что не все продукты эрозии попадают в реки. Значительная часть их задерживается по пути стока поверхностных вод и заполняет углубления земной поверхности. Тем не менее, та часть продуктов эрозии поверхности бассейна, которая достигает русел рек, является существенным источником формирования речных наносов.

Воды рек размывают берега и дно русла. Однако наносы, поступающие за счет этих процессов, являются лишь частью речных наносов, причем некоторая доля их представляет собой продукты размыва ранее отложившихся в русле наносов, принесенных с поверхности бассейна.

Интенсивность водной эрозии зависит, прежде всего, от энергии текучих вод и затем от сопротивляемости размыву поверхности, по которой стекают эти воды.

Энергия текучих вод на некотором участке, как известно, определяется их расходом и падением. Вот почему водная эрозия при одних и тех же величинах стока наиболее ярко выражена в горных районах и значительно слабее на равнинах. Большое значение в развитии эрозии имеет режим стока: с увеличением стока в определенные сезоны происходит усиление эрозии.

Сопротивляемость поверхности земли размыву зависит от природных свойств этой поверхности и, прежде всего от свойств почв и пород, а также растительного покрова, предохраняющего почву от размыва. Различные виды почв и грунтов обладают неодинаковой способностью к размыву.

Уничтожение растительного покрова (вырубки, неумеренный выпас скота, пожары), неправильная распашка поверхности (вдоль склонов) и обработка почв без соблюдения агротехнических правил, предусматривающих сохранение структурности почв, могут привести к усилению эрозии, местному смыву почв, возникновению овражной эрозии и в конечном итоге к увеличению мутности рек.

В последние десятилетия в зоне распространения черноземов и каштановых почв в результате применения более совершенных приемов обработки почвы, в основном за счет широкого применения зяблевой пахоты, смыв почвы на плакорных участках заметно уменьшился.

Таким образом, интенсивность эрозии и формирование речных наносов находятся под влиянием ряда физико-географических факторов и хозяйственной деятельности. Одни из этих факторов зональные, другие - азональные. К зональным относятся климатические условия, сток, характер и распространение почв и растительности, к азональным ? рельеф местности и распространение коренных пород и четвертичных отложений.

Основные определения и характеристики речных наносов

Речные наносы в зависимости от характера движения в потоке обычно подразделяют на взвешенные и влекомые. Такое подразделение наносов носит условный характер, так как в зависимости от крупности наносов и скоростей течения потока те или иные твердые частицы могут находиться то во взвешенном состоянии, то перемещаться по дну потока.

Наносы, подразделяют, кроме того, на транзитные и руслоформирующие. Малые частицы переносятся к устью реки по преимуществу транзитом. Более крупные частицы в зависимости от гидравлических свойств потока то переносятся потоком во взвешенном или влекомом состоянии, то задерживаются на отдельных участках реки, с тем, чтобы при изменении гидравлических свойств потока вновь перейти в движение. Таким образом, постоянно происходит переформирование русла. Очевидно, что большая часть взвешенных наносов является транзитной, а большая часть влекомых - руслоформирующей.

Количество наносов (в килограммах), проносимое рекой через поперечное сечение в единицу времени, называется расходом наносов. Суммарное количество наносов, проносимое рекой через поперечное сечение за некоторый промежуток времени (сутки, месяц, год), называется стоком наносов за этот промежуток времени и выражается обычно в тоннах. Модулем стока наносов называют сток наносов с 1 км2 за год.

Количество взвешенных наносов, содержащееся в единице объема (1 м3) воды, называется мутностью. Мутность выражается в г/м3.

Важной характеристикой наносов является их гранулометрический состав, т.е. распределение данной фракции.

Влекомые наносы

Влекомыми наносами называются те, которые перемещаются в придонном слое потока. Твердые частицы, лежащие на дне, подвергаются силе гидродинамического, или лобового, давления.

Движение твердых частиц в придонном слое потока происходит в виде скольжения или перекатывания и перескакивания (сальтации). Такой характер движения осуществляется главным образом под влиянием восходящих вихрей и несимметричного обтекания твердой частицы струями воды. Частицы, оторвавшись от дна, могут находиться некоторое время во взвешенном состоянии и вновь опускаться на дно. В этом проявляется условность подразделения наносов на влекомые и взвешенные. Крупность влекомых наносов изменяется по сезонам года, возрастая при паводках и уменьшаясь в межень. При больших скоростях течения влекомые наносы движутся большими массами. Размеры влекомых наносов постепенно уменьшаются по длине рек с уменьшением скоростей вниз по течению.

Количество влекомых наносов в равнинных реках мало. Они транспортируют преимущественно взвешенные наносы. В горных реках доля влекомых наносов велика и при больших скоростях составляет основную часть твердого стока реки.

В горных районах, чаще на небольших реках или временных потоках с малыми площадями водосборов, возникают кратковременные паводки, несущие огромные скопления наносов. Эти скопления твердого материала придают потоку характер грязевого, грязекаменного или водно-каменного. Потоки эти называются селями. Образуются сели в результате выпадения интенсивных дождей, реже - интенсивного снеготаяния. Необходимым условием для образования селя является обилие накопленного материала выветривания на водосборе и быстрый снос его в русло. Поэтому литологический состав пород, слагающих горные области, крутые склоны гор и значительные уклоны потоков имеют большое значение в формировании селей. Отсутствие растительности и оголенность склонов способствуют усилению эрозии, а следовательно, и образованию селей. Движение селевых потоков носит пульсирующий заторный характер. Заторы возникают на отдельных участках русла. При прорыве затора по реке проносится селевой поток, насыщенный наносами и обладающий большой разрушительной силой. Заторы повторяются. Таким образом, сель представляет собой поток, проходящий по реке в виде последовательных валов или волн. Продолжительность селей различна - от нескольких минут до нескольких часов. Во время прохождения селей происходят интенсивные процессы размыва русла и отложения наносов. Сель относится к опасным явлениям природы.

Взвешенные наносы.

В текучей воде вследствие турбулентного характера течения твердые частицы могут находиться во взвешенном состоянии в тех случаях, когда вертикальная составляющая скорости течения потока превосходит гидравлическую крупность частиц. При обратном соотношении частицы будут осаждаться на дно, и начнется аккумуляция наносов или влечение их по дну. Вертикальная составляющая скорости растет с увеличением степени турбулентности потока и, следовательно, с увеличением скорости течения. Таким образом, чем больше скорости, тем более крупные частицы находятся во взвешенном состоянии. По мере передвижения вниз по течению в связи с общим уменьшением скоростей течения размеры частиц, находящихся во взвешенном состоянии, будут уменьшаться, а аккумуляция наносов усиливаться. Таким образом, речной поток обладает определенной транспортирующей способностью, т.е. способностью переносить определенное количество наносов данной крупности при определенных гидравлических характеристиках (уклон, скорость, глубина). Транспортирующую способность характеризуют либо предельным расходом взвешенных наносов, который способен транспортировать поток, либо средней мутностью, отвечающей насыщенности потока наносами, при которой осуществляется транспортирующая способность потока. Если фактический расход взвешенных наносов в потоке соответствует его транспортирующей способности, то между процессами взвешивания и осаждения наносов в придонном слое наблюдается динамическое равновесие.

3. Происхождение болот и распространение на территории России

Болота возникают путем заболачивания суши (главный вид образования болот) и путем зарастания (заболачивания) водоемов.

Заболачивания суши свойственно многим природным зонам земного шара. Оно происходит при избыточном увлажнении и благоприятных геоморфологических условиях (понижения, впадины и др.), создающих предпосылки для застойного водного режима, накопления органического вещества и образования болот.

Можно выделить два основных вида заболачивания суши: затопление и подтопление территории. Затопление территории может быть обусловлено двумя причинами. Во-первых, преобладанием осадков над испарением при отсутствии хорошего дренажа. Так образуются болота в тропических лесах, в тундре. Очень часто в условиях избыточного или даже умеренного болота возникают на плоских водораздельных пространствах при слабом оттоке вод. Во-вторых, заполнением территории поверхностными водами (водами рек, озер, морей) в условиях пониженного рельефа прилегающей местности. Так образуются болота на берегах рек и озер. Такого же происхождения болота на берегах приливных морей. Подтопление территории обычно связано с повышением уровня грунтовых вод, вызванного какими-либо искусственными мероприятиями: сооружением водохранилищ, избыточным орошением, сооружением нарушающих естественный сток грунтовых вод насыпей железных или шоссейных дорог и т.д.

Зарастание или заболачивание водоемов свойственно в основном условиям умеренного климата. Оно обычно начинается с берегов. На дне водоема отлагаются глинистые частички, оседают остатки водных организмов (планктона и бентоса), постепенно превращающиеся в органический ил - сапропель. Водоем мелеет, в нем поселяются высшие растения: сначала погруженные (рдест, роголистник), затем кувшинки с плавающими листьями, а позже тростник, камыш, рогоз. Неполное разложение растительных остатков приводит к образованию торфа. От водоема остаются небольшие «окна» воды, затем и они зарастают. Постепенно водоем превращается в болото. Часто описанный процесс сопровождается образованием на поверхности водоема зыбкого ковра («зыбун», «сплавина», «плаур») из корневищ растений. В таком случае зарастания водоема идет со всех сторон - со дна, с берегов и поверхности.

Болота распространены на Земле повсеместно: в разных климатических зонах и на большинстве континентов. Общая площадь торфяных болот на земном шаре, по данным ГГИ, около 2,7 млн. км2 или около 2% площади суши. В них сосредоточено более 11 тыс. км3 воды, или 0,03% пресных вод гидросферы. Общая площадь болот всех типов на Земле, по данным Е.Я. Каца, еще больше - до 3,5 млн. км2. Наиболее заболоченные материки - Южная Америка (70% территории) и Евразия (18%).

В России общая площадь торфяных болот составляет 0,6 млн. км2, а с учетом заболоченных земель общая площадь всех болот равна 1 млн. км2 (37% площади болот мира и 5,9% территории страны). Запасы воды в болотах России, по оценкам РосНИИВХа, составляют около 3 тыс. км3. Наиболее велика заболоченность Западной Сибири. Здесь болота покрывают 0,32 млн. км2 и содержат около 1 тыс. км3 воды. Заболоченность северной части Западной Сибири достигает 50%, а в некоторых районах - 70%.

4. Типы ледников. Образование и строение ледников

круговорот вода нанос болото ледник

ЛЕДНИКИ, скопления льда, которые медленно движутся по земной поверхности. В некоторых случаях движение льда прекращается, и образуется мертвый лед. Многие ледники продвигаются на некоторое расстояние в океаны или крупные озера, а затем образуют фронт отёла, где происходит откол айсбергов. Выделяют четыре основных типа ледников: материковые ледниковые покровы, ледниковые шапки, долинные ледники (альпийские) и предгорные ледники (ледники подножий).

Наиболее известны покровные ледники, которые могут целиком перекрывать плато и горные хребты. Крупнейшим является Антарктический ледниковый покров площадью более 13 млн. км2, занимающий почти весь материк. Другой покровный ледник находится в Гренландии, где он перекрывает даже горы и плато. Общая площадь этого острова 2,23 млн. км2, из них ок. 1,68 млн. км2 покрыто льдом. В этой оценке учтена площадь не только самого ледникового покрова, но и многочисленных выводных ледников.

Термин «ледниковая шапка» иногда употребляется для обозначения небольшого покровного ледника, но правильнее так называть относительно небольшую массу льда, покрывающую высокое плато или горный хребет, от которой в разных направлениях отходят долинные ледники. Наглядным примером ледниковой шапки является т.н. Колумбийское фирновое плато, расположенное в Канаде на границе провинций Альберта и Британская Колумбия (52°30ў с.ш.). Его площадь превышает 466 км2, и от него к востоку, югу и западу отходят крупные долинные ледники. Один из них - ледник Атабаска - легкодоступен, так как его нижний конец удален всего на 15 км от автомагистрали Банф - Джаспер, и летом туристы могут кататься на вездеходе по всему леднику. Ледниковые шапки встречаются на Аляске севернее горы Св. Ильи и восточнее Рассел-фьорда.

Долинные, или альпийские, ледники начинаются от покровных ледников, ледниковых шапок и фирновых полей. Подавляющее большинство современных долинных ледников берет начало в фирновых бассейнах и занимает троговые долины, в формировании которых могла принимать участие и доледниковая эрозия. В определенных климатических условиях долинные ледники широко распространены во многих горных районах земного шара: в Андах, Альпах, на Аляске, в Скалистых и Скандинавских горах, Гималаях и других горах Центральной Азии, в Новой Зеландии. Даже в Африке - в Уганде и Танзании - имеется ряд таких ледников. У многих долинных ледников есть ледники-притоки. Так, у ледника Барнард на Аляске их по крайней мере восемь.

Другие разновидности горных ледников - каровые и висячие - в большинстве случаев представляют собой реликты более обширного оледенения. Они встречаются главным образом в верховьях трогов, но иногда расположены прямо на склонах гор и не связаны с нижележащими долинами, причем размеры многих чуть больше питающих их снежников. Такие ледники распространены в Калифорнии, Каскадных горах (шт. Вашингтон), а в национальном парке Глейшер (шт. Монтана) их около полусотни. Все 15 ледников шт. Колорадо относятся к каровым или висячим, а наиболее крупный из них каровый ледник Арапахо в округе Боулдер целиком занимает выработанный им кар. Протяженность ледника всего 1,2 км (а некогда он имел длину ок. 8 км), примерно такая же ширина, а максимальная мощность оценивается в 90 м.

Предгорные ледники располагаются у подножий крутых горных склонов в широких долинах или на равнинах. Такой ледник может образоваться из-за распластывания долинного ледника (пример - ледник Колумбия на Аляске), но чаще - в результате слияния у подножья горы двух или нескольких спускающихся по долинам ледников. Гранд-Плато и Маласпина на Аляске - классические примеры ледников такого типа. Предгорные ледники встречаются и на северо-восточном побережье Гренландии.

Образование ледников. Ледники существуют всюду, где темпы аккумуляции снега значительно превышают темпы абляции (таяния и испарения). Ключ к пониманию механизма формирования ледников дает изучение высокогорных снежников. Свежевыпавший снег состоит из тонких таблитчатых гексагональных кристаллов, многие из которых имеют изящную кружевную или решетчатую форму. Пушистые снежинки, которые падают на многолетние снежники, в результате таяния и вторичного замерзания превращаются в зернистые кристаллы ледяной породы, называемой фирном. Эти зерна в диаметре могут достигать 3 мм и более. Слой фирна имеет сходство со смерзшимся гравием. Со временем по мере накопления снега и фирна нижние слои последнего уплотняются и трансформируются в твердый кристаллический лед. Постепенно мощность льда увеличивается до тех пор, пока лед не приходит в движение и не образуется ледник. Скорость такого преобразования снега в ледник зависит главным образом от того, насколько темпы аккумуляции снега превышают темпы его абляции.

Строение ледников

Каждый ледник состоит из двух главных частей - области питания, или фирнового бассейна, и области расхода (абляции), также именуемой языком. Эти области лежат в равных высотных поясах, в условиях очень неодинакового климата: первые - на значительных высотах, где летние температуры низки, атмосферные осадки обильны и основная их масса выпадает в виде снега; тогда как вторые - гораздо ниже, где летние сезоны тёплые и возможны дожди. По этой причине в верхней области ежегодное выпадение снега превышает его таяние, а значит, идёт постоянный прирост массы льда, а в нижней области, наоборот, преобладает таяние, и эта масса убывает.

Области питания горных ледников обычно занимают горные цирки, или кары, относящиеся к самому верхнему ярусу рельефа гор, а области расхода чаще всего оказываются в их среднем поясе, а иногда и в предгорьях. У покровных ледников, имеющих форму плоско-выпуклых куполов, области питания занимают обширные привершинные поверхности, или ледниковые плато, а области расхода приурочены к нижним частям их склонов, окружая эти плато со всех или с нескольких сторон.

Итак, в области питания идёт постоянное накопление снега и фирна; как говорят гляциологи, для неё характерен положительный баланс массы. Помимо снегопадов в питании ледника участвуют также снежные лавины и метели: они сносят снег с окружающих плато и склонов и концентрируют его в фирновом бассейне. В области расхода баланс массы, наоборот, отрицательный. Здесь потери льда, связанные с таянием и стоком, а в случае «приливных» ледников ещё и с откалыванием айсбергов, существенно превышают снегонакопление. Тем не менее масса фирна и льда в верхней области совсем не обязательно растёт, а в нижней далеко не всегда убывает. Будь это так, область питания скоро стала бы непомерно большой, а область абляции могла бы вовсе исчезнуть. На самом деле не происходит ни того, ни другого. Ежегодно возникающий дисбаланс между двумя областями ледника компенсируется с помощью особого механизма, который называется внутренним массообменом и состоит в оттоке «излишков, льда из фирнового бассейна и их притоке в область расхода, где каждый «бюджетный» год завершается с «недостачей».

Очень важна граница, разделяющая области питания и расхода, а именно та линия, или узкая полоса на поверхности ледника, где ежегодный прирост массы за счёт снегонакопления оказывается равен её потерям, т.е. приходные статьи баланса массы уравновешиваются расходными. Это - граница питания, которую также называют линией равновесия. Её высота чрезвычайно чувствительна к колебаниям климата; она почти ежегодно меняется, повышаясь в тёплые и сухие и снижаясь в холодные и влажные годы. Бели её снижение или подъём имеют направленный характер и значительный размах, то мы можем без риска ошибиться говорить о серьёзном изменении регионального климата.

Но что значат такие повышения и снижения для жизни самого ледника? С изменением высоты границы питания меняется соотношение площадей области питания и области расхода, причём при её повышении - в пользу области расхода, а при понижении - в пользу области питания. Меняются и сами эти площади, а значит, и суммарные величины прихода и расхода льда в них, баланс массы ледника в целом.

Данное понятие - баланс массы ледника - одно из важнейших в науке о природных льдах. Оно помогает понять механизмы колебаний ледников, вызванных изменениями климата. Что происходит с нашим текущим счётом в банке в итоге многократных поступлений и изъятий? Надо ли объяснять, что сумма, остающаяся к концу года, будет зависеть от того, сколько денег мы положим на счёт или снимем с него. И общий итог, или баланс, будет либо положительным (банковский счёт растёт), либо отрицательным (счёт в банке уменьшается). Может он быть и нейтральным, или нулевым, если наши расходы будут строго равны доходам.

Когда баланс массы ледника на протяжении ряда лет остаётся отрицательным, ледник уменьшается, его толщина сокращается, а конец отступает. И наоборот, при положительном балансе массы ледник растёт, его конец наступает. Если же средний за многолетний период баланс массы остаётся нулевым (что случается, когда приходные и расходные статьи компенсируют друг друга), то форма и размеры ледника останутся неизменными; в таких случаях гляциологи говорят, что ледник находится в равновесном, или стационарном, состоянии.

5. Использование пресных вод

Темпы и масштабы изменений в водообеспеченности географических регионов резко возросли за последние десятилетия.

Научно-техническая революция сопровождается все большим потреблением воды. Это обусловлено ростом объемов промышленной продукции, формированием новых очень водоемких отраслей производства.

Так, на производство 1 т стали расходуется до 300 м3 воды, для получения 1 т бумаги - 900, 1 т капрона - 5600 м3. Рост энергетики также приводит к резкому увеличению потребления воды. Современные тепловые электростанции мощностью в 1 млн. кВт используют в год 1,2-1,6 км3 воды, а атомные - до 3,5 км3. Город с населением в 1 млн. человек расходует около 0,5 млн. м3 воды в сутки. Наиболее крупный потребитель воды - сельское хозяйство. Среднемировой расход воды для производства 1 кг растительной пищи составляет 2 тыс. л воды, а 1 кг мяса - 20 тыс. л. Для орошения гектара хлопкового поля необходимо 5 тыс. м3, а рисового - 15-20 тыс. м3 воды за сезон. Улучшение агротехники, подъем урожаев сопровождаются ростом транспирации воды сельскохозяйственными культурами. Это в свою очередь приводит к уменьшению поверхностного стока, полного речного стока, к снижению уровней половодий и паводков. Таким образом, рост урожаев сопровождается уменьшением воды и реках. В перспективе в результате интенсификации земледелия можно ожидать уменьшения полного речного стока во всем мире примерно на 700 км3 в год. Следовательно, интенсификация сельского хозяйства неизбежно приводит к ухудшению водообеспеченности других отраслей хозяйства. Поэтому при планировании размещения и развития производительных сил приходится учитывать не только региональные запасы ресурсов пресных вод, но и их потребление всеми отраслями хозяйства как в настоящее время, так и в будущем.

Дальнейшая интенсификация сельского хозяйств« требует развития прежде всего орошаемого земледелия. Большая часть орошаемых площадей используется под такие водоемкие и высокоурожайные культуры как рис (примерно 65% от всей площади поливных земель) и хлопчатник (18%). На орошаемых землях расход воды в 10 раз выше, чем на неорошаемых, и в среднем составляет 12-14 тыс. м3 на 1 га пашни. К 2000 г. необходимо будет увеличить поливные площади не менее чем в 3 раза. Соответственно с этим возрастет и потребление воды в сельском хозяйстве.

Расширение пахотных угодий в значительных рал мерах возможно лишь при широком применении орошения. Так, многие бесплодные ныне земли Африки, Южной Америки и Австралии могут давать высокие урожаи при поливе. При полном использовании речной воды можно удвоить площади возделываемых земель в нижнем течении Ганга и Брахмапутры, увеличить их вчетверо в Южной Австралии. Все это приведет к дальнейшему росту безвозвратного использования воды для нужд орошения. Орошаемое земледелие занимало и будет занимать первое место по объему используемых вод среди других водопотребителей.

Процессы урбанизации сопровождаются все большим потреблением воды для хозяйственно-бытовых нужд. Расход воды на одного человека в городе значительно выше, чем в сельской местности. Поэтому рост городского населения резко увеличивает использование воды для бытовых целей. В целом в мире 71% потребляемой воды расходуется сельским хозяйством, 23% - промышленностью и 6% - на коммунально-бытовые нужды.

Круговорот воды приводит к тому, что все части гидросферы возобновляются с той или иной интенсивностью. Особенно быстро происходит возобновление пресных вод. Если воду использовать в объеме круговорота, то источники водных ресурсов будут неисчерпаемыми, вечными. Но на практике, особенно за последние годы, потребление воды в отдельных регионах превышает скорость ее возобновления. Неравномерное размещение по территории ресурсов пресных вод, промышленности, городов, сельскохозяйственных предприятий, развитие экономики все чаще приводит к обострению диспропорций между ними, сопровождается возникновением очагов «водного голода». Так, в США в 1900 г. всеми отраслями хозяйства потреблялось 6% среднегодового стока речных вод, а в 1981 г. использовалось уже свыше 25% (с учетом слабоосвоенных водных запасов Аляски). К 2000 г. водопотребление в США, очевидно, составит 50% от среднегодового стока всех рек. Поэтому для решения проблем водоснабжения аграрных и промышленных районов страны предполагается в перспективе осуществить межбассейновую переброску вод канадских рек в объеме 246 км3 в год. Очень остро в последние годы встали проблемы водоснабжения в целом ряде индустриальных стран Европы. По этой причине ФРГ, Нидерланды и Дания обсуждают со Швецией возможности переброски оттуда пресной воды по трубопроводам. В настоящее время уже десятки стран мира испытывают серьезные трудности в связи с нехваткой пресной воды.

Таким образом, все основные тенденции научно-технической революции приводят к росту использования ресурсов пресных вод, способствуют возникновению региональных и глобальных проблем, связанных с их истощением.

Нехватка пресных вод в ряде регионов мира усугубляется противоречиями между капиталистическими государствами, экономической отсталостью ряда стран. Мо этой причине на Ближнем Востоке в очень небольшой степени используются гидроресурсы реки Иордан, на полуострове Индостан - воды реки Инд. Запасы Пресных вод стали предметом политических и экономических спекуляций. Более сильные в экономическом отношении капиталистические государства пытаются овладеть большей долей гидроресурсов.

По социальным, политическим и экономическим причинам в ряде стран водные ресурсы используются далеко не полностью. Однако это не обеспечивает их сохранения. Как правило, и в развивающихся странах, где нет достаточных средств и технических возможностей для строительства очистных сооружений, происходит качественное истощение водных ресурсов за счет их загрязнения.

Таким образом, развитие всех отраслей мировой хозяйства сопровождается интенсивным ростом водопотребления. В 1900 г. оно составило 400 км3 (в том числе 270 км3 воды было израсходовано безвозвратно), в 1981 г. - соответственно 2600 и 1500; в 2000 г. произошло увеличение расхода воды до 6000 км3 (безвозвратно - 3000 км3). Однако уровень водопотребления во многом определяется степенью экономического развития каждого государства. Например, общее годовое потребление воды на душу населения в развивающихся странах не превышает 150-200 м3, в индустриальных составляет в среднем 500-600 м3, а в высокоразвитых странах достигает 1500 м3.

Размещено на Allbest.ru


Подобные документы

  • Понятие круговорота воды в природе, водной оболочки Земли, их структура, значение. Сущность испарения и конденсации как физических процессов, условия их осуществления. Особенности и состав годового поступления воды. Источники движения воды на Земле.

    презентация [1,2 M], добавлен 23.11.2011

  • В каких формах встречается вода в природе. Сколько воды на Земле. Понятие круговорота воды в природе. Сколько воды содержится в организме человека. Понятие испарения и конденсации. Три агрегатных состояния воды. Применение воды в деятельности человека.

    презентация [2,7 M], добавлен 19.02.2011

  • Вода в жидком, твердом и газообразном состоянии и ее распределение на Земле. Уникальные свойства воды. Прочность водородных связей. Круговорот воды в природе. Географическое распределение осадков. Атмосферные осадки как основной источник пресной воды.

    реферат [365,1 K], добавлен 11.12.2011

  • Понятие о многолетней мерзлоте, ее распространение. Влияние основных факторов на режим вод суши. Факторы, влияющие на формирование речных наносов. Испарение и его роль в балансе влаги. Подземные воды и гипотезы их происхождения. Инфильтрация воды в почву.

    курсовая работа [39,3 K], добавлен 27.05.2013

  • Строение и происхождение солнечной системы. Строение Земли, вещественный состав. Эндогенные геологические процессы. Основные закономерности развития земной коры. Распределение воды на земном шаре. Классификация подземных вод и условия их залегания.

    учебное пособие [133,9 K], добавлен 23.02.2011

  • Построение и свойства кривой расходов воды. Выбор способа вычисления ежедневных расходов воды на основе анализа материалов наблюдений особенностей режима реки. Способы экстраполяция и интерполяции. Гидрологический анализ сведений о стоке воды и наносов.

    практическая работа [28,9 K], добавлен 16.09.2009

  • Принципы возникновения и внутригодовой режим. Формирование речных наносов. Определения и характеристики. Влекомые, взвешанные наносы. Распределение мутности по живому сечению реки. Сток взвешенных наносов. Изменение мутности и стока наносов по длине реки.

    реферат [24,2 K], добавлен 30.01.2009

  • Вода как одно из самых распространенных веществ на Земле. Классификация и категории воды в горных породах, ее разновидности и отличительные особенности, значение в природе. Анализ и оценка влияния химического состава воды на свойства горных пород.

    контрольная работа [17,2 K], добавлен 14.05.2012

  • Образование и строение ледников, их классификация. Ледниковая денудация и аккумуляция. Разрушительная деятельность ледников. Особенности рельефа, созданного покровными ледниками. Экзарационный и аккумулятивный рельеф, созданный долинными ледниками.

    реферат [4,9 M], добавлен 05.10.2011

  • Условия развития карста: наличие растворимых пород, растворяющая способность воды. Особенности распространения карста на земле. Анализ структуры карстовых ландшафтов, типы геохимических барьеров. Характеристика ландшафтной картосхемы плато Кырктау.

    курсовая работа [4,9 M], добавлен 25.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.