Методы анализа нефти и нефтепродуктов

Физико-химические характеристики нефтяных углеводородных систем. Методы исследования нефти и нефтепродуктов: определение элементарного и группового состава, масс-спектрометрия и хромато-масс-спектрометры. Ультрафиолетовая и инфракрасная спектроскопия.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 24.06.2011
Размер файла 538,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Интересным адсорбентом для ГАХ является графитированная сажа. Адсорбция на ней осуществляется за счет неспецифических дисперсионных сил, и при разделении смесей определяющую роль играет число контактов звеньев молекулы с плоской поверхностью частиц сажи. Например, время удерживания углеводородов С6 в соответствии с уменьшением поверхности контакта изменяется в следующем ряду: гексан > > бензол > циклогексан. Графитированную сажу применяют и для анализа изомеров и изотопов.

Перспективным новым адсорбентом является карбосфер (сферокарб) - углеродный адсорбент типа молекулярных сит с размером пор около 1,5 нм. На нем быстро элюируется вода, разделяются азот и кислород.

Анализ нефтяных газов может быть проведен методом ГАХ в системе из двух колонок. Первая колонка с цеолитом СаХ служит для определения содержания неуглеводородных компонентов и низкокипящих углеводородов, элюирующихся в следующем порядке: Н2, О2, N2, CH4, СО, С2Н6, С3Н8, СО2, С2Н4. Анализ проводят в режиме программирования температур. Вторая колонка содержит в качестве адсорбента трепел Зикеевского карьера (ТЗК), модифицированный вазелиновым маслом. На этой неподвижной фазе анализируют углеводороды С2 - С5, в том числе цис- и транс-изомеры, алкадиены, алкины. ТЗК - единственный адсорбент, на котором, не применяя низких температур, можно отделять изобутены от бутенов.

Жидкостная адсорбционная хроматография. Жидкостная адсорбционная хроматография применяется для группового разделения углеводородов на алкано-циклоалкановую и ареновую фракции, а также для разделения аренов по степени цикличности. Хроматографические колонки заполняют силикагелем или двойным адсорбентом - оксидом алюминия и силикагелем. В качестве десорбентов при анализе керосиновых и масляных фракций для вымывания насыщенных углеводородов используют н-алканы C5 - С7, для десорбции ароматических и гетероатомных компонентов - бензол, спиртобензольные смеси, ацетон, хлороформ. Применение ступенчатого или непрерывного увеличения полярности подвижной фазы позволяет значительно уменьшить время удерживания веществ. Этот метод называется градиентным элюированием.

Пробу хроматографируют, разделяют на хроматографические фракции, определяют выход каждой фракции после отгона растворителей, показатель преломления , дисперсию и строят хроматограмму по оси ординат - выход фракции по оси абсцисс. Хроматограмма помогает сгруппировать соседние фракции. Фракцию до резкого подъема кривой относят к алкано-циклоалкановой. Границу между алкано-циклоалканами и аренами можно определять и по возрастанию дисперсии, а также по резкому увеличению объемов растворителя, пошедшего на десорбцию микрофракций.

Начало элюирования аренов можно устанавливать с помощью формолитовой реакции - по образованию комплексов с формалином в сернокислотной среде.

Проводя жидкостное адсорбционное хроматографирование алкано-циклоалканов (для фракций с началом кипения ? 250 °С), можно разделить углеводороды по следующим подгруппам:

1) нормальные или слаборазветвленные алканы, застывающие при температуре выше 20 °С;

2) разветвленные алканы изостроения (= 1,45-1,47);

3) моноциклические циклоалканы (= 1,47 - 1,48);

4) бициклические циклоалканы ( = 1,48-1,49); 5) три- и полициклические циклоалканы (до резкого увеличения объема растворителя при десорбции).

Арены можно также подразделить на легкие, в основном моноциклические (< 1,53), средние - бициклические ( = 1,53-1,55) и тяжелые - три- и полициклические (> >1,55). После тяжелых аренов иногда наблюдается понижение показателя преломления и затем выделяются смолистые вещества.

Широкое распространение при групповом анализе углеводородных смесей получил метод жидкостной хроматографии на силикагеле в присутствии флуоресцирующих (люминесцирующих) индикаторов - метод ФИА. В колонку с силикагелем вводят анализируемую фракцию с небольшим количеством флуоресцирующих индикаторов и красителя. «Ароматический» индикатор хорошо растворим в аренах, но не растворяется в других углеводородах. При ультрафиолетовом облучении колонки зона аренов дает ярко-голубую флуоресценцию. Найдены также «олефиновые» индикаторы, растворимые в алкенах и вызывающие флуоресценцию в УФ-свете алкеновой зоны хроматографической колонки. По отношению высоты соответствующей зоны к высоте слоя адсорбента рассчитывают содержание алкенов и аренов в нефтяной фракции или нефтепродукте.

Жидкость-жидкостная хроматография. В жидкость-жидкостной хроматографии (ЖЖХ) молекулы образца распределяются между жидкими неподвижной и подвижной фазами (подобно жидкостной экстракции), которые не должны растворяться друг в друге.

Жидкость-жидкостная хроматография при исследовании химического состава нефтей применяется ограниченно. Ее можно проводить в колонках с носителем, пропитанным растворителем, или на бумаге. Так, методом ЖЖХ возможно концентрирование алканов из смесей с моно- и бициклическими циклоалканами бензиновых фракций при использовании в качестве неподвижной фазы анилина или метилового эфира этиленгликоля на силикагеле, а в качестве подвижной фазы - перфтор-алифатических соединений, обладающих повышенной растворяющей способностью по отношению к алканам.

В последнее время наблюдается возрождение ЖЖХ благодаря созданию совершенных жидкофазных хроматографов с чувствительными детекторами и автоматической записью хроматограмм. Для повышения скорости анализа и эффективности разделения ЖЖХ проводят под давлением до 30 МПа. Наиболее целесообразно использование ЖЖХ для исследования высокомолекулярных соединений нефти.

Бумажная хроматография, открытая в 1941 г. А. Мартином и Р. Синджем, является одним из вариантов ЖЖХ. Роль хроматографической колонки выполняет полоска пористой бумаги, неподвижной фазой служит вода, удерживаемая волокнами целлюлозы, а подвижной - органические растворители. Бумажная хроматография применяется при анализе смолистых веществ и асфальтенов. Полоску бумаги погружают в спиртобензольный раствор образца и оставляют на 12-14 ч, в течение которых на бумаге образуется хроматограмма, а растворитель улетучивается. При облучении бумаги ультрафиолетовым светом зона смол дает ярко-желтую люминесценцию, а асфальтены - темно-коричневую.

Вместо бумажной хроматографии можно использовать тонкослойную хроматографию. Адсорбент, например силикагель, распределяют равномерным слоем толщиной ? 1 мм на стеклянной пластине, для закрепления слоя добавляют инертное вяжущее вещество. Анализируемый образец наносят на один край пластины и погружают ее в растворитель, который постепенно мигрирует в слое адсорбента. При этом происходит образование зон компонентов образца, причем как и в хроматографической колонке, быстрее всего перемещаются наименее полярные компоненты. Методом тонкослойной хроматографии недавно было установлено высокое содержание (до 15-20%) алкенов в некоторых нефтях.

Гель-хроматография, или эксклюзионная хроматография - еще один вариант жидкостной хроматографии, при котором молекулы разделяемой пробы элюируют в зависимости от их объема и формы. Заполнитель колонки (гель) имеет поры определенного размера. Если в разделяемом образце есть молекулы, размеры которых не позволяют им проникать в поры геля, то они проходят с потоком элюента только между частицами геля и быстро выходят из колонки. Молекулы небольшого размера могут проникать во все поры геля, путь их удлиняется, и они задерживаются в колонке дольше других компонентов. Молекулы средних размеров проникают только в некоторые поры, путь их оказывается средним по длине.

Гель-хроматография применяется для анализа тяжелых нефтяных остатков, кипящих при температурах выше 400 °С, котельных топлив, для анализа которых другие методы непригодны. В 1965 г. К. Альтгельт обнаружил возможность фракционирования асфальтенов методом гель-хроматографии. Разделение на фракции по молекулярной массе тяжелых нефтепродуктов, прежде всего битумов, позволяет получать более надежные данные при последующем исследовании их другими методами, например ЯМР.

В качестве колоночной насадки в большинстве случаев применяют сефадекс LH-20 и стиролдивинилбензольные гели, через которые алканы и циклоалканы элюируются растворителями по молекулярно-ситовому механизму. Порядок элюирования полициклических аренов зависит от применяемого растворителя. При использовании хлороформа, тетрагидрофурана и для аренов сохраняется порядок, типичный для гель-фильтрации. Однако при элюировании кетонами, спиртами, ацетонитрилом может проявляться адсорбционный эффект, вследствие которого с увеличением числа ароматических колец время удерживания соединений увеличивается.

Гель-хроматография не получила широкого применения из-за трудности надежной интерпретации результатов разделения. Тем не менее метод перспективен: внедрение его дает возможность вести контроль за изменении состава по молекулярным массам в процессах нефтепереработки, определять содержание отдельных фракций в нефтях, оценивать качество нефтепродуктов, идентифицировать сырые нефти, контролировать загрязнение окружающей среды нефтепродуктами.

Препаративная хроматография благодаря высокой разделяющей способности колонок и использованию селективных неподвижных фаз позволяет разделить практически любые смеси, в том числе азеотропы и изомеры. Для выделения веществ с целью последующей идентификации другими методами можно пользоваться препаративными приставками к обычным хроматографам с колонками диаметром до 20 мм и производительностью несколько десятков граммов вещества в сутки. Для выделения соединений с целью исследования их свойств или использования в лабораторных синтезах применяют специальные препаративные хроматографы с колонками диаметром 100-200 мм и производительностью 1 кг в сутки и более. Для получения реагентов промышленного синтеза используют производственную хроматографию - колонны диаметром 1-3 м, имеющие производительность до 1000 т/год. Так разработаны хроматографические колонны диаметром 52-120 см для производства 100-1200 т/год тиофена, толуола и индола.

Основные преимущества хроматографии перед ректификацией заключаются в меньших энергетических затратах при низких значениях коэффициентов относительной летучести разделяемых ключевых компонентов, отсутствии большого числа колонн и возможности селективного удаления примесей за одну операцию.

Основной недостаток препаративной хроматографии - сравнительно низкая производительность. Увеличение диаметра колонок приводит к снижению эффективности разделения из-за стеночного эффекта: плотность неподвижной фазы у стенок колонки при их набивке всегда меньше, чем в центре. Поэтому доля пустот и скорость потока у стенок больше, чем в центре, что приводит к размыванию хроматографических полос.

Повышение эффективности разделения возможно при применении циркуляционной хроматографии, позволяющей осуществить препаративное разделение смесей с коэффициентом относительной летучести ?= 1,013 - 1,10, например разделение смеси этилбензола и н-ксилола.

Для повышения производительности возможно вместо обычного периодического процесса, при котором в каждый момент времени в разделении принимает участие только часть сорбента, применение непрерывной хроматографии с противоточным движением сорбента и подвижной фазы. Наиболее перспективен вариант, в котором слой сорбента неподвижен относительно стенок вращающейся кольцевой колонны, а газ-носитель можно вводить в различные точки колонны.

Увеличение производительности достигается и при применении нового метода - хромадистилляции, различные варианты которого предложены А.А. Жуховицким с сотрудниками. Этот метод находится на стыке хроматографии и ректификации, когда хроматография осуществляется с использованием в качестве неподвижной фазы компонентов разделяемой смеси. В трубку с инертным наполнителем - стеклянными или металлическими шариками - вводят разделяемую смесь и пропускают газ-носитель. При этом на заднем фронте жидкости происходит испарение, а на переднем при охлаждении обеспечивается процесс конденсации.

Метод можно использовать в аналитических и препаративных целях, а также для получения кривых истинных температур кипения (НТК) нефтяных фракций. Преимущества хромадистилляции перед ректификацией в последнем случае - более четкое разделение, вплоть до полного разделения компонентов, значительно меньшие объемы пробы (150 мкл) для анализа, более низкая температура анализа, что позволяет получать данные о фракционном составе более высококипящих нефтепродуктов.

Хромадистилляционная разгонка проводится на колонке с отрицательным температурным градиентом в режиме линейного программирования температуры и дает распределение узких фракций до 650 °С. Для построения кривой НТК используют калибровочные графики в координатах h - (TK/Tоп) (h - сигнал детектора, соответствующий давлению насыщенного пара н-алканов при температуре опыта Топ; Тк - нормальная температура кипения н-алканов). Расхождение между двумя методами (хромадистилляционным и стандартным ректификационным на аппарате АРН-2) составляет 3-5 °С.

Масс-спектрометрия и хромато-масс-спектрометры

Масс-спектрометрия впервые была использована для анализа легкокипящих нефтяных фракций в 1940 г. После появления в 1959 г. масс-спектрометров высокого разрешения, обеспечивающих разделение углеводородных и гетероатомных ионов с близкими массами, и создания систем прямого ввода образца в ионный источник оказалось возможным использовать этот метод и для анализа средних и тяжелых нефтяных фракций. Современный этап развития масс-спектрометрии характеризуется разнообразием способов ионизации вещества, быстродействием, сочетанием с газовой хроматографией, полной автоматизацией эксперимента и обработкой результатов с помощью ЭВМ.

Масс-спектрометр содержит следующие основные узлы: источник ионов, в котором происходит ионизация молекул анализируемого вещества; анализатор, осуществляющий разделение ионов; систему ввода вещества в ионный источник; систему регистрации масс-спектра; систему откачки, обеспечивающую необходимый вакуум.

Образование ионов, фокусировку ионного пучка и разделение ионов по массам осуществляют в условиях высокого вакуума, когда длины свободных пробегов ионов и молекул превышают размеры анализатора. Это дает возможность избежать вторичных соударений частиц, искажающих первоначальный состав и форму ионного пучка.

Могут использоваться и другие методы ионизации - химическая ионизация при столкновениях молекул анализируемого вещества с ионами или метастабильными возбужденными атомами газа-реактанта (СН4, NH3 и др.); полевая ионизация в сильном неоднородном электрическом поле, создаваемом специальным электродом; лазерная десорбция и т.д. Однако классические методы ионизации электронным ударом при высоких (70 эВ) и низких (10-13 эВ) энергиях электронов остаются наиболее распространенными. Энергия электронов превышает потенциал ионизации углеводородов, составляющий для алканов 10-13, алкенов 9-10, алкилбензольных углеводородов 8,5-9,5, и полициклических аренов - менее 8 эВ. Поэтому при столкновении с электронами молекулы углеводородов ионизируются, т.е. происходит отрыв валентных электронов и образование молекулярных ионов М.

Молекулярный ион диссоциирует через состояние активированного комплекса, распад которого идет преимущественно в направлении образования стабильных продуктов. Ионизация молекул протекает быстро (за 10-15 с), а распад - сравнительно длительный акт продолжительностью 10-6-10-10 с. За этот промежуток времени избыточная энергия, полученная ионизированной молекулой от электрона (сверх потенциала ионизации), перераспределяется по вращательным, колебательным и электронным состояниям. Если в молекуле имеется система, благоприятствующая пере даче возбуждения, например система сопряженных связей, то избыточная энергия успевает равномерно распределиться по всей молекуле и степень диссоциации подобных соединений оказывается сравнительно небольшой. При отсутствии подобной системы избыточная энергия не успевает перераспределиться по всему молекулярному иону, на одной из наиболее слабых связей в окрестности атома с локализованным положительным зарядом оказывается энергия, достаточная для разрыва, и происходит диссоциация.

Структура образующихся ионов и их интенсивность находятся в качественной зависимости от строения молекул. Массы осколочных ионов, образующихся при диссоциативной ионизации, можно предсказать на основании структуры молекул. И наоборот, по массам образующихся осколочных ионов можно судить о том, какие структурные элементы входили в состав исследуемого соединения.

Влияние структурных особенностей молекул анализируемых соединений на направления распада молекулярного иона может быть охарактеризовано кривыми интенсивностей ионов по числу углеродных атомов. На рис. 5 в качестве примера приведены кривые распределения для гексадекана (1) и 2-метилпентаде-кана (2). Кривая для гексадекана имеет максимум, соответствующий ионам С4Нх+, и далее происходит плавное уменьшение интенсивностей пиков вплоть до молекулярного иона. Возникновение любого максимума на этой кривой означает наличие заместителя в молекуле. Так, при метальной группе в положении 2 на кривой распределения появляется максимум, соответствующий ионам (М - С3НХ)+; в частности, при диссоциации 2-метилпентадекана максимум отмечается для ионов С13Н27+, что объясняется меньшей энергией разрыва соответствующей связи С-С:

Молекулярные ионы алканов неустойчивы, причем алканы с разветвленной цепью еще менее устойчивы, чем н-алканы. Например, для тетрадекана и 2-метилтридекана значения Wm. равны 1,34 и 0,38%.

Циклоалканы несколько более устойчивы к электронному удару, чем алканы, причем шестичленные циклы стабильнее пятичленных, а бициклические алканы более стабильны, чем моноциклические. Пятичленные циклоалканы образуют интенсивный пик с массовым числом (М - 28)+ и менее интенсивный пик (М - 70)+, соответствующий отщеплению радикала и миграции водорода:

Для шестичленных циклоалканов характерен пик (М - 83)+:

Ароматические углеводороды легко ионизируются, так как имеют низкие потенциалы ионизации, но распад молекулярных, ионов идет сравнительно слабее. Так, для бензола Wm = 33%, для хризена 48%. Наиболее вероятное направление распада; алкилбензолов - по ?-связи, которое сопровождается и миграцией водорода:

В масс-спектрах сложных смесей можно выделить группы-ионов (для алканов - пики ионов СпH2п+1, для алкилбензолов - СпH2п-7 и т.п.), определяющиеся некоторыми структурными фрагментами молекул. Совокупность групп ионов, некоторые разбивается исходный масс-спектр, можно изобразить в виде линейчатого спектра, положение линий которого соответствует положениям центров групп, а высота линий - суммарным интенсивностям пиков ионов каждой группы. Представление масс-спектров сложных смесей в виде групповых масс-спектров позволяет проводить с ними операции, как со спектрами индивидуальных соединений.

В бензиновых фракциях методом масс-спектрометрии определяют содержание н-алканов и изоалканов, циклопентановых и циклогексановых углеводородов, алкилбензолов. В керосино-газойлевых и масляных фракциях определяют алканы, моно-, би- и трицикланы, алкилбензолы, инданы и тетралины, алкил-нафталины, аценафтены и дифенилы, аценафтилены и флуорены, фенантрены и антрацены, бензотиофены. С помощью масс-спектрометрии можно оценивать такие структурные характеристики молекул, как степень конденсации колец, средняя длина заместителя, средняя степень замещения.

Алкены и циклоалканы образуют одинаковые характеристические пики, поэтому для их раздельного определения снимают масс-спектры двух образцов - исходного и после удаления алкенов обработкой серной кислотой.

Метод хромато-масс-спектрометрии - комбинирование газовой или жидкостной хроматографии, позволяющих разделять анализируемую фракцию на компоненты, с масс-спектрометрической идентификацией. Создание приборов типа Хромасс позволяет определять структуру индивидуальных компонентов нефти и их содержание.

Ультрафиолетовая и инфракрасная спектроскопия

Ультрафиолетовую и инфракрасную спектроскопию широко используют при анализе нефтей.

Поглощение энергии в ультрафиолетовой области обусловлено изменениями энергетического состояния внешних электронов. В органических соединениях такое поглощение связано с переходом валентных ?- и - ? электронов со связывающих орбиталей на соответствующие разрыхляющие, а также с переходами электронов неподеленных пар гетероатомов (n-электронов) типа n>?* и ?> п*.

Последовательность энергетических уровней электронов следующая: разрыхляющая ?* - орбиталь > разрыхляющая ?* - орбиталь > несвязывающая n-орбиталь > связывающая ?-орбиталь > связывающая ?-орбиталь.

Полосы поглощения в электронном спектре характеризуются длиной волны (?) и интенсивностью поглощения. Интенсивность полос поглощения определяется вероятностью электронного перехода, измеряется она обычно величиной молярного коэффициента поглощения в, максимуме полосы (?макс или lg ?макс)

В молекулах насыщенных углеводородов возможны только переходы ?>?*, требующие наибольшей энергии. Полосы, соответствующие этим переходам, лежат в дальней ультрафиолетовой области, по этому для анализа содержания насыщенных углеводородов требуется сложная аппаратура. Алкены и алкины с изолированными двойными связями имеют полосу поглощения также в области до 190 нм, обусловленную переходом ?>?*. Для идентификации же компонентов нефтяных фракций используют спектры поглощения в средней ультрафиолетовой области (? = 190-400 нм).

Сопряжение двойных связей вызывает смещение полос поглощения в длинноволновую сторону с одновременным увеличением их интенсивности. В средней УФ-области поглощают и арены. Таким образом, УФ-спектроскопию можно использовать для анализа полиеновых и ароматических структур, остальные углеводороды «прозрачны» в средней ультрафиолетовой области. При анализе продуктов термической переработки нефтяных фракций, в которых возможно присутствие полиенов, их необходимо предварительно отделить от ароматических углеводородов.

УФ-спектры аренов, как следует из рис. 6., существенно различаются в зависимости от числа циклов и линейного (типа антрацена) или нелинейного (типа фенантрена) характера их конденсации. Максимум поглощения моноциклических аренов находится в области 255-275 нм, для бициклических аренов. характерна более интенсивная полоса с максимумом 275 - 290 нм и два близких пика в области 310-330 нм.

На основе усредненных спектральных данных по ароматическим ядрам разного типа получены уравнения для расчета массового содержания бензольных Сб, нафталиновых Сн, фенантреновых Сф углеводородов,

%:

где К198, К230, K255., K270, K338, K375, K435 - удельные коэффициенты поглощения, л/(г·см), исследуемой фракции на аналитических длинах волн 198, 230 нм и т.д. соответственно.

Предложены аналогичные уравнения и для расчета содержания в нефтяных фракциях антраценовых, пиреновых, хризе-новых (совместно с бензфлуореновыми) углеводородов, а также перилена. Приведенные выше уравнения позволяют рассчитывать содержание бензольных и полициклических углеводородов при их совместном присутствии.

В качестве растворителя при анализе аренов чаще всего применяют изооктан, очищенный на силикагеле.

Благодаря высокой чувствительности УФ-спектроскопия находит применение для определения следов аренов в неароматических продуктах. Наличие во фракции гетероатомных соединений сильно увеличивает поглощение в УФ-спектре и может привести к значительным погрешностям анализа.

В инфракрасной области, в отличие от средней ультрафиолетовой, поглощают все органические соединения. Эта область электромагнитного спектра связана с колебаниями атомов в молекулах. Каждая структурная группа характеризуется своим набором полос поглощения, число, положение и интенсивность которых в большей или меньшей степени зависят от состава остальной части молекулы. Для определения группового состава сложных смесей используют обычно характеристические, т.е. интенсивные полосы, при е>10 моль/(л·см) практически сохраняющие интенсивность и общий вид независимо от строения остальной части молекулы; положение характеристических полос меняется в небольших пределах - до полуширины полосы.

ИК-спектры можно использовать для определения типа нефтей. Мерой содержания аренов служит площадь (S1) полосы ? = 1610 см -1, обусловленной колебаниями связей С=С ароматического кольца, а мерой содержания алканов - площадь (S2) полосы ? = 725 см -1, характеризующей колебание связей С-С в длинных цепях. Отношение А = S1/S2 принято за показатель ароматизированности нефтей. Нафтеновые структуры по ИК-спектрам не выявляются. Для метановых нефтей А < 0,35, метано-нафтеновых 0,3?А?0,5, нафтеновых 0,6 < А < 1,2, нафтено-ароматических 1,2? A ?3,5.

Применение ИК-спектроскопии для структурно-группового анализа высококипящих (выше 200 °С) алкано-циклоалкановых фракций позволяет получать количественные характеристики структурных фрагментов гипотетической средней молекулы. По характеристическим полосам поглощения в области 720-780 см-1 рассчитывают среднее содержание метиленовых групп в алкильных цепях различной длины (этильных, пропильных радикалах и т.д.). По интегральным интенсивностям полос поглощения 1378 и 1366 см-1 можно приблизительно определить содержание изолированных и геминальных (т.е. находящихся при одном углеродном атоме) метальных групп. Однако точность этих определений невелика, так как в расчетах используют усредненные значения коэффициентов погашения для различных углеводородов. По полученным данным можно приблизительно оценить степень разветвленности алифатических цепей.

С использованием коэффициентов погашения исследуемой фракции на аналитических частотах 2926 и 2957 см-1 рассчитывают содержание метиленовых групп в пяти- и шестичлен-ных насыщенных кольцах.

Достаточно широко используют ИК-спектроскопию и для исследования гетероатомных соединений нефти после ее выделения и разделения на узкие фракции. В ИК-спектрах сырых нефтей и их фракций обнаруживаются практически все характеристические полосы поглощения основных функциональных групп. Многокомпонентность состава, внутри- и межмолекулярная структура нефтяных систем обусловливают сложную картину перекрывания и наложения полос поглощения с искажением их формы и интенсивности. Поэтому прямая идентификация и тем более количественное определение функциональных групп по интенсивностям поглощения в ИК-спектрах оказываются невозможными. Однако возможности ИК-спектроскопии расширяются по мере развития методов разделения нефти на однотипные группы компонентов.

Ядерный магнитный и электронный парамагнитный резонанс

Метод ЯМР широко применяется для исследования структуры органических соединений наряду с методами оптической спектроскопии. Поглощение энергии радиочастотного излучения, которое используется в этом методе, связано с магнитными свойствами ядер.

Для получения спектров ЯМР образец помещают в сильное однородное магнитное поле и действуют на него радиочастотным излучением. Изменяя частоту генератора, возбуждающего магнитое поле, перпендикулярное к постоянному полю магнита, достигают условия резонансного поглощения энергии. Резонансная частота зависит от напряженности постоянного магнитного поля и значения магнитного момента ядер. Наиболее широко в исследованиях органических соединений, в том числе нефти, применяется протонный магнитный резонанс (ПМР).

Спектры ПМР характеризуются значениями химических сдвигов протона. Химическим сдвигом называется расстояние между резонансными сигналами протонов образца и стандарта - тетраметилсилана. Это расстояние зависит от напряженности магнитного поля (или частоты), поэтому химический сдвиг измеряется в относительных единицах - миллионных долях (м. д.) поля или резонансной частоты. Химический сдвиг зависит от структуры молекул - электронной плотности у протона и напряженности вторичных магнитных полей, возникающих вследствие движения электронов соседних атомов.

По мере усовершенствования техники метода ЯМР и увеличения рабочей частоты спектрометров до 100-220 МГц повышается селективность определения протонов в различных структурах. Метод ПМР дает информацию о распределении водорода, связанного с ароматическими циклами, гетероатомами, а также входящего в состав метальных, метиленовых и метановых групп. Особый интерес представляет применение метода ЯМР для исследования высококипящих нефтяных фракций.

Типичный спектр 1Н ЯМР нефтяной фракции (рис. 7) может быть разделен на четыре области. Область А (6,5-8,5 м. д.) соответствует сигналам ароматических протонов; область ? (1,8-4,0 м. д.) - протонов СН-, СН2-, СН3-групп, находящихся в ?-положении к ароматическим ядрам; область ? (1,0 - 1,8 м. д.) - метиленовых и метановых протонов, удаленных от ароматических ядер, а также групп СН3 в ?-положении к ароматическим ядрам; область ? (0,7-1,0 м. д.) - протонов метальных групп, более удаленных от ароматических ядер.

Площади областей пропорциональны количеству протонов, дающихэти сигналы.

Если известна средняя эмпирическая формула, рассчитываемая по элементному составу и средней молекулярной массе фракции, то можно распределить атомы водорода по структурным группам. Спектроскопия 1Н ЯМР позволяет получать большое количество структурно-групповых характеристик «средней молекулы».

Недостаток метода состоит в том, что особенности строения углеродных скелетов приходится рассчитывать по распределению водорода, вводя ряд допущений и приближений.

Единственный метод, позволяющий непосредственно измерить долю ароматического углерода 13С ЯМР-спектроскопия. Типичный спектр 13С ЯМР нефтяной фракции (рис. 8) содержит широкие полосы поглощения атомов углерода в насыщенных (0-70 м.д.) и ароматических (100-170 м. д.) структурах.

Проинтегрировав спектр, рассчитывают фактор ароматичности:

где Iа, Iнас - интегральные интенсивности пиков, относящихся к ароматическим и насыщенным структурам соответственно.

По отношению интегральных интенсивностей пиков частот 29,7 и 14,1 м. д. можно рассчитать длину цепи алкильного заместителя:

Аналитические возможности метода ЯМР постоянно увеличиваются благодаря совершенствованию спектрометров и разработке новых методов получения спектров ЯМР.

Электронный парамагнитный резонанс (ЭПР) открыт в 1944 г. Е.К. Завойским. Парамагнетизмом обладают системы, на электронных оболочках которых имеются неспаренные электроны. К таким системам относятся свободные радикалы, парамагнитные ионы, внедренные в кристаллическую решетку или в молекулы комплексных соединений, и т.д. Как оказалось, парамагнетизмом обладают и нефти, благодаря входящим в них смолисто-асфальтеновым компонентам.

ЭПР-спектр снимают, воздействуя на образец, помещенный в сильное магнитное поле, сверхвысокочастотным полем генератора. ЭПР-спектр (рис. 9) представляет собой одиночный сигнал, интерпретация которого сводится к расчету числа парамагнитных центров Nx в образце путем сравнения производной кривой поглощения образца и эталона. Эталон - сахарный уголь-имеет стабильное значение числа парамагнитных центров (Nэт = 0, l · 1017 на 1 г). Число парамагнитных центров образца рассчитываютпо формуле:

.

где 1Х - амплитуда производной сигнала поглощения образца; НХ - ширина производной сигнала поглощения образца; т - масса образца.

ЭПР-спектры нефтей позволяют провести сопоставительный анализ степени их обогащенности смолисто-асфальтеновыми компонентами. Ширина ЭПР-сигнала отражает степень уплотнения структуры асфальтенов: чем она выше, тем меньше ширина сигнала.

Заключение

В производственных и отраслевых лабораториях по методикам определяют групповой углеводородный состав, фракционный состав и ряд физических свойств углеводородных систем - плотность, вязкость, температуру застывания, коксуемость по Конрадсону и т.д. Для определения фракционного состава используют дистилляцию и ректификацию. Например, по результатам отбора узких фракций строят кривые разгонки нефти или кривые истинных температур кипения (ИТК) и устанавливают потенциальное содержание в нефтях бензиновых, керосино-газойлевых, дизельных фракций.

Кроме того, эти фракции могут изучаться более углубленно и подвергаться дальнейшему разделению на компоненты с применением препаративной хроматографии, экстракции и т.д. При групповом анализе определяют отдельно содержание парафиновых, нафтеновых, ароматических и смешанных углеводородов. При структурно-групповом анализе углеводородный состав нефтяных фракций выражают в виде среднего относительного содержания в них ароматических, нафтеновых и др. циклических структур, а также парафиновых цепей и иных структурных элементов. С применением физических методов хромато-масс-спектроскопии, масс-спектроскопии, ЯМР-, ИК-спектроскопии и т.д. рассчитывают качественный и количественный состав узких нефтяных фракций.

Несмотря на развитие инструментальных методов исследования, в настоящее время определение полного углеводородного состава возможно только для легких и средних фракций. Это связано с рядом серьезных ограничений, которые возникают при применении аналитических методов к сложным многокомпонентным углеводородным системам. Взаимодействия молекул между собой приводят к серьезным отклонениям от ожидаемого результата. Так, например, установлено, что обработка данных спектроскопии ЯМР приводит к заниженному количеству ароматических групп, так как не учитывается взаимодействие стабильных свободных радикалов нефтяных сред с протонами органических молекул. Тем не менее, существует ряд общих физико-химических закономерностей, которые позволяют проводить инженерные расчеты процессов переработки углеводородных систем.

Список литературы

1. Абросимов А.А. Экология переработки углеводородных систем: Учебник/ под ред. д-ра хим. наук, проф. М.Ю. Доломатова, д-ра техн. наук, проф. Э.Г. Теляшева. - М.: Химия, 2002. - 608 с.: ил.

2. Богомолов А.И., Гайле А.А., Громова В.В. и др.` Химия нефти и газа. `Учебное пособие для вузов. Под редакцией Проскурякова В.А., Драбкина А.Е.` Л. Изд-во Химия. 1989 г. 424с

3. Химия нефти и газа: Учеб. пособие для вузов / А.И. Богомолов, А.А. Гайле, В.В. Громова и др.; Под ред. В.А. Проскурякова, А.Е. Драбкина. - 3-е изд., доп. и испр. - Спб: Химия, 1995. - С. 110.

Размещено на Allbest.ru


Подобные документы

  • Атомно-абсорбционная спектрометрия (ААС) определения содержания железа в сырой нефти или нефтяных топливах. Преимущества метода: простота, высокая селективность и малое влияние состава пробы на результаты анализа. Необходимость переведения проб в раствор.

    реферат [737,2 K], добавлен 02.06.2009

  • Способы разрушения нефтяных эмульсий. Обезвоживание и обессоливание нефти. Электрические методы разрушения водонефтяных эмульсий. Способы очистки нефти от механических и агрессивных примесей. Гидраты природных газов. Стабилизация, дегазация нефти.

    реферат [986,1 K], добавлен 12.12.2011

  • Извлечение нефти из пласта. Процесс разработки нефтяных и газовых месторождений. Изменение притока нефти и газа в скважину. Механические, химические и тепловые методы увеличения проницаемости пласта и призабойной зоны. Гидравлический разрыв пласта.

    презентация [1,8 M], добавлен 28.10.2016

  • Характеристики сжимаемости и упругости нефти. Относительное изменение объема пластовой нефти при изменении давления на единицу. Зависимость коэффициента сжимаемости от состава пластовой нефти, температуры и абсолютного давления. Определение усадки нефти.

    презентация [212,7 K], добавлен 20.10.2014

  • Характеристика Архангельской нефтебазы; ее основные зоны. Правила хранения нефтепродуктов в металлических резервуарах, бочках и бидонах. Назначение и принципы работы насосных станций. Виды канализационных сетей; расчет их пропускной способности.

    отчет по практике [2,1 M], добавлен 16.08.2015

  • Исследование геологической природы нефти и газа. Изучение плотности, вязкостных свойств, застывания и плавления, загустевания и размягчения, испарения, кипения и перегонки нефти. Групповой химический состав нефти. Физические свойства природного газа.

    реферат [363,1 K], добавлен 02.12.2015

  • Сведения о Западно-Коммунарском месторождении. Коллекторские свойства пласта. Физико-химические свойства нефти, газа и воды. Подсчет запасов нефти и газа. Характеристика системы воздействия на пласт. Определение эффективности разработки нефтяных залежей.

    курсовая работа [273,2 K], добавлен 23.10.2013

  • Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

    курсовая работа [53,5 K], добавлен 19.06.2011

  • Физико-химические свойства нефти и газа. Принципы и показатели классификации видов нефти и применение тригонограмм. Макроскопическое описание осадочных горных пород. Особенности пород-коллекторов и покрышек. Аспекты построения геологического профиля.

    методичка [379,3 K], добавлен 25.10.2012

  • Физические и химические свойства нефти. Теория возникновения газа. Применение продуктов крекинга. Внутреннее строение Земли. Геодинамические закономерности относительного изменения запасов и физико-химических свойств нефти различных месторождений.

    дипломная работа [3,8 M], добавлен 06.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.