Глинистые грунты и их свойства

Исследование некоторых особенностей состава, структуры и свойств глинистых пород. Классификация глинистых грунтов по зерновому составу, пластичности, минеральному составу и структуре. Анализ природы некоторых важных и весьма специфических свойств глин.

Рубрика Геология, гидрология и геодезия
Вид статья
Язык русский
Дата добавления 06.05.2011
Размер файла 30,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГЛИНИСТЫЕ ПОРОДЫ И ИХ СВОЙСТВА

Содержание

Введение

1.Глинистые грунты

2.Факторы влияющие на свойства глинистых пород

2.1 Минеральный состав

2.2 Структура глинистых пород

3. Свойства глинистых пород

3.1 Набухаемость

3.2.Физико-механические свойства

4.Заключение

5.Литература

Введение

Глины являются одним из наиболее распространенных типов горных пород, слагающих до 11% всего объема земной коры. С ними часто приходится иметь дело при возведении фундаментов зданий и строительстве различных инженерных сооружений. Они повсеместно используются как сырье для производства керамики, кирпича, цемента, а также в качестве наполнителя при изготовлении резины, бумаги, буровых растворов и т.д. Глины обладают высокой адсорбционной способностью, и их успешно применяют для очистки масел, красок, вина, отбеливания тканей, а также как естественные экологические барьеры для борьбы с распространением техногенных загрязнений.

Несмотря на столь широкое использование глин и длительный опыт строительства на них, все еще существует много вопросов, связанных с особенностями поведения глинистых пород. Об этом наглядно свидетельствуют многочисленные деформации различных инженерных сооружений, происходящие в результате уплотнения, набухания, усадки, разжижения и размокания глинистых пород в их основаниях. По данным Геологической службы США, прямые и косвенные убытки, причиняемые этими негативными явлениями в различных государствах мира, достигают сотен миллиардов долларов и соизмеримы с потерями от крупных катастрофических явлений (землетрясений и наводнений).

Какова же природа свойств глинистых пород и чем объясняются столь специфические особенности их поведения?

1. Глинистые грунты

Глинистые грунты относятся к группе связных. Они являются продуктом механического распада и химического разложения горных пород. Глинистые грунты представляют собой агрегаты мельчайших глинистых частиц чешуйчатого строения (слюда, хлорит и др.) размером менее 0,005 мм и песчаных -- зернистых частиц разных размеров.

Чешуйчатая и мелкозернистая (пылеватая) фракции глинистых грунтов имеют большую удельную поверхность соприкасания и тонкие капилляры . Такое строение грунтового скелета и наличие пленок воды, обволакивающей частицы, придают глинистым грунтам связность и способность деформироваться под влиянием нагрузки во влажном состоянии без появления трещин на поверхности. Связность глинистых грунтов увеличивается с уменьшением влажности. Глинистые грунты благодаря своей структуре обладают малым коэффициентом фильтрации и слабой водопроницаемостью. Водопроницаемость глинистых грунтов увеличивается с увеличением размеров и количества зернистых частиц.

По процентному содержанию глинистых частиц различают глины, суглинки и супеси, а по размерам песчаных частиц -- глинистые, глинисто-пылеватые грунты. Классификация глинистых грунтов по зерновому составу, принятая в дорожном деле, приведена в табл. 1. 

Таблица 1

Классификация глинистых грунтов по зерновому составу

 

Размеры частиц, мм

Порода

глинистые

0,002

пылеватые

0,002 - 0,05

песчаные

0,5 - 2,0

 

Содержание фракции, % по весу

Глинистые грунты

Глина

>30

--

Больше, чем

Суглинок

30--10

--

пылеватых

Супесь

10--3

--

 

Глинисто-пылеватые грунты

Пылеватая глина

>30

Больше,

--

Пылеватый суглинок

30--10

чем

--

Пылеватая супесь

10--3

песчаных

--

По консистенции глинистые грунты подразделяются на твердые, пластичные и текучие. При этом по мере насыщения водой твердые глинистые грунты размягчаются и переходят сначала в пластичное, затем в текучее состояние. Процентное содержание воды при переходе из одного состояния консистенции в другое является пределом (границей) пластичности.

Каждый вид глинистого грунта имеет два предела пластичности. Нижний предел Wp соответствует минимальной влажности, при которой грунт из твердого состояния переходит в пластичное, и называется границей раскатывания. Верхний предел Wt соответствует максимальному проценту влажности, при котором глинистый грунт переходит из пластичного состояния в текучее.

Разность влажностей между верхним и нижним пределами пластичности называется числом пластичности.

Глинистые грунты в зависимости от числа пластичности подразделяются на следующие виды:

Супесь

 

Суглинок

Глина

Так, например, если природная влажность грунта равна 28 %, влажность нижнего предела пластичности WР=21 %, верхнего WТ=48 % и число пластичности WП=48 - 21=27 %, то это указывает на то, что, во-первых, грунт принадлежит к виду глинистых, так как число пластичности WП=27 > 17, и, во-вторых, глина находится в пластичном состоянии, так как природная влажность ее -- между верхним и нижним пределами пластичности (48 > 27 > 21).

Число пластичности глинистых грунтов является условной характеристикой, определяющей их строительные свойства -- плотность, влажность и сопротивление сжатию. С уменьшением влажности плотность возрастает, а сжимаемость уменьшается. С увеличением влажности плотность уменьшается, а сжимаемость увеличивается.

Из изложенного видно, что физические свойства песчаных грунтов отличаются от физических свойств глинистых грунтов. Следовательно, эти грунты отличаются друг от друга и строительными качествами.

1. Влажность песчаных грунтов колеблется от 0 % (сухой песок) до 30-45 % (насыщенный водой песок), то есть процент влажности песчаных грунтов (при полном насыщении) равен проценту пустотности и его объем не изменяется с увеличением влажности. В глинистых же грунтах влажность колеблется от 3 % (сухая глина) до 80-90 % (разжиженная глина), причем по мере насыщения их водой объем глинистых грунтов значительно увеличивается за счет изменения объема пустот между частицами -- утолщения капиллярной воды.

2. Плотность песчаных грунтов (гравелистых, крупно- и среднезернистых, за исключением мелкозернистых и пылеватых) не зависит от влажности песка; песчаный грунт может быть насыщенным водой и одновременно плотным. Плотность же глинистых грунтов является функцией давления и влажности, так как сухая глина всегда плотная, а влажная или насыщенная водой всегда пластична или соответственно текучая.

3. В песчаных грунтах силы взаимодействия между частицами весьма малы (влажный песок) или отсутствуют (сухой песок или насыщенный водой песок), и потому песчаные грунты сыпучи. Глинистые же. грунты благодаря водо-коллоидным пленкам, обволакивающим частицы, обладают силами взаимодействия -- связностью.

4. Уплотнение и осадка песчаных грунтов происходит одновременно с приложением силы, а глинистых грунтов -- постепенно, в течений длительного времени после приложения нагрузки.

5. Песчаные грунты водопроницаемы, глинистые -- водонепроницаемы или слабоводопроницаемы (суглинки) в зависимости от процентного содержания в них зернистых частиц и их диаметров.

2.ФАКТОРЫ, ВЛИЯЮЩИЕ НА СВОЙСТВА ГЛИНИСТЫХ

ПОРОД

2.1 Минеральный состав

Глины образованы чрезвычайно мелкими по размеру микрокристаллами глинистых минералов, которые во многом определяют свойства этих пород. Глинистые минералы относятся к группе слоистых и слоисто-ленточных силикатов. Высокая дисперсность глинистых минералов является их естественным физическим состоянием. Обычно размер микрокристаллов этих минералов в глинах не превышает нескольких микрон. Частицы глинистых минералов имеют преимущественно пластинчатую форму, однако встречаются также частицы в виде полосок, трубочек, иголочек .

Высокая физико-химическая активность глинистых минералов обусловлена не только малым размером, но и особенностями их кристаллического строения. В основе кристаллической структуры глинистых минералов лежит контакт тетраэдрических и октаэдрических элементов. Первый элемент образован кремнекислородными тетраэдрами, состоящими из атома кремния и четырех окружающих его атомов кислорода. Отдельные тетраэдры, соединяясь друг с другом, создают непрерывную двухмерную тетраэдрическую сетку.

Другим структурным элементом глинистых минералов является октаэдр, образованный шестью атомами кислорода или гидроксильными группами. В центре октаэдра может располагаться атом алюминия, железа или магния. Отдельные октаэдры, соединяясь, образуют двухмерную октаэдрическую сетку. Благодаря близости размеров тетраэдрические и октаэдрические сетки легко совмещаются друг с другом с образованием единого гетерогенного слоя. Связь между гетерогенными слоями у глинистых минералов может быть различной в зависимости от особенностей строения слоя и его заряда. У некоторых глинистых минералов она достаточно прочна и обеспечивается взаимодействием атомов кислорода и гидроксильных групп (водородная связь) или катионами, располагающимися в межслоевом пространстве (ионно-электростатическая связь). У других минералов связь между слоями менее прочная и обусловлена молекулярными силами.

В первом случае глинистые минералы имеют более жесткую кристаллическую структуру, то есть такую, когда молекулы воды и обменные катионы не могут проникать в межслоевое пространство кристалла. У минералов с жесткой кристаллической структурой (каолинит, гидрослюда, хлорит, палыгорскит) внутрикристаллическое набухание (расширение межслоевого расстояния при взаимодействии с молекулами воды) отсутствует. Во втором случае глинистые минералы (монтмориллонит, нонтронит) имеют раздвижную кристаллическую структуру. При гидратации таких минералов молекулы воды и обменные катионы могут проникать в межслоевое пространство и существенно увеличивать межслоевое расстояние, обусловливая этим большое внутрикристаллическое набухание.

Помимо описанных глинистых минералов в природе также широко распространены так называемые смешанослойные минералы, образующиеся в результате упорядоченного или неупорядоченного чередования набухающих и ненабухающих структурных слоев (монтмориллонит-гидрослюда, монтмориллонит-хлорит). По своим свойствам смешанослойные глинистые минералы занимают промежуточное положение между минералами с жесткой и раздвижной кристаллическими структурами.

Глинистые минералы обладают ярко выраженными ионно-обменными свойствами, что совместно с малым размером частиц и высокой удельной поверхностью (суммарной площадью поверхности частиц в единице массы породы) определяет их повышенную адсорбционную способность. Это замечательное свойство позволяет использовать глины как природные высокоэффективные сорбенты для защиты почв, грунтов и подземных вод от техногенных загрязнений.

Чрезвычайно важным моментом при взаимодействии частиц глинистых минералов с водой является формирование вокруг их поверхности двойного электрического слоя (ДЭС) . Внутренняя часть ДЭС образована отрицательно заряженной поверхностью глинистой частицы, а внешняя состоит из адсорбционного и диффузного слоев гидратированных катионов. Структура ДЭС во многом зависит от pH и концентрации солей раствора, в котором он формируется. Из-за кристаллохимических особенностей строения глинистых минералов при изменении pH раствора наблюдается перезарядка торцевых участков глинистых частиц. Подобный эффект связан с амфотерными свойствами бокового скола октаэдрической сетки, который ведет себя подобно гидроокиси алюминия. В кислой среде скол октаэдрической сетки диссоциируется по щелочному типу:

В щелочной среде скол диссоциирует по кислому типу:

Al(OH)3 = Al(OH)2O- + H+

В результате этого процесса боковой скол глинистой частицы в кислой и нейтральной средах заряжается положительно, а в щелочной - отрицательно. Изменение заряда на торцевых участках глинистых частиц приводит к формированию в щелочных условиях одноименно заряженных, а в кислых и нейтральных знакопеременных ДЭС.

Толщина диффузного слоя зависит от состава и концентрации солей в водном растворе, окружающем частицы глинистых минералов. Она максимальна при отсутствии солей и резко сокращается по мере увеличения их концентрации. Подобное поведение ДЭС в различных физико-химических условиях является одним из главных факторов, регулирующих процессы структурообразования в глинистых осадках, и оно оказывает сильное влияние на формирование свойств глинистых пород в ходе их геологического развития.

2.2 Структура глинистых пород

Другим важным фактором, определяющим свойства глинистых пород, является их структура. Под структурой понимают размер, форму, характер поверхности и количественное соотношение структурных элементов, их ориентацию в пространстве и тип структурных связей .

Изучение структуры горных пород проводится на макро- и микроуровнях. На первом выявляют все особенности строения породы визуально, а на втором - с помощью оптических и растровых электронных микроскопов (РЭМ). По отношению к тонкодисперсным глинистым породам изучение их микроструктуры приобретает особое значение.

Микроструктура глинистых пород - чуткий индикатор условий формирования породы, а различное сочетание ее признаков находится в тесной взаимосвязи со свойствами. В работах были подробно рассмотрены типы микроструктур глинистых пород и особенности их формирования в ходе истории геологического развития. Однако для объяснения многих свойств глинистых пород, и в первую очередь прочностных и деформационных свойств глин, помимо морфологических особенностей частиц и пор, слагающих породу, чрезвычайно большую роль играет характер структурных связей, то есть сил, действующих между минеральными частицами.

В зависимости от состава и структуры глинистой породы между частицами могут существовать такие виды взаимодействий, как гравитационные, магнитные, молекулярные, электростатические, ионно-электростатические, силы поверхностного натяжения и силы, обусловленные химическими связями. Эти силы действуют не по всей межфазной границе частиц, а только в местах их непосредственных контактов. Характер индивидуальных контактов, а также их количество являются важными показателями структуры породы, от которых зависят ее прочностные и деформационные свойства.

В глинах между минеральными частицами возможно формирование трех типов контактов: коагуляционных, переходных и фазовых. Коагуляционные контакты преобладают у молодых глинистых осадков и слабоуплотненных глин. Их характерной особенностью является наличие между частицами тонкой равновесной пленки жидкости (связанной воды), толщина которой зависит от физико-химических факторов, достигая нескольких десятков нанометров . Притяжение частиц в коагуляционном контакте обусловлено дальнодействующими молекулярными, магнитными и электростатическими взаимодействиями. Важными особенностями коагуляционных контактов являются малая прочность (10-11-10- 9 Н) и обратимый характер разрушения. После разрушения они могут быстро восстанавливаться. С этим связано явление тиксотропии молодых глинистых осадков, заключающееся в потере прочности при динамических воздействиях и ее восстановлении после снятия таких воздействий.

Переходные контакты распространены в водонасыщенных плотных глинистых породах, а также в не полностью водонасыщенных глинах, находящихся в сухом и слабовлажном состояниях. Они характеризуются небольшой (точечной) площадью соприкосновения и образованием между частицами относительно прочной связи (10- 8-10- 7 Н) за счет действия ионно-электростатических и химических (валентных) сил. Отличительной особенностью переходных контактов является их обратимость по отношению к воздействию воды, то есть способность переходить в коагуляционные контакты при увлажнении породы и восстанавливаться при высыхании.

Фазовые контакты развиты у сильно уплотненных сцементированных глин, аргиллитов, глинистых сланцев. Они характеризуются наличием непосредственного соприкосновения между минеральными частицами на значительной контактной площади или развитием на контакте новой фазы (кремнезема, гипса, карбонатов), цементирующей минеральные частицы и микроагрегаты. Первый тип фазовых контактов часто называют кристаллизационным , а второй - цементационным . Фазовые контакты образованы ионно-электростатическими и химическими силами, что обусловливает их высокую прочность ( 10 6 Н). Глинистые породы с фазовыми контактами слабо теряют свою прочность и не пластифицируются при увлажнении. глина порода грунт

В ходе геологического развития глинистых пород наблюдаются закономерная смена типов контактов и изменение их прочности. Так, при гравитационном уплотнении молодые глинистые осадки превращаются в пластичные глины. При этом происходит преобразование коагуляционных контактов в переходные. Дальнейшее уплотнение глин на больших глубинах при высоких давлениях и температурах приводит к трансформации переходных контактов в фазовые и формированию таких прочных глинистых пород, как аргиллиты и глинистые сланцы.

Как правило, глинистые породы, характеризующиеся присутствием того или иного типа контактов, обладают определенными свойствами. Таким образом, зная прочность этих контактов, можно оценить величину и тип структурных связей и дать прогноз прочностного поведения глинистой породы в различных условиях.

Несомненно, расчет прочности контактов между глинистыми частицами - чрезвычайно сложная задача. Ее решение затрудняется очень малым размером глинистых частиц и необходимостью иметь прецизионное оборудование для изучения слабых взаимодействий.

3.СВОЙСТВА ГЛИНИСТЫХ ПОРОД

Зная факторы, определяющие свойства глинистых пород, и методы оценки минерального состава и микроструктуры, попытаемся объяснить природу некоторых важных и весьма специфических свойств глин, имеющих большое значение в жизни людей.

3.1 Набухаемость

Под набухаемостью понимают способность глинистых пород увеличивать объем в процессе взаимодействия с водой или водными растворами . Процесс набухания сопровождается увеличением влажности, объема породы и возникновением давления набухания.

Набухаемость глинистых пород является их важным свойством, которое необходимо учитывать при проведении строительных работ и эксплуатации инженерных сооружений. Недооценка набухающей способности глин может привести к серьезным последствиям и авариям.

Объясняя природу набухания глин, следует отметить, что этот процесс проходит в две стадии: первая стадия - адсорбционное или внутрикристаллическое набухание, вторая - макроскопическое или "осмотическое" набухание. На первой стадии глинистая порода впитывает влагу за счет адсорбции молекул воды поверхностью глинистых частиц и межслоевыми промежутками кристаллической решетки глинистых минералов. Эта стадия практически не влияет на изменение объема породы. На второй стадии набухания поглощение влаги осуществляется с помощью осмотического давления. Оно возникает вблизи поверхности глинистых частиц за счет избыточной концентрации многочисленных обменных катионов отдиссоциированных (отошедших) с поверхности глинистых частиц в раствор. Основное увеличение объема набухающей глины происходит именно на этой макроскопической стадии.

Способность глин к набуханию характеризуется влажностью набухания (Wн) и давлением набухания (Pн). По величине давления набухания глинистые породы подразделяются на ненабухающие (Pн < 0,025 МПа); слабонабухающие (Pн = 0,025-0,1 МПа); средненабухающие (Pн = 0,1-0,25 МПа) и сильнонабухающие (Pн > 0,25 МПа) . Величина и характер набухания глинистых пород определяются многими факторами, основными из которых являются рассмотренные выше минеральный состав, дисперсность и структура. Наибольшим набуханием обладают глинистые породы, в составе которых имеются глинистые минералы с подвижной кристаллической структурой (например, монтмориллонит), наименьшим - минералы с более жесткой кристаллической структурой (каолинит). Сильное влияние на набухание глин оказывает и их структура, при этом определяющее значение имеет характер структурных связей и тип контактов между минеральными частицами. Наибольшее набухание характерно для глинистых пород с переходными контактами, наименьшее - для глин с фазовыми контактами.

3.2Физико-механические свойства

Под физико-механическими свойствами горных пород понимают их реакцию на действие внешних нагрузок. Физико-механические свойства горных пород можно разделить на деформационные и прочностные.

Деформационные свойства пород характеризуют их поведение под нагрузками, не приводящими к разрушению. В результате воздействия давления на породу она деформируется, что выражается в изменении ее объема и формы. Особенно ярко деформационные свойства проявляются во влажных пластичных глинах. В них под влиянием внешних нагрузок начинаются процессы уплотнения и существенного изменения объема. Так, при возведении и последующей эксплуатации сооружений может происходить значительная осадка пород, достигающая нескольких сантиметров, а иногда и более. Поэтому одними из главных вопросов, которые предстоит решать при строительстве на глинистых породах, являются прогноз осадки сооружения и оценка критических условий деформирования пород оснований, при превышении которых может наступить разрушение самого сооружения.

Есть несколько путей решения такой задачи. Наиболее точно осадка породы может быть проанализирована при штамповых испытаниях, когда на поверхность исследуемого массива породы устанавливают металлический штамп размером до 0,5 м2 и на него с помощью специального домкрата ступенями подают давление. Нагрузка увеличивается до тех пор, пока штамп не начинает опускаться в исследуемую породу. По данным описанного полевого эксперимента можно установить такой важный деформационный показатель, как модуль деформации, характеризующий величину осадки глинистой породы при заданном давлении.

Определение сжимаемости пород может также проводиться и в лабораторных условиях при компрессионных испытаниях небольших по размеру образцов. В результате этих экспериментов определяется модуль деформации, с помощью которого можно рассчитать осадку глинистой породы под действием веса сооружения.

К сожалению, знание только деформационного поведения глинистых пород является недостаточным для решения проблемы устойчивости инженерных сооружений и прогноза поведения пород в различных условиях. Поэтому помимо деформационных свойств глинистых пород необходимо знать и их прочностные свойства.

Прочность пород характеризует их способность сопротивляться внешним усилиям вплоть до полного разрушения и определяется при критических (разрушающих) нагрузках, действующих на породу в момент ее разрушения.

Особую трудность представляет рассмотрение прочностных свойств глинистых пород в связи с их специфическим поведением при взаимодействии с водой. Хорошо известна потеря прочности при увлажнении глин, когда они из плотных и высокопрочных пород превращаются в пластичные или жидкотекучие тела.

Существуют различные подходы к изучению прочности глинистых пород. Один из них - классический, применяемый в механике грунтов. В рамках этого подхода прочностное поведение глинистых пород описывается с помощью зависимостей, используемых в механике сплошных сред. В данном случае чаще всего используется теория прочности Мора, объясняющая разрушение тела определенным предельным соотношением нормальных и касательных напряжений.

Одним из важнейших прочностных показателей глинистых пород является сопротивление сдвигу. В результате действия внешнего давления на породу в ней возникают касательные напряжения, которые при определенной величине преодолевают структурные связи между частицами и обусловливают их смещения или сдвиги относительно друг друга. Предельное сопротивление глинистых пород сдвигу в общем случае описывается законом Кулона

t = s tg j + c,

где t - сопротивление глинистой породы сдвигу, МПа; s - нормальное напряжение (вертикальное давление) в плоскости среза, МПа; j - угол внутреннего трения; tg j - коэффициент внутреннего трения (параметр, определяемый силами трения на контактах между частицами), с - сцепление (параметр, определяемый силами взаимодействия между частицами, которые сопротивляются относительному смещению этих частиц при сдвиге), МПа.

Несмотря на то что начиная с конца XVIII века проектировщики и строители использовали уравнение и параметры j и с для оценки прочности массивов глинистых пород, в рамках этой теории оказалось чрезвычайно сложно объяснить влияние различных факторов на прочность глин. Решить эти задачи помогает физико-химическая механика дисперсных грунтов. Использование физико-химических принципов для изучения прочности глинистых пород осуществляется на базе всестороннего анализа их состава и микроструктуры. Эти данные являются основой для выбора соответствующей физико-химической модели глинистой породы, которая позволяет рассчитать прочность индивидуальных контактов и определить тип структурных связей между частицами породы. В свою очередь, знание характера структурных связей, а также минерального состава глинистой породы дает возможность решать любые прогнозные задачи по оценке изменения прочностного поведения глин в тех или иных условиях.

В рамках физико-химической механики дисперсных грунтов процесс формирования катастрофического оползня в Ла-Канчите можно объяснить следующим образом. В результате увлажнения глинистых пород, слагающих склон, произошла трансформация более прочных переходных контактов в коагуляционные, сопровождающаяся существенным ослаблением структурных связей. Уменьшение прочности структурных связей привело к резкому повышению сдвиговых напряжений и началу сдвиговых деформаций по наиболее ослабленным участкам склона. В ходе нарастания сдвиговых деформаций в глинах, находящихся в пределах зоны сдвига, происходила переориентация глинистых частиц и шло формирование поверхностей скольжения . Необходимо отметить, что на начальных стадиях оползневого процесса ширина зоны сдвига в глинистых породах имеет микроскопические размеры и обычно не превышает 10-100 мкм. После достижения сдвиговыми деформациями критической величины устойчивость склона была нарушена и произошло смещение крупного оползня.

Описанный процесс можно было бы довольно точно спрогнозировать используя физико-химический подход к оценке прочностного поведения глинистых пород, изменяющегося в результате воздействия повышенной влажности и трансформации типа контактов между глинистыми частицами.

4.ЗАКЛЮЧЕНИЕ

В статье рассмотрены лишь некоторые особенности состава, структуры и свойств глинистых пород. Тем не менее даже из этого краткого сообщения видно, что природа свойств глин чрезвычайно многолика и сложна. Решению многих проблем, связанных с такими породами, помогает использование современных методов исследования, разработанных в грунтоведении и физико-химической механике дисперсных пород. Применение этих методов позволяет объяснить влияние многих факторов на свойства глин и спрогнозировать изменение их свойств в условиях изменяющейся окружающей среды.

ЛИТЕРАТУРА

1. Грунтоведение / Под ред. Е.М.Сергеева. М.: Изд-во МГУ, 1983. 389 с.

2. Королев В.А. Связанная вода в горных породах: новые факты и проблемы // Соросовский Образовательный Журнал. 1996. № 9. С. 79-85.

3. Осипов В.И., Соколов В.Н., Румянцева Н.А. Микроструктура глинистых пород. М.: Недра, 1989. 211 с.

4. Соколов В.Н. Микромир глинистых пород // Соросовский Образовательный Журнал. 1996. № 3. С. 56-64.

Размещено на Allbest.ru


Подобные документы

  • Характеристика основных условий образования глинистых горных пород. Особенности их классификации: элювиальные и водно-осадочные генетические группы глин. Анализ химического, минерального состава, структуры, текстуры и общих свойств глинистых горных пород.

    курсовая работа [35,7 K], добавлен 29.09.2010

  • Особенности набухания и пластичности глинистых грунтов. Определение набухания, верхнего и нижнего пределов пластичности. Исследование влияния на свойства грунта замачивания и высушивания при проведении инженерного строительства разнообразных объектов.

    курсовая работа [954,4 K], добавлен 30.03.2014

  • Анализ строения и состава глинистых пород. Описание присущих им физических свойств и проблем при бурении. Показатели оценки ингибирующей способности бурового раствора. Принципы его подбора. Характеристика устройств, предназначенных для его приготовления.

    контрольная работа [277,6 K], добавлен 02.02.2016

  • Геологическое строение, стратиграфия, генезис отложений, тектоника территории района изысканий. Коррозионная активность грунтов и воды. Закономерности изменения и взаимовлияния физических характеристик специфических глинистых грунтов и давления набухания.

    дипломная работа [1,4 M], добавлен 16.02.2016

  • Определение классификационных характеристик глинистых и песчаных грунтов. Построение эпюры нормальных напряжений от собственного веса грунта. Расчет средней осадки основания методом послойного суммирования. Нахождение зернового состава сыпучего грунта.

    контрольная работа [194,6 K], добавлен 02.03.2014

  • Предельные абсолютные и относительные деформации пучения фундамента. Физико-механические характеристики мерзлых грунтов. Классификация мёрзлых грунтов по гранулометрическому составу, льдистости и засоленности. Свойства просадочных грунтов лёссовых пород.

    курсовая работа [558,0 K], добавлен 07.06.2009

  • Физико-географическое описание и геолого-литологическая характеристика грунтов. Определение гранулометрического состава моренных грунтов. Аэрометрический метод определения состава грунтов - необходимое оборудование, испытание, обработка результатов.

    курсовая работа [1,1 M], добавлен 15.02.2014

  • Свойства грунтов и опасные геологические процессы в районе железнодорожной ветки Краснодар-Туапсе. Выбор мероприятий для обеспечения устойчивости железнодорожного полотна. Буронабивные сваи по разрядно-импульсной технологии. Расчеты устойчивости склона.

    дипломная работа [4,0 M], добавлен 09.10.2013

  • Оценка инженерно-геологических условий строительной площадки. Расчет физико-механических свойств грунтов. Определение показателей текучести слоя, коэффициента пористости и водонасыщенности, модуля деформации. Разновидности глинистых грунтов и песка.

    контрольная работа [223,4 K], добавлен 13.05.2015

  • Классификация глины, номенклатура и текстуры, атомная структура, состав и группы глинистых минералов. Элементы, составляющие глину, их синтез. Гидротермальное образование, выветривание и почвы. Глинистые минералы как индикаторы условий осадконакопления.

    курсовая работа [49,6 K], добавлен 13.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.