Теория статического зондирования
Особенности исследования грунтов статическим зондированием, необходимость применения данного метода в современной архитектуре и строительстве. Основные задачи статического зондирования и его сочетание с другими видами инженерно-геологических исследований.
Рубрика | Геология, гидрология и геодезия |
Вид | реферат |
Язык | русский |
Дата добавления | 12.04.2011 |
Размер файла | 18,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Теория статического зондирования
Повышение эффективности и качества строительства в значительной степени зависит от правильного выбора фундаментов сооружений. Стоимость и трудоемкость возведения фундаментов составляют значительную долю затрат в строительстве. Правильный выбор фундаментов - это полное использование несущей способности грунтов оснований при обеспечении необходимой надежности сооружений. Решение этой задачи зависит от наличия у проектировщика исчерпывающих данных об инженерно-геологических условиях строительных площадок.
В последние десятилетия происходит увеличение пролетов производственных зданий и этажности жилых домов, что приводит к значительному повышению нагрузок на основание. В то же время для строительства отводятся площадки со все более сложными инженерно-геологическими условиями, изучение которых требует комплексных исследований грунтов оснований сооружений с помощью лабораторных и полевых методов.
В этой связи большое распространение получают полевые методы исследований грунтов в условиях их естественного залегания, позволяющие исследовать и такие грунты, отбор образцов из которых практически невозможен. Из всех полевых методов исследований, разработанных в последние десятилетия, наибольшее применение получило статическое зондирование, обладающее рядом существенных преимуществ. Во многих случаях, особенно, при использовании свайных фундаментов, исследования грунтов статическим зондированием становятся основным методом.
Тензометрические наконечники с датчиками порового давления (пьезоконусы)
Появившиеся в последние годы наконечники с датчиками порового давления (пьезоконусы) являются перспективным дополнением к обычным установкам зондирования, расширяя возможности оценки грунтов. В установках для измерения порового давления конструкция электрического наконечника обеспечивает измерение сопротивления конуса qс, трения по муфте fs и порового давления и. Применение пьезоконусов началось около 10 лет назад. Исследования с помощью пьезоконусов расширяют и улучшают возможности обычного статического зондирования. Основные преимущества испытаний с пьезоконусом: возможность различать дренированные и недренированные испытания, возможность уточнять замеренное сопротивление конуса на основе учета порового давления и конструкции наконечника, возможность определять консолидационные характеристики грунтов. Эти преимущества позволяют более точно определять характер напластования и вид грунтов, а также их физико-механические характеристики.
Пьезоконус, в дополнение к обычному конусу, имеет следующие основные части для измерения порового давления: пористый фильтр, камеру поровой жидкости и датчик измерения порового давления. Местоположение фильтра на наконечнике до настоящего времени не стандартизировано. В различных конструкциях он располагается: на острие конуса, на теле конуса, непосредственно над основанием конуса, над муфтой трения и т.д.
Фильтр представляет собой кольцевой элемент внешним диаметром 35,6 мм, обычно высотой 5 мм. Изготовляют фильтры из нержавеющей стали, керамики, прокаленной бронзы, карборунда, сцементированного кварцевого песка, пропилена и т.п. Фильтр должен удовлетворять трем, в известной степени противоречивым, требованиям: он должен быть жестким, обладать высокой проницаемостью для жидкости и низкой для воздуха. Размер отверстий фильтров составляет примерно 100 микрометров. Одним из основных требований к фильтрам является их невысокая стоимость, так как после каждого испытания фильтр следует менять, В качестве жидкости, заполняющей камеру, наиболее часто используются силиконовое масло или глицерин (малосжимаемые жидкости).
Поровое давление при зондировании изменяется очень быстро, особенно в частослоистых грунтах, поэтому измеряемое давление имеет динамический характер. Для надежного измерения непрерывно меняющегося порового давления преобразователь должен обеспечить минимальное запаздывание во времени. Преобразователи располагаются на уровне фильтров и находятся поэтому в прямом контакте с поровой водой, поступающей через фильтр. Чувствительность преобразователя измеряется изменением объема поровой жидкости на единицу давления. В показанном на рис. 1 пьезоконусе преобразователь давления имеет чувствительность 0,2 мм на весь диапазон давления от 0 до 2 МПа.
Изготовление и использование пьезоконусов является сложной технической задачей, поэтому, несмотря на получаемые с их помощью дополнительные данные о грунтах, их применение весьма ограничено. Они используются в основном для исследований глинистых грунтов в научных целях, а также при зондировании на шельфе, где усложнение испытания определяется необходимостью получения достоверных данных о грунтах, используемых для проектирования сложных и очень дорогих сооружений. В работе приведен результат опроса 80 специалистов различных стран о применении пьъезоконусов. Из ответов видно, что зондирование пьезоконусом составляет менее 10% общего объема статического зондирования. Исключением являются исследования на шельфе в некоторых странах (Норвегия, Канада), где зондирование пьезоконусом составляет более 80% общего объема статического зондирования.
В основные задачи статического зондирования входит обеспечение исходными инженерно-геологическими данными проектирования и строительства (для выбора типа фундаментов, определения глубины заложения и предварительных размеров фундаментов, выбора несущего слоя грунтов под сваи, определение несущей способности и размеров свай, составления проекта производства земляных работ, контроля разуплотнения грунтов при производстве земляных работ).
Статическое зондирование следует применять в сочетании с другими видами инженерно - геологических исследований для:
выделения инженерно-геологических элементов (мощность, граница распространения грунтов различного состава и состояния);
определения однородности грунтов по площади и глубине;
определение глубины залегания кровли крупнообломочных грунтов;
приближенной количественной оценки характеристик свойств грунтов;
определение сопротивления грунта под сваей и по ее боковой поверхности;
определения степени уплотнения и упрочнения во времени искусственно сложенных (насыпных и намывных) грунтов;
выбора мест расположения опытных площадок для детального изучения физико-механических свойств грунтов.
При проведении инженерно-геологических изысканий под конкретные здания и сооружения зондирование грунтов следует производить в пределах их контуров или на расстоянии от контуров зданий и сооружений не более 5 м.
Для получения сопоставительных данных часть точек необходимо располагать на расстоянии не ближе 25 диаметров зонда от не обсаженной и незаполненной бетоном скважины, в которых производят отбор грунтов для лабораторных исследований и другие виды полевых испытаний грунтов, и не ближе 1 м от ранее выполненного зондирования.
В соответствии с потребностями практики различными фирмами выпускается широкий ассортимент установок, начиная от ручных переносных и кончая установками на трехосных автомобилях и вездеходах.
В результате полевых испытаний грунтов статическим зондированием определено: статическое зондирование инженерное геологическое
удельное сопротивление грунта под наконечником (конусом) зонда qc (cone resistance), МПа;
удельное сопротивление грунта на участке боковой поверхности (муфте трения) зонда fs (sleeve friction), МПа;
вычислен показатель Rf (%) = F/Q*100, где F - удельное трение по боковой поверхности зонда, Q - сопротивление внедрению конуса
Аппаратура зондирования
Статическое зондирование проводится при помощи задавливающего устройства, разработанного с учетом основных требований рекомендательного Европейского стандарта по зондированию.
При выполнении зондирования использован тензометрический пьезоконус типа F7,5CKEW2/V (далее по тексту - зонд), позволяющий производить измерения лобового сопротивления, сопротивления муфты трения, значений порового давления, а также измерять отклонение от вертикали при помощи инклинометра.
Основные преимущества испытаний с указанным зондом:
возможность различать дренированные и недренированные испытания;
возможность уточнять замеренное сопротивление конуса на основе учета порового давления и конструкции наконечника;
возможность определять консолидационные характеристики грунтов.
Эти преимущества позволяют более точно определять характер напластований и вид грунтов, а также физико-механические характеристики.
Методика зондирования
Грузовик для выполнения испытаний устанавливается так, чтобы направление задавливливания было бы как можно ближе к вертикальному. Отклонение начального направления погружения не превышало 2°. Оси труб должны совпадать с направлением погружения. Трубы проверены на прямолинейность.
Погружение зонда в грунт производится с постоянной скоростью 1м/мин ± 30% при помощи силовой установки с синхронной записью показаний приборов на персональный компьютер Tosiba Satellite 1500.
Лобовое сопротивление, сопротивление муфты трения и поровое давление регистрируются тензометрическими датчиками, расположенными в зонде. Также, с помощью инклинометра, расположенного в зонде регистрируется угол отклонения от вертикали.
Сигналы измеряющих устройств передаются посредством универсального 12 канального кабеля, протянутого внутри полых штанг толкателя к регистратору сигналов, с которого данные поступают на компьютер, который выполняет непрерывную графическую запись показателей лобового сопротивления, сопротивления муфты трения и порового давления. Опрос датчиков производится 1 раз в секунду, что соответствует примерно 2 см погружения в грунт; при этом уровень погружения должен поддерживается постоянным (2-2,5 см/c). Одновременно происходит автоматическая компьютерная обработка данных и рисование графиков. По окончании испытания зонд извлекают из грунта.
При проведении статического зондирования оператор должен следить за всеми параметрами задавливания. В параметры задавливания входят: сопротивление конусу зонда (лобовое сопротивление), сопротивление муфты трения (сопротивление по боковой поверхности), угол отклонения колонны штанг-толкателей с зондом от вертикали, скорость задавливания зонда. Оператор также должен следить за наличием крупнообломочного материала в исследуемой толще (крупная галька, валуны). Особое внимание должно быть уделено отслеживанию нарастания общего сопротивления. Задавливание прекращается, если сопротивление конусу зонда превышает 60 - 65 МПа, и если отклонение колонны штанг от вертикали превышает 10° при лобовом сопротивлении в 35 - 38 МПа. При попадании зонда на валун точка должна быть продублирована. Колонна штанг извлекается, и зондирование выполняется в 1 - 2 м от исходной точки.
Используемая установка статического зондирования позволяет выполнять в день до 230 метров зондирования (при средней глубине точки 30-35 метров).
Интерпретация результатов статического зондирования
Расшифровку графиков статического зондирования следует производить с выделением характерных интервалов с одинаковыми или близкими значениями удельного сопротивления грунта под наконечником и на участке боковой поверхности.
Многочисленные исследования указывают на то, что соотношение сопротивления муфты трения к лобовому сопротивлению (“пропорция трения”) помогает идентифицировать тип грунта. Этот показатель может варьировать в значительных пределах в зависимости от того, является ли грунт песчаным или глинистым.
Сопротивление конуса в песках и глинистых грунтах резко различны. В то время как в глинах удельное сопротивление конуса возрастает медленно, равномерно и редко превышает 4Мпа, сопротивление конуса в песках, как правило, быстро и зигзагообразно увеличивается с глубиной и составляет более 4 МПа. Эта зигзагообразность объясняется снижением сопротивления при разрушении песчаного основания и последующим увеличением сопротивления конуса погружению. В глинистых грунтах последовательность снижения и восстановления прочности происходит так часто, что не отражается на графике зондирования.
Впечатляет и Скорость, с которой зонд погружается в грунт. И если, скажем, качество полученных данных при бурении напрямую зависит от квалификации и добросовестности оператора буровой установки, который проводит забор проб, метод статического зондирования этот фактор исключает. Все параметры свойств грунтов фиксирует компьютер.
К тому же, статическое зондирование позволяет получать широкий диапазон данных. Например, датчики регистрирует информации неоднородности почв, определяют поровое давление, удельную электропроводность, температуру и т.д. Это позволяет проектировщикам принять верное решение При выборе типа фундаментов и далее провести расчеты несущих способностей как буронабивных, так и забивных свай.
Несомненным преимуществом метода является его экологичность и относительно невысокая стоимость, Погонный метр исследования разреза методом статического зондирования обходится в 4 раза дешевле бурения.
Зондирование можно отнести и к более щадящему методу изучения почв. Особенно это важно при обследовании грунтов в историческом, плотно застроенном центре Петербурга. Бурение десятка скважин по периметру здания 18 века, несомненно, принесет больше вреда, чем зондирование.
Особую актуальность метод приобретает в подземном строительстве - при сооружении новых станций метро, коллекторов, пешеходных переходов, паркингов, реконструкции подвальных помещений. Исследования грунтов статическим зондированием дает возможность получать точные сведения, необходимые при разработке проекта, выборе технологий, материалов, способов укрепления конструкций подземного объекта.
На сегодняшний день организация располагает двумя установками статического зондирования, способными выполнять большой объем работ в день.
Также возможно установить на установку статического зондирования грунтонос задавливания, типа «МОСТАП», который позволяет отбирать образцы ненарушенного сложения высокого качества с необходимой глубины длинной по 1,5 метра.
Компания выполняет постоянно большое количество опытов статического зондирования по всей России и Ближайшим территориям.
Так же компания выполняет большое количество комплексных изысканий с помощью современного бурового оборудования и обработка данных проводится лабораторным оборудованием итальянского производства.
Мы участвовали в большом количестве известных проектах таких как: Ледовый дворец у метро Большевиков, размыв между метро Мужества и Лесной, строительства сооружений по защите Санкт-Петербурга от наводнений, изысканий под строительство Белорусской АЭС и многих многих других проектах.
На сегодняшний день в компании работают высококвалифицированные и опытные специалисты способные выполнить поставленную заказчиком сроки и на высоком уровне.
Сейчас мы активно начинаем осваивать новые методы полевых изысканий: Измерение электропроводности грунта, прессиометрию, измерение удельного сопротивления .
Размещено на Allbest.ru
Подобные документы
Эрозионно-аккумулятивные типы рельефа территории Новосибирска. Геологическое строение, физико-геологические процессы и явления. Назначение и сроки выполнения инженерно-геологических исследований. Лабораторные исследования грунтов, оврагов и балок.
отчет по практике [1,0 M], добавлен 06.10.2011Мониторинг объектов населенных пунктов: сущность и задачи, информационное обеспечение. Современные системы дистанционного зондирования: авиационные, космические, наземные. Применение аэро- и космических съемок при мониторинге объектов населенного пункта.
дипломная работа [5,1 M], добавлен 15.02.2017Особенности дешифрования данных дистанционного зондирования для целей структурно-геоморфологического анализа. Генетические типы зон нефтегазонакопления и их дешифрирование. Схема структурно-геоморфологического дешифрирования Иловлинского месторождения.
реферат [19,0 K], добавлен 24.04.2012Свойства минералов и горных пород. Условия образования отложений, форма дислокации, причины образования оползней, стадии их развития, форма делювиальных склонов. Условия строительства сооружений и сущность метода инженерно-геологических исследований.
контрольная работа [77,6 K], добавлен 14.03.2009Инженерные изыскания — комплекс работ, проводимых для изучения природных условий района, участка, площадки, трассы проектируемого строительства. Геологические и инженерно-геологические карты и разрезы. Методы и стадии инженерно-геологических изысканий.
реферат [25,0 K], добавлен 29.03.2012Физико-географический обзор, геологическое строение и гидрогеологические условия Усть-Лабинского района. Проведение инженерно-геологических работ для проекта строительства компрессорной станции. Испытания просадочных грунтов статическими нагрузками.
дипломная работа [994,9 K], добавлен 09.10.2013Оценка инженерно-геологических условий строительной площадки. Расчет физико-механических свойств грунтов. Определение показателей текучести слоя, коэффициента пористости и водонасыщенности, модуля деформации. Разновидности глинистых грунтов и песка.
контрольная работа [223,4 K], добавлен 13.05.2015Особенности проектирования автомобильных дорог, их классификация. Опасные инженерно-геологические процессы. Виды инженерно-геологических изысканий при проектировании автомобильных дорог и их назначение. Нормы проектирования автомобильных дорог.
дипломная работа [3,8 M], добавлен 30.12.2014Проведение инженерно-геологических изысканий под расширение комплекса по производству сушеного концентрата на ОАО "Лебединский ГОК". Оценка геологического строения и гидрогеологических, географо-экономических условий, физико-механических свойств грунтов.
дипломная работа [423,4 K], добавлен 17.06.2012Описание физико-географических условий района, включающее орогидрографию, климат района и геологическое строение. Оценка инженерно-геологических условий на основе районирования территории. Методика и условия проведения инженерно-геологических изысканий.
дипломная работа [161,5 K], добавлен 30.11.2010