Рельеф поверхности суши и дна океанов

Планетарные формы рельефа. Особенности срединно-океанических хребтов, глубоководных желобов и разломов. Суть эндогенных и экзогенных процессов. Характеристика теории Вегенера о дрейфе материков, ее значение. Специфика процесса движения литосферных плит.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 16.01.2011
Размер файла 30,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Рельеф поверхности суши и дна океанов

Планетарные формы рельефа

Представь себе на минуту: все неровности земной поверхности исчезли, все горы и впадины сравнялись таким образом, что получилась ровная планета-шар. В таком случае вся поверхность Земли оказалась бы ровным дном под слоем всемирного океана, имеющего везде глубину 2,5 км. Вряд ли было бы удобно жить на такой планете. Для людей такая планета не годилась бы.

Поэтому очень хорошо то, что у нашей планеты есть неровности. Правда, не столь уж они велики. Самая высокая точка на Земле - вершина горы Джомолунгма (она же Эверест, Сагармат-ха) находится на высоте 8846 м над уровнем моря. Самая низкая точка на Земле находится на дне Марианского желоба на глубине 11022 м от уровня моря (длина желоба 1340 км). Получается, что максимальный перепад высот составляет 19868 м, т.е. около 20 км. Это примерно в 300 раз меньше радиуса земного шара. Казалось бы, совсем немного. Однако благодаря именно неровностям планеты на ней есть континенты (материки) и острова, возвышающиеся над поверхностью Мирового океана. Напомним, что на долю Мирового океана приходится 71% поверхности земного шара, тогда как на долю суши (континентов и островов) приходится 29% .

Неровности поверхности планеты (неровности суши и неровности океанического дна) рассматриваются как формы, рельефа. Какие самые крупные формы рельефа? Не торопись давать часто предлагаемый ответ, что это есть горы. Самые крупные формы рельефа - это материки и дно океанов. Их называют планетарными формами рельефа.

Полагаю, что нет необходимости напоминать тебе все материки и океаны Земли. А вот отметить их антиподалъностъ будет нелишне. Что такое антиподальность? Вспомни, что антиподами называют обитателей диаметрально противоположных пунктов на поверхности земного шара. Проведи мысленно из какого-то пункта А прямую линию через центр земного шара. Обозначим через В точку ее пересечения с поверхностью шара на обратной стороне. Обитатели в пункте А и в пункте В - это и есть взаимные антиподы. Один является антиподом по отношению к другому. Но вернемся к материкам и океанам. Выбери какую-нибудь точку на одном из материков и проведи из нее мысленно прямую через центр земного шара. В большинстве случаев эта прямая выйдет через поверхность Земли где-то в океане. Антиподальность суши и океана означает, что материки как бы противостоят океанам. Самый крупный материк - Евразия -противостоит самому крупному океану - Тихому океану. Антарктида имеет своим антиподом Северный Ледовитый океан. Любопытно, не правда ли? Конечно, встречаются исключения, но они, будучи исключениями, как раз подтверждают правило.

Задание. Потренируемся с глобусом. Выбери на нем какую-то точку где-то на материке и отыщи соответствующую точку на обратной стороне глобуса. Поиск точки-антипода проводится с помощью географических координат. Ты фиксируешь координаты исходной (выбранной тобой) точки, а затем соображаешь, какими должны быть координаты ее антипода. Проделай это упражнение не менее 20-30 раз, выбирая исходные точки произвольно и на разных материках. Подсчитай в процентах долю случаев, когда антиподальность суши и океана нарушается.

Макроформы рельефа материков

рельеф суша океан вегенер литосферный

После планетарных форм рельефа идут так называемые макроформы. Это главным образом горные хребты и нагорья, а также крупные впадины. Как на материках, так и на дне океанов. Именно о макроформах рельефа мы сейчас и поговорим. Касаться более мелких форм рельефа (в частности, отдельных гор, холмов, котловин, оврагов и т.п.) мы не будем.

Основные макроформы рельефа материков тебе, конечно, известны. В Евразии главные горные цепи и массивы протянулись полосой с запада на восток - примерно от 40°-50° с.ш. на западе (в Европе) до 30°-45° востоке (в Азии). Это так называемый Алъпийско-Гималайский горно-складчатый пояс (геологи называют его также Анатолийским разломом). Здесь образование складок в земной коре и поднятие гор произошли примерно 20-10 млн. лет назад (подробнее об образовании гор смотри в п. 3.4).

Возьмем глобус или физическую карту мира и проследим, перемещаясь с запада на восток, последовательность горных массивов: Пиренеи, Альпы, Карпаты, Кавказ, Иранское нагорье, Гиндукуш, Кунь-Лунь, Тибетское нагорье, Гималаи. К северу от этой грандиозной системы горных массивов находятся Уральские горы, Памир, Тянь-Шань, Алтай, Саяны, горные хребты Средней и Восточной Сибири, Дальнего Востока, Камчатки.

Кроме Альпийско-Гималайского пояса, на земных континентах есть еще одна грандиозная горная цепь. Она протянулась с севера на юг вдоль восточного побережья Тихого океана. Это Кордильеры Северной Америки и Анды Южной Америки. Вдоль западного побережья Тихого океана тоже протянулись горные системы, но их картина более сложна. Они разветвляются, выходят на острова, огибают окраинные моря (такие, как Чукотское, Охотское, Японское, Восточно-Китайское, Филиппинское, Южно-Китайское и другие), проходят по восточному побережью Австралии (Большой Водораздельный хребет). Получается, что Тихий океан опоясан горными цепями.

Срединно-океанические хребты, океанические глубоководные желоба, разломы

Если горные цепи континентального рельефа тебе, в общем, известны, то, думаю, этого не скажешь о макроформах рельефа дна океанов. Прежде всего здесь надо выделить срединно-океанические хребты. Их расположение показано на приведенном на с. 62 рисунке-схеме. Как легко видеть, они образуют единую систему горных цепей на дне Мирового океана общей протяженностью свыше 60 тысяч километров. Высота этих хребтов, измеряемая от подошвы гор, составляет примерно от 2 до 4 км. Отдельные вершины поднимаются над уровнем океана в виде вулканических островов. На рисунке-схеме показана почти вся система срединно-океанических хребтов: Срединно-Атлантический хребет, Атлантическо-Индийский хребет (Западно-Индийский хребет), Центрально-Индийский хребет, Южно-Ост-Индский хребет, ТихоокеанскоАтлантический хребет (Южно-Тихоокеанский хребет), Восточно-Тихоокеанский хребет, Чилийский хребет и др. Многие из этих хребтов хорошо просматриваются на представленных здесь реконструкциях рельефа дна океанов. Представлены две реконструкции рельефа дна - одна для Атлантического океана и большей части

Индийского океана (см. с. 64), другая - для большей части Тихого океана (см. с. 65). Эти реконструкции производят достаточно сильное впечатление, не так ли? Их стоит повнимательнее рассмотреть. Хорошо видны проходящие вдоль оси срединно-океанических хребтов узкие глубокие трещины-провалы (так называемые рифтовые впадины). Склоны хребтов изрезаны многочисленными поперечными ущельями и разломами. Реконструкция рельефа дна океанов выполнена на основе данных по эхолокации дна и наблюдений, проводившихся космонавтами с околоземной орбиты.

Наряду со срединно-океаническими хребтами важной особенностью рельефа дна океанов являются океанические глубоководные желоба. На нашем рисунке-схеме видно, что они протянулись вдоль западной, северной и восточной окраин Тихого океана, подступая практически вплотную к побережью (на рисунке-схеме отмечены желоба: Перуанско-Чилийский, Алеутский, Курильский, Японский, Марианский, Рюкю, Филиппинский, Яванский, Новогебридский). Глубоководные желоба представляют собой вытянувшиеся на огромные расстояния весьма глубокие понижения дна в сравнительно узкой пограничной зоне между материком (или группой островов) и океаном. Глубины желобов обычно больше 4-5 км; они могут доходить до 8-10 км. На реконструкции рельефа дна Тихого океана хорошо просматриваются многие глубоководные желоба, в том числе наиболее глубокий Марианский желоб (его оконечности отмечены белыми кружочками).

Надо отметить также наблюдающиеся на дне океанов тектонические разрывы (разломы), связанные со сбросами, сдвигами, надвигами горных пород. Отметим большие тихоокеанские разломы: Р - разлом Мендоси-но, Р2 - разлом Марри, Р3 - разлом Молокаи, Р4 - разлом Кларион, Р5 -разлом Клиппертон, Рв - разлом Галапагос, Р7 - разлом Пасхи, Р8 - разлом Элтанин. Все эти разломы хорошо просматриваются на реконструкции рельефа дна Тихого океана. Заметим, что у восточной оконечности разлома Галапагос находятся знаменитые Галапагосские острова, а у западной оконечности разлома Молокаи - Гавайские острова.

Какие процессы называют эндогенными, а какие экзогенными?

А теперь давай подумаем вот о чем. Коль скоро поверхность нашей планеты имеет какой-то рельеф, то, значит, на нее действовали какие-то силы, которые все эти неровности создали. Создали горные цепи, нагорья, рифовые трещины, разломы, котловины, желоба и тому подобное. Трудно представить, что все эти силы, выполнив некогда свою работу, вдруг затем исчезли. Следовательно, неровности земной поверхности, или, иными словами, ее рельеф изменялся в течение всего времени существования нашей планеты и будет изменяться, пока будет существовать планета. Это означает, что земная кора не является чем-то вечным, а имеет свою историю, которую все время творят упомянутые ранее силы. Что же это за силы? Их принято разделять на две группы - внутренние и внешние. Внутренние силы Земли проявляются в тектонических процессах, явлениях магматизма и вулканизма. Тектонические процессы - это различные движения земной коры, инициированные земными недрами: вертикальные сдвиги, изгибы, собирание в складки, горизонтальные смещения. Явления магматизма связаны с расплавлением, перемещением, застыванием магмы, а также с происходящими в магме превращениями. Явления вулканизма - это, по сути дела, те же явления магматизма, но происходящие не в земных недрах, а на поверхности. Все процессы, обусловленные внутренними силами Земли, геологи называют эндогенными (от греческих слов «эндон» - «внутри» и «генес» - «рождение»).

Внешние силы Земли являются внешними по отношению к земной коре. Эти силы действуют на земную кору со стороны гидросферы, атмосферы, живых организмов. В частности, со стороны человека. Сюда надо отнести также воздействие на земную кору солнечных лучей и метеоритов. Процессы, обусловленные внешними силами, геологи называют экзогенными (греческое слово «экзо» означает «вне»).

В двух предыдущих темах мы рассматривали земные недра. Поэтому разговор о процессах, изменяющих земную кору, логично начать с эндогенных процессов. Так мы и сделаем.

Гипотеза Вегенера о дрейфе материков

Как тебе уже известно (вспомни п. 1.1), в конце XIX столетия для объяснения образования гор предлагались две гипотезы. Согласно первой гипотезе горы образуются вследствие давления изнутри расплавленной магмы, что может приводить к поднятию отдельных участков земной коры и к разрывам в коре. В первом случае гора рождается в результате куполообразного выгибания коры, а во втором - в результате накопления лавы, образовавшейся из магмы, излившейся на поверхность. Такова гипотеза поднятия кратеров. Вторая гипотеза исходила из того, что по мере остывания магмы в недрах Земли земной шар должен немного сжиматься, в результате чего земная кора будет морщиться и собираться в складки, образуя складчатые горы. Это была гипотеза контракции. Мы с тобой об этих гипотезах уже говорили.

Когда-то казалось, что данные гипотезы позволяют полностью объяснить образование гор. А что касается расположения и конфигурации материков (а значит, и океанов), то они заведомо предполагались неизменными. Получалось, что планетарные формы рельефа сохраняются на все времена, а изменениям подвергаются только макроформы (и разумеется, более мелкие формы рельефа). Согласись, что в этом была некоторая нелогичность. С какой стати полагать вечными какие-то формы рельефа, коль скоро остальные формы изменяются?

Возможно, подобный вопрос пришел в голову немецкому метеорологу Альфреду Вегенеру (1880-1930) и заставил его усомниться в неизменяемости материков. Ученый обратил внимание на то, что очертания восточного берега Южной Америки весьма точно совпадают с очертаниями западного берега Африки. Вегенер установил большое сходство растительного и животного мира, а также геологического строения пластов горных пород Южной Америки и Африки. Отсюда он сделал вывод, что когда-то давно

Южная Америка и Африка представляли собой единый континент, который потом раскололся на два континента. Континенты постепенно разошлись в разные стороны, в результате чего образовался (как говорят геологи, раскрылся) Атлантический океан.

Это был сенсационный вывод. Получалось, что материки вовсе не неизменны! Они могут раскалываться на части и перемещаться по поверхности земного шара. Вегенер назвал это дрейфом материков. Продолжая исследования, он наглел новые подтверждения своей гипотезы о дрейфе материков. Он выяснил, что в прошлые геологические периоды климат на современных материках был иным. Это можно объяснить тем, что дрейфующие материки с течением времени перемещаются из одних климатических поясов в другие.

Со своей гипотезой Вегенер выступил 6 января 1912 года на собрании Немецкого геологического общества воФранкфурте-на-Майне. В 1915 году он изложил ее в книге «Происхождение континентов и океанов». В чем же заключалась суть гипотезы Вегенера? Сформулируем ее вкратце.

По Вегенеру, существует неподвижная базальтовая земная кора, и по этой коре скользят (дрейфуют) состоящие из гранита материки; при определенных условиях они могут раскалываться, от них могут откалываться какие-то части. Примерно 250 млн. лет назад на Земле существовал единый материк; соответственно, существовал и единый океан. Единый материк уместно называть Пангеей (от греческих «пан» - «вся» и «гея» -«земля»), а единый океан - Панталассом (от греческого «таласса» -«море»). На рубеже палеозоя и мезозоя Пангея начала распадаться на ряд континентов. В результате дрейфа этих материков раскрылись в неогеновом периоде Атлантический и Индийский океаны. На приведенном рисунке показано, как, по Вегенеру, постепенно изменялись очертания континентов и как раскрывались Атлантический и Индийский океаны.

Но почему произошел распад Пангеи? Какие силы заставляют дрейфовать материки? Эти вопросы оставались, по сути дела, открытыми. Вегенер мог указать только одну причину - вращение Земли вокруг собственной оси. Он считал, что под действием именно вращения Земли Пангея раскололась на части, которые стали перемещаться по своим траекториям и с разными скоростями. Перед передним краем скользящих континентов осадочные породы сминались в складки с образованием горно-складчатых массивов.

Гипотеза Вегенера произвела сильное впечатление. Появились как горячие сторонники этой гипотезы, так и не менее горячие противники. Особенно сильно противники критиковали Вегенера за то, что его гипотеза толком не объясняла, почему и каким образом твердые гранитные массивы скользят по твердым базальтовым породам. В результате в конце 1930-х годов гипотеза Вегенера была почти повсеместно отвергнута. Одни называли ее «прекрасной мечтой поэта», другие - «дикой фантазией Вегенера». Этой фантазии-мечте суждено было возродиться в 1960-х годах. Она возродилась уже на новом витке, в новом качестве. Гипотеза дрейфа материков превратилась в достаточно стройную научную концепцию под названием глобальная тектоника литосферных плит.

Движущиеся литосферные плиты

Глобальную тектонику литосферных плит надо рассматривать как дальнейшее развитие вегенеровской гипотезы дрейфа материков. Это развитие в немалой степени обязано прозорливости английского ученого Артура Холмса (1890-1965), который в 1940-х годах предсказал явления, известные сегодня как спрединг и субдукция литосферных плит.

Но прежде чем говорить об этих явлениях, мы должны выяснить, что такое литосферные плиты.

Тебе уже известно, как выглядит земной шар в разрезе (смотри п. 1.5) Твердые массы земной мантии окружены слоем вязкой астеносферы, которая находится в своеобразном пластичном «твердо-жидком» состоянии и обладает текучестью, хотя и довольно медленной. Этот слой окружен твердой наружной оболочкой - литосферой. Она включает в себя самую верхнюю часть мантии (находящуюся над астеносферой) и земную кору с ее базальтами, гранитами, осадочными породами.

Литосферу называют твердым панцирем планеты. Звучит красиво, но не вполне точно. Панцирь - это нечто прочное и монолитное. Может ли литосфера быть таким панцирем? Подумай, в каких условиях находится этот весьма тонкий и твердый (а значит, достаточно хрупкий) шаровой слой. Снаружи его ничто не прижимает, не удерживает, а изнутри его атакует находящаяся хотя и в медленном, но непрерывном движении «полужидкая» и достаточно горячая астеносфера. Вполне очевидно, что в таких условиях литосферная оболочка не может сохранить монолитность; она должна потрескаться на отдельные куски.

Так оно и есть в действительности. Литосферный панцирь оказался не монолитной оболочкой, а совокупностью расколотых на отдельные части кусков оболочки - так называемых литосферных плит. Площади этих литосферных плит различны, многие достаточно велики. Наиболее интересные плиты (они имеют собственные названия) своими размерами сравнимы с материками, а некоторые оказываются еще больше. Поэтому не следует воспринимать литосферные плиты как плоские плиты, они являются частями сферической земной оболочки.

На схеме, изображающей карту мира (с. 71), показаны основные литосферные плиты и даны их названия. Из восемнадцати приведенных здесь плит первые восемь считаются главными. Самая большая плита находится под Тихим океаном и занимает почти всю его территорию. Это так называемая Тихоокеанская плита. Далее идет Североамериканская плита; она занимает территорию Северной Америки, половину территории Северного Ледовитого океана и северо-западный участок Атлантического океана. Ев-разиатская плита занимает территорию Европы, примерно половину территории Азии и Северного Ледовитого океана, северо-восточный угол Атлантического океана. Африканская плита - это Африка плюс треть территории Атлантики. Южноамериканская плита - Южная Америка плюс треть территории Атлантики. Индо-Австралийская плита - Австралия, Индостан и добрые две трети территории Индийского океана. Антарктическая плита - это Антарктида. Плита Наска занимает восточную часть территории Тихого океана, равную по площади материку Южной Америки.

Как были выявлены литосферные плиты и как были установлены их границы? Их установили достаточно четко, регистрируя эпицентры более или менее значительных землетрясений, которые происходили на Земле с 1950 по 1974-й год. На нашей схеме эти эпицентры представлены в виде точек и пятен. Они очень наглядно показывают, по каким линиям проходят границы литосферных плит. Разбиение литосферной оболочки на отдельные плиты и сейсмичность Земли теснейшим образом взаимосвязаны.

Можно сказать, что литосферные плиты в буквальном смысле плавают на внешней поверхности вязкой астеносферы. При этом они могут слегка подниматься, опускаться, а также перемещаться в горизонтальном направлении. Понятно, что земная кора, будучи составной частью литосферы, участвует во всех этих движениях.

Обрати внимание на то, что на схеме с литосферными плитами проставлено множество стрелок. Они указывают направления движения литосферных плит и, в частности, направления движения материков. Как видишь, Вегенер оказался прав в главном: материки и вправду перемещаются по земной поверхности. Но он ошибался, думая, что движутся сами материки по базальтовому дну Мирового океана. На самом деле происходит движение литосферных плит по астеносфере. А уже вместе с литосферными плитами движутся и находящиеся на них материки.

Вполне понятны причины такого движения. Оно обусловлено движениями «полужидкой» магматической массы, происходящими в астеносфере. Эта масса как бы подхватывает находящиеся на ней литосферные плиты и вовлекает их в движение. А движение самой астеносферы вызывается потоками тепловой энергии, распространяющимися из глубин земных недр. Ученые выяснили, что скорость движения литосферных плит в горизонтальном направлении составляет в среднем 5 см/год. Кажется немного, но за миллион лет наберется 50 км. А ведь миллион лет в геологических масштабах - это не такой уж большой срок.

И вот тут возникает весьма непростая проблема. Взгляни еще раз на схему с литосферными плитами. Плита Наска (она находится там под номером 8) движется навстречу Южноамериканской плите (номер 5). Спрашивается: куда девается вещество этих надвигающихся друг на друга плит? В то же время плита Наска движется прочь от Тихоокеанской плиты (номер 1). Спрашивается: откуда берется вещество для восполнения раздвигающихся друг от друга плит?

Чтобы ответить на эти вопросы, надо разобраться с явлениями, называемыми субдукцией и спредингом литосферных плит. Явление спрединга происходит на границе раздвигающихся плит и объясняет, откуда берется вещество для восполнения этих плит. Явление субдукции происходит на границе надвигающихся друг на друга плит и объясняет, куда деваются «излишки» вещества этих плит. Чуть позже станет понятным происхождение терминов «спрединг» и «субдукция».

Размещено на Allbest.ru


Подобные документы

  • Макроформы рельефа материков. Срединно-океанические хребты, океанические глубоководные желоба, разломы. Эндогенные и экзогенные процессы рельефа. Гипотеза Вегенера о дрейфе материков. Движущиеся литосферные плиты. Образование гор и горных хребтов.

    реферат [662,0 K], добавлен 20.02.2011

  • Гипотеза дрейфа континентов Вегенера. Становление теории тектоники литосферных плит. Установление существования пластичного слоя астеносферы и глобальной системы срединно-океанических хребтов и приуроченных к их вершинам зон океанического рифтогенеза.

    доклад [8,8 K], добавлен 07.08.2011

  • Характеристика наиболее крупных форм рельефа океана, которые отражают поднятия материков и впадины океанов, а также их взаимоотношение. Материковые отмели или шельфы, склоны. Глобальная система срединных океанических хребтов. Островные дуги, талаплены.

    курсовая работа [1,1 M], добавлен 16.04.2011

  • Характеристика оболочек Земли. Тектоника литосферных плит и формирование крупных форм рельефа. Горизонтальное строение литосферы. Типы земной коры. Движение вещества мантии по мантийным каналам в недрах Земли. Направление и перемещение литосферных плит.

    презентация [1,7 M], добавлен 12.01.2011

  • Содержание современной теории литосферных плит. Расхождение литосферных плит и образование в результате этого земной коры океанического типа. Семь наиболее крупных плит Земли. Пример плиты, которая включает как материковую, так и океаническую литосферу.

    презентация [2,3 M], добавлен 11.10.2016

  • Происхождение и развитие микроконтинентов, поднятий земной коры особого типа. Отличие коры океанов от коры материков. Раздвиговая теория образования океанов. Позднесинклинальная стадия развития. Типы разломов земной коры, классификация глубинных разломов.

    контрольная работа [26,1 K], добавлен 15.12.2009

  • История изучения океана с середины XIX века до 50-х гг. XX века. Открытие полосовых магнитных аномалий. Механизмы формирования срединно-океанических хребтов. Исследования, проводимые в институтах геологического профиля Новосибирского центра СО РАН.

    курсовая работа [2,4 M], добавлен 15.03.2012

  • Особенности магматического процесса. Энергетические движения и мегарельеф. Складчатые деформации на платформах. Разрывные дислокации и мезоформы рельефа. Интрузивный магматизм и выражение рельефа. Эффузивный магматизм и вулканический рельеф.

    курсовая работа [1,4 M], добавлен 01.12.2014

  • Семья и учеба Альфреда Вегенера - немецкого геофизика и метеоролога, создателя теории дрейфа материков. Экспедиции в Гренландию. Загадка пермско-карбонового оледенения в теории перемещения материков. Современное положение концепции дрейфа континентов.

    курсовая работа [438,0 K], добавлен 29.09.2014

  • История исследования глубоководных областей океана. Методы изучения строения океанического дна. Анализ особенностей образования континентальных окраин материков. Структура ложа океана. Описания основных форм рельефа, характерных для Мирового океана.

    реферат [4,4 M], добавлен 07.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.