Дистанционное сканирование земной коры

Изучение вопросов, связанных с внутренним строением земной коры. Понятие аномального магнитного поля и способы его исследования. Особенности выполнения аэростатных градиентных магнитных съемок. Интерпретация магнитных аномалий с помощью вейвлет-анализа.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 27.09.2010
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Дистанционное сканирование земной коры

В замечательной книге Л.Аусвейта “Как открывали земной шар” рассказывается об удивительных, полных приключений и драматизма событиях, с которыми связана эпоха географических открытий. Двигателем многовековой истории были жажда знаний и чисто практические соображения: распространение товаров и поиск новых рынков сбыта. То, что раньше осуществлялось годами, сейчас, в век технического прогресса, проводится в считанные дни. К примеру, фотосъемка земной поверхности со спутников выполняется практически мгновенно. А как обстоят дела с исследованием глубин? Увы, строение и состав даже внешней оболочки - земной коры - подробно не изучены до сих пор. Несмотря на бесспорные и выдающиеся достижения в области глубинной геодинамики, многие вопросы, связанные с внутренним строением нашей планеты, ждут своих исследователей.

Решение их не будет легким - непосредственно проникнуть в земные недра практически невозможно. Поэтому большое значение имеют геофизические исследования: сейсмологические, магнитотеллурические и др., основывающиеся на интерпретации геофизических полей. Но, как это ни парадоксально, наши представления о составе пород и процессах, происходящих в нижних слоях земной коры, остаются в значительной мере гипотетическими. Один из наиболее информативных в этом плане геофизических подходов, возможности которого до сих пор реализуются далеко не в полной мере, - использование магнитных полей Земли.

Аномальное магнитное поле

Существуют три геомагнитных поля, образованных разными источниками. Первое - главное, или нормальное (в пределах 20-60·103 нТл), генерируемое токами в жидкой части ядра Земли. Расположение именно его силовых линий фиксируют компасы. Второе - переменное, оно порождается токами в ионосфере и магнитосфере. Типичное его проявление - магнитные бури. Для умеренных широт значения солнечно-суточных вариаций ~ 30 нТл, а возмущенных (магнитных бурь) 100-1000 нТл. И наконец - аномальное. Последнее существует благодаря намагниченности земной коры по всей ее толщине (~40 км), а нижележащие горные породы уже немагнитные. Поэтому среди физических полей континентов и океанов аномальное магнитное поле одно из наиболее информативных для изучения внутреннего строения земной коры. Среднее его значение ~200 нТл, а в крупных магнитных аномалиях поля превышают 1000 нТл (например, в Курской магнитной аномалии * 103-104 нТл).

* О первых исследованиях Курской магнитной аномалии см.: Незнакомый Костицын // Природа. 2001. ?4. С.70-80; №5. С.69-79. Примеч. ред.

Эта, казалось бы, сугубо фундаментальная проблема имеет вполне реальные прикладные аспекты. Глубинная структура играет не последнюю роль в распределении полезных ископаемых и в поверхностном слое земной коры; кроме того, не в таком уж далеком будущем человечеству в поисках минерального сырья придется проникать все глубже и глубже в земную кору. Вот тогда-то данные о ее внутреннем строении и процессах, в ней протекающих, окажутся просто бесценными.

Но как изучать аномальное поле? Для его исследования нужен богатый экспериментальный материал, получаемый во время наземных, аэромагнитных и спутниковых съемок. При аэромагнитных съемках из-за недостаточной высоты полетов (0.5-3 км) поверхностные источники магнитных полей подавляют сигналы, идущие из глубинных областей коры. К тому же съемки проводятся на ограниченных площадях, на неодинаковых уровнях и в разное время. Увязать все эти данные и получить региональную карту, отображающую поля глубинных источников, трудно, если вообще возможно. Ведь аномальное магнитное поле не стационарно, к тому же оно имеет еще и так называемый вековой ход.

Заметный вклад в изучение аномального магнитного поля Земли внесли спутниковые съемки. Начиная с 60-х годов данные советских спутников “Космос-49 и -321”, американских POGO-2, -4, -6 и MAGSAT (1980) существенно изменили наше представление о пространственной структуре аномальных полей. Точность же измерения работающего сейчас на орбите датского спутника

OERSTED оказалась такой же, что и MAGSATа, а значительно большая высота полета (700 км) не позволяет использовать его данные для изучения аномальных полей. Даже 400-километровая высота полета MAGSATа затрудняла выделение мелких тектонических структур (например, разломов). Кроме того, для всех спутниковых съемок окончательно не решена проблема разделения магнитных полей, обусловленных разными физическими источниками.

При изучении строения нижней части коры магнитными методами важно иметь данные, полученные с аппаратов, которые работают на высотах 20-40 км, равных вертикальной мощности земной коры. В этом случае сигналы с глубины не заглушаются сигналами поверхностных источников и аномальное магнитное поле проходит естественный процесс фильтрации и формирования своей структуры. И тут сама природа пришла на помощь исследователям. Дело в том, что в атмосфере Земли на высотах свыше 20 км существуют устойчивые воздушные течения вдоль параллелей. Идеальный летательный аппарат, приспособленный для полетов в таких условиях, - свободный аэростат. Диапазон высот 20-40 км хорошо освоен стратосферными дрейфующими аэростатами. Используя зональные воздушные течения, они способны совершать кругосветные полеты. Так, французские исследователи подготовили и провели почти кругосветный полет аэростата с магнитометром от Южной Африки до Австралии (через Южную Америку). Японцы практикуют полеты вокруг Антарктиды. Американский аэростат в 1997 г. облетел практически весь Северный полярный круг. Но, несмотря на то, что полеты аэростатов, выполненные французскими и японскими специалистами, были предназначены для изучения аномальных магнитных полей, на наш взгляд, научная значимость их минимальна. При использовании единственного магнитометра практически невозможно решить задачу разделения магнитных полей и надежно выделить аномальное поле. Ведь не поставишь же по всему кругосветному маршруту магнитовариационные станции, как это делается при аэромагнитных съемках.

Трассы полетов стратосферных аэростатов летом 1997 г. Красной линией показан маршрут российского аппарата, синей - американского.

Как же получить аномальное магнитное поле в “чистом виде”, как отделить от него переменное и главное? Мы предложили с помощью двух датчиков, установленных на одном аэростате, но на разной высоте, измерять как само поле, так и его градиенты. Так как источники переменного магнитного поля расположены на большом расстоянии от уровня измерения, то на оба датчика оно влияет одинаково. А источники в земной коре - ближе, поэтому и возникает разность магнитных полей, градиент. Главное же магнитное поле исключается математическим моделированием. Если главное поле отличается от модельного примерно на 20 нТл, то его пространственные градиенты практически совпадают с модельными. Это позволяет строго выделять аномальные магнитные градиенты из определенных в стратосфере полей, что способствует их надежной геологической и геофизической интерпретации.

Почему же раньше исследователи не проводили такие съемки? Дело в том, что на высотах 20-40 км величины полезных сигналов малы даже при использовании самых высокоточных и высокочувствительных магнитометров, существующих в настоящее время. Требуется очень длинная (в несколько километров) измерительная база градиентометра (удаленность датчиков магнитометров друг от друга). Создать градиентометр с подобной измерительной базой оказалось совсем не просто.

Магнитные градиенты измеряют с аэростатов

В Институте земного магнетизма, ионосферы и распространения радиоволн Российской академии наук накоплен огромный опыт выполнения аэростатных градиентных магнитных съемок, не имеющих аналогов в мировой практике магнитометрии. Пройдены этапы измерения вертикальных магнитных градиентов двумя магнитометрами - сначала на базе в 1, а затем 2 км. Впервые в мире разработана и разрешена для эксплуатации на борту больших стратосферных дрейфующих аэростатов система из трех магнитометров, разнесенных на 4, а потом на 6 км. При этом реализован надежный способ автоматического развертывания системы при всплытии аппарата. Современные аэростаты - гигантские и очень сложные в инженерном плане конструкции: высота их в полете достигает 100 м, грузоподъемность - 2 т. Летом такой аппарат летит в устойчивом воздушном течении со скоростью около 50 км/ч. В зимний период трассы полета менее устойчивы по направлению, зато скорость в среднем составляет 150 км/ч.

Подготовка аэростата к запуску. Идет закачка газа по специальным рукавам

В рабочем состоянии аэростатный магнитный градиентометр представляет собой систему из трех автономных протонных (ядерно-прецессионных) магнитометров (основанных на прецессии ядер водорода в земном магнитном поле), равномерно разнесенных по вертикали и буксируемых на высотах 26, 28 и 30 км.

Основная трудность работы подобных систем состоит в спуске и особенно в подъеме промежуточной связки контейнер-датчик. В данном эксперименте не требуется поднимать контейнеры с приборами обратно в корзину аэростата. Это позволяет найти оригинальное решение системы автоматического развертывания градиентометра, а при посадке аппарата раздельно проводить на собственных парашютах приземление основной подвески и ее выносной части. Определение координат аэростата в полете осуществляется устройством, состоящим из приемника и накопителя навигационных данных.

Схема подвесной системы аэростата с размещенным на ней градиентным измерителем геомагнитного поля.

Вверху - в стартовой позиции; внизу слева - в режиме дрейфа (рабочей позиции); справа - при раздельном приземлении на завершающей стадии полета основной подвески аэростата и спускаемой части измерителя. 1 - балка подвески аэростата; 2, 7, 12 - датчики магнитометров; 3, 8, 13 - приборные контейнеры с магнитометрами; 4, 9, 14 - пирозамки; 5, 10 - тормозные парашюты; 6, 11 - фалонакопители; 15 - спасательный парашют; 16, 17 - свертки с кабелем-тросом, соединяющим датчики с магнитометрами; 18 - стартовый замок. Развертывание градиентометра происходит следующим образом. При всплытии аэростата на высоте 2 км по сигналу от барореле срабатывает пирозамок (4), а контейнер (3) с датчиком (2) под действием силы тяжести начинает падать. При этом выдергивается парашют (5) из камеры, снижение контейнера замедляется и постепенно выбирается трос из фалонакопителя (6). После того как весь трос будет выбран, контейнер (3) зависает на якоре пирозамка (9). На высоте 4 км срабатывает пирозамок (9), и процесс повторяется для контейнера (8). После выбора всего троса из фалонакопителя (11), выносная часть градиентометра зависает на якоре пирозамка (14) и градиентометр готов к работе. После выполнения съемок на пирозамок поступает сигнал окончания работы, и выносная часть градиентометра отделяется от основной подвески аэростата и приземляется самостоятельно.

Аномальное магнитное поле хранит много загадок. В последнее время во всем мире интенсивно изучаются длинноволновые (от 500 до 3000 км) магнитные аномалии. До сих пор мало известно об их источниках, хотя существование таких аномалий, по аэростатным и спутниковым данным, не вызывает никакого сомнения. Над территорией России проведено много аэростатных полетов, один из первых выполнен еще в 1975 г. в районе Курской магнитной аномалии. В то время для измерения магнитного поля использовался только один протонный магнитометр. Полет позволил совместно со спутниковыми и наземными измерениями понять, как убывает аномальное поле в зависимости от высоты съемки (см. табл.). На высотах ~ 700 км оно даже над Курской аномалией составляет только ~ 3 нТл.

Магнитное поле в районе Курской магнитной аномалии (КМА). Вверху - изменение индукции вдоль трассы аэростата (цветная линия - измеренные значения, пунктирная - модельные); внизу слева - трасса полета, наложенная на карту нормального магнитного поля; справа - зависимость индукции от высоты полета.

В 80-е годы наступил значительный прорыв в проведении подобных экспериментов. С Камчатки в западном направлении, вдоль параллели 56°, запускались аэростаты с двумя, а затем и тремя протонными магнитометрами. Такие полеты позволили получить не только само поле, его вертикальный градиент, но и изменения последнего вдоль вертикали, был вычислен показатель степени убывания аномального поля при удалении вверх от источников.

Профили полного магнитного поля (Т) и его вертикального градиента (СТ), измеренных на высоте 30 км для Сибирского региона. Цветной линией показаны измеренные значения полного поля, пунктирной - градиента нормального поля, черной - градиента аномального магнитного поля.

Профили полного магнитного поля (Т) и его вертикального градиента (СТ) на высоте 30 км над Витимским нагорьем. Относительно главного магнитного поля аномалии разделяются на положительные и отрицательные.

Отметим одно обстоятельство, связанное с получением аномального поля на стратосферных высотах. Напомним, что в полете измеряется только полное поле, аномальное же рассчитывается как разность между измеренным и модельным. Последнее представляет главное магнитное поле, описываемое международной аналитической моделью IGRF. Возникает вопрос о численных значениях аномального поля, его вертикальном градиенте и погрешностях их представления. Мы показали, что среднеквадратичное значение вертикального градиента аномального поля по всей трассе, проходящей от Камчатки до Урала, составляет 2.5±0.3 нТл/км. Само же аномальное поле здесь оценивается в ~50 нТл при погрешности в 20 нТл. Последняя определяется ошибкой модели главного поля. Погрешности, вносимые переменным магнитным полем, небольшие за счет коррекции, при которой использовались данные магнитных обсерваторий, расположенных вдоль трасс аэростатов. Таким образом, как само аномальное поле, так и его вертикальный градиент - величины значимые, существенно превышающие ошибки их измерения, а вертикальный градиент выделяется более точно, чем само поле.

Профили аномального магнитного поля (Tа) на высотах 0.5 км (а) и 400 км (в) и его градиента на высоте 30 км (б). Внизу - их динамические спектры. Основные пики в спектрах приходятся на периоды L1 = 400-500 км, L2 = 1000-1200 км и L3 = 2200-2400 км.

Мы подошли теперь к наиболее сложной проблеме в исследовании аномальных магнитных полей - природе магнитных аномалий. К сожалению, на сегодняшний день нет математических подходов, при помощи которых по данным об аномальном поле можно судить о пространственном распределении его источников. Практически все методы, применяемые для идентификации источников магнитных аномалий, основываются на результатах их пространственного спектрального анализа. Для его проведения использовались профили аномального магнитного поля, полученные на приземных, стратосферных и спутниковых высотах. Динамические характеристики спектров определены методом узкополосной фильтрации, в основу которого положено выделение гармонических составляющих с помощью адаптивных фильтров. Методика спектрального анализа, основанная на адаптивной фильтрации, позволяет получить не только одномерное, но двумерное и даже трехмерное представление рассматриваемого ряда в спектральной области. Видны не только характерные периоды в спектрах, но и их изменения по всей длине профиля. Длиннопериодные изменения L = 500-3000 км выделяются на всех высотах. Кроме того, магнитные аномалии с такими периодами имеют максимальную интенсивность не по всей длине профиля. Выделяются три области: 60-70°, 120-140°, 150-160° в.д., относящиеся соответственно к районам Урала, Алданского щита и Охотоморской плиты. Структура аномального магнитного поля даже на спутниковых высотах очень сложна.

Интерпретация магнитных аномалий

Новое весьма неожиданное решение получило представление аномального поля в частотной области с помощью вейвлет-анализа (Иванов В.В., Ротанова Н.М. // Геомагнетизм и аэрономия. 2000. Т.40. №2. С.78-83). На сегодняшний день этот “математический микроскоп” способен дать не только общую структуру рассматриваемого сигнала, но и изучить его локальные особенности. Вейвлетное преобразование приведенного ранее спутникового профиля показано на рисунке. В структуре коэффициентов выделяются различные неоднородности: мелкомасштабные (4-5°); долготные (10-12°) и, наконец, крупномасштабные (20-30°).

Вейвлет-преобразование профиля аномального магнитного поля(в), приведенного на предыдущем рисунке. Вверху - распределение вейвлетных коэффициентов; по вертикальной оси дается масштабный коэффициент а, по горизонтальной оси - параметр сдвига b. В структуре вейвлетных коэффициентов выделяются различные неоднородности: мелкомасштабные - 4-5° (при небольших значениях коэффициента а); долготные - 10-12°; крупномасштабные - ~20-30°. Масштаб ~25° разделяет структуру коэффициентов на две области. По спутниковым данным, вся динамика аномального поля сосредоточена в нижней части. В верхней видны две крупномасштабные детали. Внизу - распределение энергетической плотности. Семь крупномасштабных неоднородностей, характеризующих аномальные магнитные поля, отражают реальные тектонические структуры: Восточно-Европейскую платформу (1); Уральский орогенный пояс, характеризующийся отрицательными значениями аномального поля (2); Саянскую и Енисейскую складчатые системы (3); Байкальскую систему (4), Алданский щит (5), где наблюдается интенсивная положительная аномалия в магнитном поле; Охотоморскую плиту (6); Камчатскую геосинклинальную систему (7).

На графике распределения плотности энергии, полученного из вейвлет-анализа того же профиля, более ясно, чем на картине самих коэффициентов, выделяются семь крупномасштабных деталей, характеризующих аномальные магнитные поля. Сравнение их с тектонической картой рассматриваемого региона показывает, что они отражают реальные тектонические структуры. Вейвлет-анализ стратосферных магнитных профилей позволяет более подробно рассмотреть отдельную структуру и определить рассредоточение магнитных масс внутри нее, т.е. вейвлет-анализ аномального поля не только выделил неоднородную структуру этого поля, но и указал локализацию неоднородностей на профиле.

Результаты определения границ магнитоактивного поля над территорией Восточной Сибири, по данным спектрального анализа. Вверху - трасса полета аэростата и тектоническая зональность региона (расшифровка цифровых обозначений такая же, как на предыдущем рисунке); далее, сверху вниз, профили: аномальных магнитных градиентов; верхних кромок магнитоактивного слоя земной коры; нижних кромок магнитоактивного слоя земной коры; теплового потока; границы Мохоровичича.

Одна из важных проблем связана с определением глубины верхней и нижней кромок магнитоактивного слоя. Не останавливаясь на математической стороне вопроса, приведем результаты определения границ этого слоя, полученные из спектрального анализа аэростатного профиля магнитного поля над территорией Восточной Сибири. Вычисленные глубины границ магнитоактивного слоя для этого региона показаны на последнем рисунке. Полученные величины - обобщенные, представляющие статистическую оценку глубин источников аномалий. При расчете такой глубины для каждой аномалии удобно применять метод, основанный на использовании характеристик убывания аномального поля при удалении прибора вверх от источника. Если измерить магнитное поле на разных высотах, как в случае аэростатных градиентных съемок, то полученные магнитные аномалии будут содержать информацию и о глубине их источника. Итак, для двух магнитных аномалий Витимского нагорья, рассчитывая глубины их источников, мы использовали те измеренные значения поля и его вертикального градиента, в которых коэффициент затухания не изменялся в диапазоне рассматриваемых высот. Оказалось, что для обеих аномалий это условие выполняется при глубине нижней кромки магнитного слоя около 32 км. Эта величина достаточно хорошо согласуется с данными, полученными спектральным методом. Новый подход позволил построить профиль глубин источников отдельных магнитных аномалий, степень корреляции которого с профилями различных геофизических полей поможет ответить на ряд актуальных вопросов, в частности выяснить роль структурных и термических особенностей земной коры в формировании нижней границы магнитоактивного слоя.

Первые съемки аэростатным магнитным градиентометром выполнены по методике, которая естественно будет совершенствоваться в очередных экспериментах. Однако уже сейчас получены новые важные результаты о структуре аномального магнитного поля, его источниках, надежно выделены магнитные аномалии в поле градиентов. Эти данные дали толчок развитию нового подхода в изучении источников магнитных аномалий по характеристикам затухания поля с высотой.

Любой творческий процесс происходит по определенной схеме. Так, писатель прежде всего набрасывает план произведения, которое создается по первым впечатлениям. Далее тема разрабатывается. Так и в решении тайн мироздания первоначально обрисовывается проблема, а далее собираются факты, систематизируются - проблема проясняется. Мы надеемся, что наш подход в изучении строения земной коры найдет своих приверженцев и совместными усилиями будет сделан следующий шаг в познании нашей планеты.

Литература

Статья Юрия Павловича Цветкова, д.ф.-м.н., зав. сектором Института земного магнетизма, ионосферы и распространения радиоволн РАН. Нина Михайловна Ротанова, д.ф.-м.н., проф., зав. лаб. того же института.


Подобные документы

  • Намагничивание линейных участков океанической коры при инверсиях главного магнитного поля, раздвижения и наращивания океанических плит в рифтовых зонах. Составление геохронологической шкалы палеомагнитных аномалий в процессе морских магнитных съемок.

    реферат [695,4 K], добавлен 07.08.2011

  • Основные типы земной коры и её составляющие. Составление скоростных колонок для основных структурных элементов материков. Определение тектонических структур земной коры. Описание синеклиз, антеклиз и авлакоген. Минеральный состав коры и горных пород.

    курсовая работа [2,0 M], добавлен 23.01.2014

  • Описательная характеристика этапов формирования земной коры и изучение её минералогического и петрографического составов. Особенности строения горных пород и природа движения земной коры. Складкообразование, разрывы и столкновения континентальных плит.

    курсовая работа [3,2 M], добавлен 30.08.2013

  • Понятие и характеристика основных источников напряжений внутри земной коры, степень их вклада в общее поле напряжений. Процессы, вызываемые состоянием напряжения в земной коре и мантии, методы их исследования и изучения в сейсмоактивных регионах.

    реферат [24,5 K], добавлен 27.06.2010

  • Происхождение и развитие микроконтинентов, поднятий земной коры особого типа. Отличие коры океанов от коры материков. Раздвиговая теория образования океанов. Позднесинклинальная стадия развития. Типы разломов земной коры, классификация глубинных разломов.

    контрольная работа [26,1 K], добавлен 15.12.2009

  • Расположение складчатых областей Земной коры. Строение платформы, пассивной и активной континентальной окраины. Структура антиклизы и синеклизы, авлакогены. Горно-складчатые области или геосинклинальные пояса. Структурные элементы океанической коры.

    презентация [3,8 M], добавлен 19.10.2014

  • Классификация, состав и степень распространения минералов и горных пород в вещественном составе земной коры. Генезис магматических, метаморфических и осадочных пород. Океанические и континентальные блоки земной коры, анализ их структурных элементов.

    дипломная работа [690,1 K], добавлен 11.11.2009

  • Строение Земной коры материков и океанических впадин. Тектонические структуры. Литосферные плиты Земли и типы границ между ними. Зоны активного разрастания океанического дна. Рифтогенез на дивергентных границах. Рифтогенез на дивергентных границах.

    презентация [5,1 M], добавлен 23.02.2015

  • Вещественный состав Земной коры: главные типы химических соединений, пространственное распределение минеральных видов. Распространенность металлов в земной коре. Геологические процессы, минералообразование, возникновение месторождений полезных ископаемых.

    презентация [873,9 K], добавлен 19.10.2014

  • Изучение геологических процессов, происходящих на поверхности Земли и в самых верхних частях земной коры. Анализ процессов, связанных с энергией, возникающих в недрах. Физические свойства минералов. Классификация землетрясений. Эпейрогенические движения.

    реферат [32,3 K], добавлен 11.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.