Катастрофическая деформация и последующая эволюция высокотемпературной геотермальной системы, как результат фреато-магматического извержения в Карымском кальдерном озере

Генезис и эволюция состава термоминеральных вод и газов кальдер Академии Наук и Карымская. Количественная оценка относительной роли в выносе и перераспределении тепла и растворенных веществ. Динамика гидрохимических процессов, инициированных извержением.

Рубрика Геология, гидрология и геодезия
Вид статья
Язык русский
Дата добавления 07.09.2010
Размер файла 142,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Катастрофическая деформация и последующая эволюция высокотемпературной геотермальной системы, как результат фреато-магматического извержения в Карымском кальдерном озере

Е.А. Вакин, Г.Ф. Пилипенко, ИВГиГ ДВО РАН

В терминальной части Карымского вулкано-магматического центра, в расположенных рядом кальдерах Карымской и Академии Наук, под воздействием близповерхностных магматических очагов сформировалась и длительное время функционирует высокотемпературная гидротермальная система, проявившаяся на поверхности в виде мощных термальных источников. Землетрясение и фреатическое извержение на дне кальдерного озера в 1996 г. привели к резким изменениям гидрохимического и теплового режима гидротермальной системы и озера. Активизировались существовавшие ране источники и появились новые мощные выходы гидротерм. Массированная инъекция магматических и гидротермальных флюидов превратила озеро в бассейн кислой минеральной воды объемом ~500 млн. м3 - природный химический реактор, в котором перерабатываются продукты извержения, донные осадки и , материал, смытый с берегов.

В статье обсуждается генезис и эволюция состава термоминеральных вод и газов кальдер Академии Наук и Карымская, количественно оценивается их относительная роль в выносе и перераспределении тепла и растворенных веществ. Прослеживается динамика гидрохимических процессов, инициированных извержением. Сложившаяся обстановка сравнивается с существовавшей до извержения.

Современные гидротермы, всегда были объектом исследований, как агент выноса и перераспределения глубинногоых тепла и вещества, но механизм их связи с процессами, происходящими в магматических очагах, остается неопределенным. Благодаря синхронным извержениям в центре Карымской купольной структуры в 1996 г.оду, впервые в вулканологической практике появилась возможность непосредственно наблюдать возникновение высокотемпературных и высокодебитных термоминеральных источников, как следствие конкретных сейсмических и магматогенных событий, и проследить их дальнейшую химическую и тепловую эволюцию.

Карымская купольная структура (Карымский вулканический центр, в дальнейшем - КВЦ) - одно из звеньев в средней части цепи вулкано-магматических центров, образующих Восточный вулканический пояс Камчатки. Она зародилась в узле пересечения систем транскоровых разломов и развивается в течение 2 млн. лет с тенденцией центростремительного сокращения площадей проявления вулканической активности. Это пологий тектонический купол размером 40 х 50 км, свод которого осложнен разновозрастными кальдерными депрессиями и образованными в них стратовулканами. В терминальной, самой молодой, части Карымской структуры расположены две сближенные кальдеры: Академии Наук, заполненная озером, и Карымская, с одноименным действующим вулканом в центре. В этих кальдерах под воздействием близповерхностных магматических очагов сформировалась высокотемпературная геотермальная система, проявившаяся на поверхности в виде термальных источников: кипящих - Академии Наук и горячих углекислых - Карымских.

В начале января 199б г. на дне озера в кальдере Академии Наук произошло мощное фреатомагматическое извержение. Одновременно в соседней кальдере началось обычное для вулкана Карымского эффузивно-эксплозивное извержение. Спусковым механизмом извержений послужило сильное землетрясение (магнитуда 6,9) с эпицентром всего в 15 км южне озера. Гидрологический, гидрохимический и тепловой режим озера претерпел катастрофические изменения. На его берегах активизировались существовавшие ране термальные источники и появились новые мощные выходы горячих вод. Значительно изменились и условия разгрузки Карымских источников. Подобных явлений в вулканологической хронике Камчатки не отмечено.

В данной статье предпринята попытка описать и количественно оценить наблюдаемые после извержения тепловые и гидрогеохимические феномены, соотнести их с конкретными проявлениями сейсмической и вулканической активности и сопоставить с гидротермальными процессами, протекавшими здесь ране.

История исследования

Несмотря смотря на удаленность от населенных пунктов и относительную недоступность, КВЦ в геологическом, геофизическом и вулканологическом отношении изучен значительно лучше других территорий Камчатки. Начало исследованиям было положено экспедицией В.И. Влодавца в 1938 г., давшей первые сведения о геологии, вулканизме и термопроявлениях района. Геологии и вулканизму КВЦ посвящены фундаментальные труды Б.В. Иванова и большой группы геологов под руководством Ю.П. Масуренкова. Ценнейший вклад в понимание глубинного строения КВЦ внесли многолетние сейсмологические и геодезические исследования (П.И. Токарев, М.А. Магуськин и др.) .

Термальные источники в кальдерах Карымская и Академии Наук открыты в 1938 г.оду экспедицией В.И. Влодавца [5], но в дальнейшем исследования гидротерм предпринимались редко и были скоре попутными,, чем целенаправленными [10]. Лишьь в 1984 г. Г.Ф. Пилипенко провела специальные исследования термальных вод кальдеры Карымская и термопроявлений в кальдере Академии Наук, предложила концептуальную модель Карымско-Академической высокотемпературной гидротермальной системы, определила ее энергетическую мощность [17]. Термальные источники в кальдере Академии Наук описаны также при гидрогеологической съемке масштаба 1:200000, выполненной в 1989 г. Камчатским территориальным геологическим управлением.

К моменту сейсмических и вулканических событий 1996 г. был накоплен большой объем знаний по геологическому строению, истории развития, вулканизму, магматизму, гидротермальной активности и сейсмике КВЦ. Исследования процессов извержения и землетрясения и их последствий проводились Институтом вулканологии. Результаты исследований опубликованы в серии статей в журнале "Вулканология и сейсмология" и других изданиях.

В 1996, 97, 99 и 2000 гг.одах авторы изучали гидрогеологические последствия извержений. В 1996 г.оду было сделано детальное описание и составлены крупномасштабные схемы выходов гидротерм, как существовавших ране, так и появившихся вновь. В последующие годы прослеживались изменения, происходящие на участках их разгрузки гидротерм. Каждый раз обследовались все термопроявления района, измерялись температуры и дебиты источников и водотоков, проводилось повторное гидро - и газохимическое опробование. По этим данным определенаы гидрогеохимическая специфика новых и старых групп гидротерм и их относительная роль в выносе тепла и вещества и формировании аномального гидрохимического стока.

Химический анализ водных проб выполнен в лаборатории Института вулканологии, хроматографический анализ газа - в Научно-исследовательском геотехнологическом центре и в Институте вулканической геологии и геохимии ДВО РАН.

Геологическое строение и история формирования КВЦ

В геолого-структурном плане КВЦ представляет собой тектонический купол, осложненный в сводовой части кальдерными депрессиями и выросшими в них стратовулканами. Морфологически это дугообразный горный массив с отметками 500 --600 м., протянувшийся в субмеридиональном направлении на 50 км при ширине до 30 км. Над его поверхностью, рассеченной оврагами, долинами рек и уступами кальдер, возвышаются конусы действующих и останцы разрушенных вулканов. Кроме крупных, высотой до 1600 м, стратовулканов здесь множество других вулканических построек: шлаковых и лавовых конусов, и воронок взрывов - мааров, не редко заполненных озерами.

Геологический разрез купола полностью состоит из вулканогенных (эффузивных и пирокластических) и вулканогенно-осадочных (кальдерно-озерных) верхнеплиоцен-плейстоценовых отложений от кислого липаритового до основного базальтового состава. Это разнообразные туфы, игнимбриты, агломераты, пемзы, андезитовые и базальтовые лавы, липаритовые и дацитовые экструзивные тела. Характерной особенностью разреза является большое количество кальдерно-озерных отложений: алевролиты, песчаники, гравелиты, пески. Основанием для этих образований служат отложения континентальных и прибрежно-морских и вулканогенных (в верхней части) фаций нижнеплиоценового возраста, мощностью до 1 км (щапинская и сторожевская свиты). Они несогласно залегают на пенепленизированном складчатом основании, сложенном кремнисто-вулканогенными, кремнисто-карбонатными, и вулканогенно-терригенными отложениями мел-палеогенового, и олигоцен-миоценового возраста [19]. Метаморфизованный верхнемеловой фундамент здесь приподнят и залегает на глубине ~3,5 км [18].

КВЦ , как звено в цепи подобных структур, составляющих Восточный вулканический пояс Камчатки, возник на пересечении регионального глубинного разлома с боле древней системой крупных дислокаций трансформного направления. Земная кора здесь разорвана на всю глубину и на длительное время открыт путь для движения глубинного тепла и вещества к поверхности. Возникла многоэтажная система внутрикоровых магматических очагов. Крупный "промежуточный" магматический очаг диаметром ~30 км с центром давления на глубине ~ 18 км устанавливается вблизи нижней границы коры [25]. Из него (или сквозь него) магма поступает в близповерхностные очаги меньших размеров. Вторжение магм и образование внутрикоровых магматических очагов привело к общему куполовидному подъему поверхности, а игнимбритовые извержения - к частичному опустошению периферических очагов и образованию кальдерных депрессий в своде купола. Становление купола сопровождается развитием сложной системы линейных, дуговых и кольцевых разломов образовавших структуру "битой тарелки". КВЦ начал формироваться 2 млн. лет назад. В современном виде купольная структура образована, в основном, за счет накопления вулканогенного материала и, в меньшей степени, за счет общего подъема поверхности.

Вулканическая активность

Карымского центра имет преорывный "ритмичный" характер: периоды интенсивных извержений сменяются периодами покоя. Установлено 4 таких ритма, каждый из которых начинался катастрофическими извержениями с выбросом сотен кубических километров кислого, обычно дацитового, пирокластического материала и образованием игнимбритовых покровов. За этим следует обрушение кровли частично опустошавшихся магматических очагов и образование кальдер. Кальдеры заполняются вулканогенными пирокластическими, флювиальными и озерными отложениями, внутри них начинается рост стратовулканов андезито-базальтового состава. Дале вулканическая активность снижается. Извержения следующего ритма локализуются внутри построек предыдущего, происходит телескопическое вложение молодых структур в боле древние [6].

На позднем этапе развития КВЦ, в конце верхнего плейстоцена -- голоцене, в его юго-западной части образовались две сближенные кальдеры: Академии Наук и Карымская. Расстояние между кальдерами всего 3 км, причем четких структурных границ между ними нет.

Кальдера Академии наук возникла на месте вулканов Однобокий и Академии Наук. По мнению Б.В. Иванова [9] и О.Б. Селянгина [19], они представляли собой единое вулканическое сооружение. Формирование кальдеры началось в начале верхнего плейстоцена 110-8014С тыс. лет назад (л.н.) после катастрофических извержений пирокластических потоков. Кальдерообразующие извержения продолжались десятки тысяч лет. В процессе извержений было выброшено от 8 до 10 км3 туфов и игнимбритов от андезитового до липаритового состава [6]. От вулканов Однобокогийо и Академии Наук сохранились только фрагменты их южных секторов. Кальдерная депрессия была заполнена озером, но вулканическая деятельность в ее пределах продолжалась. В позднем плейстоцене в южной части озера образовался крупный маар диаметром боле 1 км. Уже в голоцене, 6500 14С л.ет н.азад, у северного берега озера произошло извержение с образованием маара диаметром 0,8 -- 0,9 км [2]. По другим данным возраст этого ("туфового кольца") ~4800 14C лет [1]. Одновременно сильное землетрясение, вызвало смещение крупного блока западного борта ущелья реки Карымская, перекрывшего сток из озера. В результате, уровень воды, судя по сохранившейся озерной террасе, поднялся на 80 - 85 м выше современного. Примечательно, что во время этого извержения выбрасывалась ювенильная тефра базальтового состава, аналогичная тефре извержения 1996 г., которое произошло в непосредственной близости [2].

Кальдера Карымская начала формироваться значительно позже - в раннем голоцене. Это небольшая, всего 5 х 6,5 км по верхней кромке, кальдера обрушения с хорошо выраженным уступом, образованная в теле вулкана пра-Карымский. На севере она срезает склоны вулкана Двор, а на юге не имет четких границ. В кальдере расположен действующий вулкан Карымский, лавы которого перекрыли все дно кальдеры за исключением небольшого участка в юго-западной части - Термальной котловины. Кальдерообразующие извержения (типа Кракатау) начались на вулкане пра-Карымский около 7700 лет назад и продолжались ~200 лет [6]. За это время было выброшено от 4 до 6 км3 пирокластики от липаритового до липарит-дацитового состава (пемзовые туфы пирокластических потоков, бомбы, лапилли, отложения палящих туч), что привело к обрушению центральной части вулканической постройки [9]. Дале наступил длительный, боле 1000 лет, период ослабления вулканической активности и накопления в кальдере озерных и флювиальных отложений [6]. Судя по гидротермально измененным породам (каолинитам), наблюдающимся в эрозионных врезах юго-западного борта кальдеры, в раннем голоцене здесь открыто разгружались воды, подобные современным парогидротермам кальдеры Узон [16].

Около 5300 14С лет назад в кальдере начался рост стратовулкана Карымский. Состав продуктов его извержений на самых начальных стадиях формирования отвечал андезито-базальтам, на последующих - андезито-дацитам. Высота конуса вулкана над дном кальдеры ~700 м, объем ~0,8 км3. 500014С лет назад в южной части кальдеры произошло одноактное извержение: образовался лавовый конус "Лагерный" с небольшим потоком андезито-базальтов.

На последних этапах формирования вулканического центра особую роль играет мощная субмеридиональная зона дизъюнктивных нарушений, рассекающая западную часть КВЦ [9]. Зона контролирует линейное расположение вулканов и кальдер - центров наиболе мощных проявлений кислого вулканизма в верхнем плейстоцене - голоцене. Разломы имеют здесь глубокое заложение и являются магмовыводящими. В границах зоны последовательно во времени возникают близповерхностные "кальдерообразующие" магматические очаги. Субмеридиональная тектоническая зона продолжает активно развиваться, в особенности в средней части, на участке кальдер Карымская - Академии Наук, где фиксируется максимальная деформация (растяжение) поверхности [13]. "В осевой е (зоны) части закладывается грабен протяженностью 15 км. Наиболе четко он проявлен на участке сближенных кальдер Академии наук и Карымскойая.. Современная гидротермальная деятельность сосредоточена исключительно в пределах этого участка грабена." [Г.Ф. Пилипенко, 1989, стр. 88].

Гидротермальная система

Кальдеры Академии Наук и Карымская выделяются среди остальных структур КВЦ мощной современной гидротермальной активностью. В кальдере Академии Наук разгружаются высокотемпературные гидротермы и их мене горячие дериваты, а в кальдере Карымская расположен самый мощный на Камчатке очаг разгрузки углекислых терм. Считается, что эти источники являются поверхностными проявлениями крупной геотермальной системы, заключенной в кальдерных депрессиях].

Молодые кальдерные депрессии благоприятны для формирования гидротермальных систем. С гидрогеологической точки зрения это небольшие наложенные артезианские бассейны с трещинно-пластовыми или трещинными водными резервуарами в погрузившихся блоках докальдерных вулканов и породах взрывного генезиса, заполняющих депрессии. Их инфильтрационное водное питание обеспечивается благодаря обильным атмосферным осадкам (на отметках ~600 м не мене 2000 мм/год), и высокой проницаемости кольцевых разломных зон и вулканитов, слагающих борта и склоны кальдер. Водоупорами, изолирующими артезианские резервуары от поверхностных и грунтовых вод, служат кратерно-озерные отложения и гидротермально-измененные породы. Водопроницаемость вулканогенных пород резко возрастает в зонах тектонической трещиноватости, которые играют роль основных, часто единственных, каналов миграции гидротерм. Общие представления о природе гидротермальной активности в кальдерах Карымская и Академии Наук были уточнены по данным, полученным путем исследования естественных термопроявлений. В кальдере Академии Наук до извержения 1996 г. основной участок разгрузки гидротерм находился на южном берегу озера. Здесь, на участке длиной боле 1,5 км, наблюдались выходы термальных вод в виде мощных кипящих источников, источников с меньшими температурами, линейного высачивания в каменистом пляже, подводных выходов в прибрежной полосе. В зимне время вдоль берега наблюдались длинные полыньи шириной до 50 м. Участок максимального прогрева с кипящими источниками и парящими площадками (собственно источники Академии Наук) протягивался на ~250 м вдоль берега и на ~80 м вверх по склону. Самые мощные выходы термальных вод расположены на высоте 10 -- 12 м над уровнем озера, в 40-50 м от берега. Там на площади порядка 2000 м2 насчитывалось до 50 кипящих грифонов и источников с температурой 80-98o С (здесь и дале температура в градусах Цельсия). Два из них работали в пульсирующем режиме и даже получили имена: гейзеры "Сердитый" и "Карлик" [ 10] . Вода источников собиралась в водоемах -"ваннах", образующих два каскада на ручьях, стекающих в озеро. Ванны большие (28 х 7 м и 15 х 7 м), глубокие (до 1,4 м) и необыкновенно красивые, заполненные прозрачнейшей водой, с розовыми гейзеритовыми стенками и дном. В западной ванне из воронки в дне выбивал мощный пульсирующий грифон с температурой 98o , бросающий воду на высоту боле метра. У верхней границы термальной площадки наблюдались выходы пара в виде участков парящего грунта, кипящих бессточных грязевых и водных (конденсатных) котлов. [10,17].

Гидрогеологи А.Л. Булыгин и О.В. Куницын во время съемочных работ 1989 г. описали термальные источники с температурой 41-80o в 500 м восточне ванн: "высачивание в травертинах" (?) на урезе воды озера (суммарный дебит 1,5 л/с) и "слабые выходы пара" на склоне на высоте ~40 м. над ними. Дале, в 1200 метрах, они обнаружили грязевой котел и высачивание из трещин с температурой до 87o и дебитом 0,3 л/с.

Опубликованные разными авторами анализы воды и свободного газа источников Академии Наук показывают, что по комплексу признаков они близки к водам, типичным для высокотемпературных гидротермальных систем [5, 10, 11]. Это углекисло-азотные хлоридно-натриевые воды с относительно низкой (~1,5 г/л) общей минерализацией . Такой состав имели бы гидротермы Долины гейзеров, вдвое разбавленные пресными водами [20]. Все без исключения анализы свободного газа источников Академии Наук обнаруживают высокое, до 24% объема, содержание кислорода, что является признаком подмешивания насыщенных кислородом воздуха холодных поверхностных вод . По N2/O2 отношению в равновесной с воздухом газовой смеси, растворенной в холодной воде (1,79), можно вычислить "воздушную" составляющую спонтанного газа. Выделяющийся при выходе гидротерм Академии Наук на поверхность газ, ~ на 50% состоит из воздуха, а его "глубинная" часть имет типичный для высокотемпературных гидротерм состав: N 2 - 59, CO2 - 36, CH4 - 3,4, Ar - 1,0 % объема. В свободном газе отмечена повышенная концентрация Rn ~960 Бк/л [21], что также обычно для двухфазных (вода и пар) очагов разгрузки гидротерм. Источники Академии Наук выделяются очень высоким содержанием кремниевой кислоты (>0.,3 г/л), это также свойство высокотемпературных гидротерм. Опаловые отложения кипящих источников - гейзериты распространяются далеко за пределы участков современной разгрузки источников Академии Наук. Под гейзеритами залегают грубообломочные туфобрекчии, сцементированные кремнеземом и гидроокислами железа. Такие "гидрохимические" брекчии встречаются в береговых обрывах по всему амфитеатру вулкана Академии Наук. Это прямое свидетельство очень продолжительной и существенно боле мощной, чем современная, гидротермальной активности в южной части кальдеры. Расход источников Академии Наук в 1984 г., рассчитанный гидрохимическим методом, ~50 л/с, вынос тепла - ~20 МВт. [17]. Глубинная, "базовая" температура термального резервуара по показаниям гидрохимических геотермометров - 240-285о. Восходящие гидротермы здесь примерно на ~50% разбавлены инфильтрационными водами, а вскипание их смеси идет на поверхности или на глубине всего несколько метров.

На северном берегу озера, в 1 км восточне истока реки Карымская, на протяжении 200 м были отмечены признаки разгрузки термальных вод: полынья шириной до 50 м, свободная от снега сухая полоса песчаного пляжа шириной 3-7 м, струйки газовых пузырьков, идущие из песчаного дна. У истоков реки также наблюдалась обширная полынья в форме полукруга с радиусом около 100 м. [17]. Эти термоаномалии располагается в непосредственной близости от места извержения, происходившего здесь 6500 - 4700 лет назад [1, 2].

В кальдере Крымскойая в конце плейстоцена -- начале голоцена открыто разгружались парогидротермы, и обстановка здесь напоминала современную кальдеру Узон с горячими озерами, кипящими источниками и сольфатарными полями. Кальдерные отложения длительное время подвергались гидротермальной переработке. По мере роста в кальдере конуса вулкана условия разгрузки и инфильтрационного питания подземных термальных вод менялись. Выходы гидротерм были перекрыты лавами и "задавлены" холодными водами, накапливающимися в конусе вулкана.

Современные термопроявления сосредоточились в Термальной котловине, в юго-восточной части кальдеры, на единственном не перекрытом молодыми лавами участке е дна площадью 2 км2. Сюда же направлен сток термальных вод, разгружающихся под лавами современного вулкана, а также грунтовый и поверхностный стоки метеорных вод кальдеры с площади ~ 40 км2, поэтому котловина сильно обводнена и заболочена. Через котловину протекает река Карымская, дренирующая сток термальных и холодных вод. Это определило специфику условий разгрузки Карымских терм, большая их часть разгружается в теплых болотах. Преобладают два основных типа источников.

1. Восходящие газирующие источники с температурой от 25 до 42o С и дебитами 0,15 - 0,51 л/с. На выходе их воды отлагают большое количество гидроокислов железа, образуя лимонитовые конусы с газирующими грифонами на вершинах, глубокие водяные воронки и озерки с плоским дном. Суммарный видимый дебит таких источников ~75 л/с.

2. Нисходящие источники с температурой 10-20oС, вытекающие из-под лав Карымского вулкана, в виде мощных родников и обильных ручьев. Такие выходы часто сопровождаются истечением углекислого газа (мофетами). Суммарный дебит этих источников очень велик: ~ 500 л/с.

По химическому составу воды восходящих источников углекислые SO4-HCO3-Cl / Mg-Na-Ca, с минерализацией до 2,8 г/л и рН 6-7. В повышенных концентрациях в них содержатся растворенный CO2 (~1г/л), SiO2, B, F, Li. В составе спонтанных газов доминирует CO2 ,~90 %. Это ярко выраженные углекислые термы. Высокие концентрации Mg2+ выделяют эти воды в особый, редко встречающийся в природе и очень ценный в бальнеологическом отношении подтип магниевых углекислых вод. Условно они названы "теплыми нарзанами". Воды нисходящих источников относятся к тому же гидрохимическому типу, но они в разной степени разбавлены инфильтрационными водами и частично дегазированы. В их газовой фазе повышается содержание N2 и О2, т. е. появляется воздушная составляющая.

Общая разгрузка термоминеральных вод в кальдере Карымская, с учетом скрытого стока, составляла 770 л/с, а вынос тепла ~136 МВт . Удельный вынос тепла (плотность конвективного теплопотока), в Термальной котловине 73 Вт/м2, что на три порядка интенсивне среднего для вулканических областей Камчатки. Такие высокие энергетические параметры типичны для высокотемпературных гидротермальных систем, но не характерны для месторождений углекислых вод.

Г.Ф. Пилипенко была предложена следующая модель формирования Карымских термоминеральных вод. Гидротермы в кальдере Карымская не выходят на поверхность в виде гейзеров или кипящих источников, и не вскипают на глубине, формируя паро-конденсатную зону, как это происходит на многих геотермальных месторождениях. Восходящий поток перегретых вод из основного геотермального резервуара с температурой 200 -- 250o на глубине 150 -- 400 м (при давлении 15 - 40 атмосфер), минуя процесс вскипания, смешивается с инфильтрационными водами. Возникает промежуточный резервуар - реактор, в котором насыщенные СО2 и Н2S глубинные гидротермы взаимодействуют с обогащенными О2 инфильтрационными водами. Образовавшаяся агрессивная смесь реагирует с водовмещающими породами, претерпевшими гидротермальную переработку на боле ранних, высокотемпературных, этапах гидротермальной активности. Тогда в метасоматитах, особенно в приповерхностной зоне аргиллизации, происходило накопление Mg, Fe, Ca, S. Преобразование их в новые минералы идет при температурах 140-70o. Магнийсодержащие минералы (хлориты, монтморилониты) образуют разного рода скопления в ассоциации с другими родственными минералами. При температурах ниже 70o в зоне аргиллизации начинается интенсивное выщелачивания минеральных новообразований. В растворы переходят сульфаты и гидрокарбонаты кальция и магния, формируются воды "нарзанного" типа [17].

В составе Карымских нарзанов отчетливо различаются две компоненты: "глубинная", аналогичная высокотемпературной составляющей терм Академии Наук, и "нарзанная", близкая по составу низкотемпературным углекислым водам, формирующимся в толщах метасоматитов. Их макрохимический состав соответственно: M 2,2 г/л; Cl75 SO415 / Na95 % мг-экв; SiO2>300 мг/л и M 2,9 г/л; HCO360 SO440 / Mg60 Ca25 Na15 % мг-экв; SiO2<100 мг/л. Эти гипотетические составляющие , смешанные в отношении ~1/4 - -1/5, по составу и по температуре (поскольку все тепло приносится с глубинной составляющей) соответствуют нарзанам Термальной котловины.

Таким образом, в недрах кальдер Академии Наук и Карымскаяой до сейсмических и вулканических событий 1996 г. уже длительное время, шла разгрузка мощной высокотемпературной гидротермальной системы, локализованной в границах субмеридионального грабена, пересекающего обе кальдеры. Огромные массы высокотемпературных газо-водных флюидов и колоссальная тепловая энергия, аккумулированные на относительно небольшой глубине в геотермальных резервуарах, не могла и не повлиять на ход фреатоо-магматического извержения.

Извержения и последствия. Ход и результаты извержений

2 января 199б г. на дне озера в кальдере Академии Наук произошло фреатомагматическое извержение. Одновременно в соседней кальдере началось извержение вулкана Карымскогоий, которое продолжалось до июля 2000 г. Спусковым механизмом извержений послужило сильное землетрясение (магнитуда 6,9) с эпицентром в 15 км южне озера. Подводное извержение было коротким, всего 18 - 20 часов, но очень мощным - в сотни раз мощне одновременного извержения вулкана Карымскогоий. Взрывы в озере, следовавшие с интервалом ~15 минут, выбрасывали магматический материал и газы на высоту 5 - 8 км. Тепловая энергия одиночного взрыва (их было ~100) оценивается в (5-34)х1013 Дж [25]. Лед на озере полностью растаял, температура воды поднялась до ~25oС. На поверхности, волны цунами смыли рыхлые отложения и уничтожили береговую растительность на берегах на высоту до 15 м. По реке Карымская до самого устья прошла волна катастрофического паводка, оставившего на термальном поле Карымских источников полуметровый грязевой слой. В процессе извержения было выброшено ~40 млн. м3 (~80 млн. тонн) пирокластического материала. В основном это ювенильная базальтовая тефра, состоящая из неспекшихся бомб, размером до 15 см, лапилли, шлаков. На заключительных стадиях извержения выбрасывались пемзовые бомбы от андезитового до риолитового состава. [8 ]. Продукты извержения полностью перекрыли сток из озера. В результате сброса в акваторию изверженного и смытого с берегов рыхлого материала и талой снеговой воды, а также из-за вертикальных тектонических смещений поверхности, уровень воды в озере поднялся боле, чем на 2 м.

15 мая перемычка в истоке реки была размыта, и начался второй экстремальный сброс воды из озера. Термальное поле в кальдере Карымская вновь было залито водой и, после е ухода, значительная часть минеральных источников оказалась погребенной под принесенным из озера переотложенным пирокластическим и резургентным материалом. После спада воды в озере у северного берега образовался полуостров площадью 0,4 км2 (полуостров Новогодний), охватывающий с трех сторон шестисотметровую взрывную воронку (кратер Токарева), заполненную водой ( рис.11 ).

Рис. 1

Одновременно шло эффузивно-эксплозивное извержение центрального кратера вулкана Карымскогоий. Оно началось взрывами с выбросом бомб и пепла на высоту боле 1 км, а в середине января на юго-западный склон пошел первый поток глыбовой лавы. Излияние лавы продолжалось с перерывами боле года, длина потоков достигла 1200 м, объем превысил 11 млн. м3. Взрывы и газовые продувки с максимальной частотой, боле 400 в сутки, продолжались до июля 2000 г., масса пирокластики за первый год извержения - 6,3 млн. тонн. Состав изверженного материала - традиционный для Карымского вулкана: среднекалиевые андезиты [ 8 ]. Энергия извержения за 1996 г. оценивается в 3 х 1016 Дж. [ 14 ].

Синхронные извержения предварялись и сопровождались целой серией землетрясений: 31.12.1999 г. с магнитудой 5,8 в Кроноцком заливе, 1.01.2000 г. (М 6,9) вблизи кальдеры Академии Наук, и в течение месяца, мощным роем боле слабых землетрясений [ 25 ]. Сила землетрясения 1 января в кальдерах Академии Наук и Карымская была >9 баллов. Произошла тектоническая активизация меридиональной разломной зоны. В верховьях р. Карымская на протяжении 2,5 - 3 км заложились новые трещины с раскрытием на поверхности до 2,5 м и амплитудой вертикального смещения 0,5 - 1,5 м [12]. На полуострове Новогоднемий на новых трещинах расположились воронки малых фреатических взрывов и выходы высокотемпературных гидротерм. В Термальной котловине вдоль новых трещин появились мощные газирующие источники и протяженные линейные выходы термоминеральных вод (см. рис. 1). Главные удары стихии в январе 1996 г. приняло на себя озеро Карымское.

Карымское озеро после извержения

Извержение и инициированные им экзогенные процессы привели к катастрофическим изменениям гидрологического, гидрохимического и температурного режима озера. Чистейший абсолютно пресный водоем диаметром 3,5 км и глубиной до 70 м в считанные часы превратился в резервуар кислой (рН<3,2) минерализованной воды - гигантский природный химический реактор объемом ~0.,5 км3, в котором началась переработка растворившихся летучих и измельченных твердых (включая пеплы вулкана Карымскогоий) продуктов извержения, озерных илов, материала смытого с берегов. На берегах озера активизировались существовавшие ране термальные источники и появились новые мощные выходы горячих вод в истоках р. Крымская, на кромке взрывной воронки (кратер Токарева) и у северного берега [4 ].

Гидрологические, тепловые и гидрохимические параметры озера после извержения изучались группой исследователей под руководством С.М. Фазлуллина. По их данным озеро в нормальном состоянии имет следующие основные характеристики: площадь водной поверхности - 9,8 км2; максимальная глубина - 61 м; объем воды в озере - 460,6 млн. м3. Была сделана оценка тепловой энергии, аккумулированной озером во время извержения 1996 г. Учитывалось тепло, затраченное на плавление льда, нагрев воды и тепловая энергия взрывов. Полученную величину - 1016 Дж - сами авторы считают заниженной, поскольку не удалось определить теплоотдачу с поверхности озера [23, 24].

Преобразованная в результате извержения вода озера принципиально отличается от вод всех термальных источников, - и существовавших здесь ране, и появившихся вновь. По гидрохимическим характеристикам она относится к "фумарольным термам поверхностного формирования" [11]. Гидротермы этого типа формируются при прямом контакте вулканических газов с поверхностными водами. Озеро дренируется единственным водотоком - рекой Карымская. Состав воды озера приведен в таблице 1 (NN 1-7). Это кислая минерализованная хлоридно-сульфатная, магний-натрий-кальциевая вода. В ходе извержения вода в озере перемешена и е состав в первом приближении можно считать однородным повсей глубине [24 ].

Рис. 2

Зримым, поддающимся измерениям результатом этих процессов, выходом из "геохимического черного ящика", является состав воды в реке, вытекающей из озера. Попытаемся проследить динамику изменения статических запасов основных компонентов минерализации воды озера и величину их выноса рекой (динамических запасов). В качестве компонентов-индикаторов используем вещества, определяющие гидрохимический тип воды (Cl-, SO42-,Na+, Ca2+, Mg2+). Для удобства дальнейших построений пересчитаем SO42- в S0. Результаты расчета элементов гидрохимического баланса озера за 1996 - 2000 гг.о да приводятся в таблице 2. .

За усредненную концентрацию компонентов в озере принято их содержание на истоке реки (см. табл. 1, верхний створ). Поскольку регулярные режимные наблюдения не проводились, динамические запасы (годовой сток) рассчитаны по замерам меженного расхода в июле -- августе. В годовом стоке за 1996 г. учтены катастрофические паводки в январе и мае (46 млн. м3) [14, 24]. Приводимые цифры имеют оценочный характер, поэтому округлены до тысяч тонн. На диаграмме (рис. 2) показаны масштабы и тенденции изменения статических запасов в озере и выноса растворенных веществ.

Наиболе заметным геохимическим последствием извержения был массированный выброс серы в гидрохимическую систему озера. Статические запасы серы в озере мгновенно возросли в ~60 раз. Учитывая величину выноса рекой (динамические запасы) в 1996 г в озеро поступило 69,7 тыс. тонн серы (скоре всего, в виде SO2). В это же время, запасы Cl возросли в ~4, а Na в ~6 раз. Их вынос из озера увеличился соответственно в ~10 и 14 раз (6,8 и 10,9 тысяч тонн/год), а поступление в 1996 г. составило 20,4 и 32,0 тыс. тонн. В нормальном режиме до извержения привнос Cl составлял 700 и Na 800 тонн в год. В 1997 г., после резкого снижения запасов и выноса растворенных компонентов, гидрохимическая обстановка в озере временно стабилизировалась, при этом сохранялся положительный баланс привноса-выноса вещества в гидрохимическую систему озера. Статические и динамические запасы по всем основным компонентам изменяются в узких пределах. Идет постоянное, относительно равномерное поступление и вынос S, Cl, Na, Ca, и лишь в 2000 г. намечается новая тенденция снижения запасов и увеличения выноса (см. рис. 2). Увеличение транзита этих веществ через озеро объясняется значительным повышением дебита термоминеральных источников на его берегах.

Источники Академии Наук

Сейсмические и вулканические события 1996 г.ода изменили условия разгрузки гидротерм. В результате резких колебаний уровня озера и приливных волн по всему южному берегу на высоту боле 5 м смыт чехол покровных отложений и выработан новый абразионный уступ. Из-за неравномерных тектонических подвижек южный берег озера был приподнят, и на поверхности оказались подводные термальные источники. Термальная активность на берегу резко возросла: выходы источников с температурой кипения прослеживаются с перерывами на протяжении 1500 м, а с температурой выше 40o - на 2100 м. В амфитеатре вулкана Академии Наук обособились четыре группы термопроявлений (см. рис. 1) [4 ].

Группа I, собственно источники Академии Наук, претерпела очень заметные изменения. Обе нижние ванны каскада были срезаны новым абразионным уступом. В уступе обнажился уникальный четырехметровый разрез гейзеритового купола с гейзерными камерами и каналами. Одна из больших верхних ванн (юго-восточная) была заполнена вулканическим пеплом, смытым со склонов при таянии снега. Маленький гейзер "Сердитый" на ее берегу превратился в постоянный кипящий источник. Северо-западная ванна, горячий бассейн размером 20 х 15 метров с мощным пульсирующим грифоном на дне, сохранилась в почти прежнем виде, но заметно увеличила активность. Гейзер "Карлик" принял вид пульсирующего сильно кипящего пароводяного котла. Большой грифон в ванне в двухтысячном году начал работать в ярко выраженном гейзерном режиме (фонтанирование - 1 мин. 110 с; пауза - 50 с) с выбросом воды на высоту до 3 м. На склоне выше ванны появилось множество новых мелких кипящих конденсатных котелков и струек пара. Увеличилась площадь и усилился общий прогрев термального поля. На склоне на 80 м к северо-западу от ванн погибли заросли ольхового стланика и, частично, травяная растительность. Прогрев грунта во многих местах превысил 50o на глубине 20 см.

В 180 м северо-западне старых ванн в 1996 г.оду возник новый мощный очаг разгрузки парогидротерм, почти удвоивший общую тепловую мощность источников. Раньше берег здесь был задернован и наблюдались только признаки скрытой гидротермальной активности: полынья во льду вдоль берега, теплые ручейки. Приливные волны смыли покровные отложения и, после падения уровня озера, в обнажившемся береговом обрыве появились источники с температурой 72-96o , выходящие из открытых трещин в туфобрекчиях.

Самым эффектным термопроявлением нового участка стал гейзер "Академический". Этот мощный источник с типичным гейзерным режимом появился в 30 м от озера, сразу над береговым уступом на высоте 6 м над водой. Жерло гейзера находится в яме глубиной 1,5 м с разновысокими стенками, выработанной в гидрохимических брекчиях. Устье гейзерного канала - воронка, заваленная крупными скальными обломками. Во время извержения вода заполняет яму, с сильным шумом кипит, выбрасывая фонтан и переливается в озеро обильным ручьем с максимальным дебитом ~20 л/с.., Затем, оставшаяся в воронке вода быстро поглощается и начинается период накопления. В глубине воронки слышно кипение, нарастает интенсивность парения и следует новый цикл. В 1996 г. гейзер выбрасывал мутную желтоватую воду, затем система каналов промылась. Полный гейзерный цикл в июле 1996 г. длился 9 -14 минут, а фонтанирование на высоту 1,7 м - 6m 40c - 6m 50c. В 2000 г. полный цикл остался ~10 минут, а характер извержения усложнился: фонтанирование + излив - 4', накопление - 4', малое фонтанирование - 30'', накопление - 1-2''. Высота фонтанирования возросла до 4 м. Вода гейзера по составу одинакова с остальными источниками Академии Наук. Наблюдается постепенный рост минерализации за счет кремнекислоты и ионов Cl и Na (табл. 3).

Все остальные термопроявления этого участка, располагающиеся выше гейзера, являются выходами пара. Это кипящие конденсатные котлы, некоторые - мощные, интенсивно бурлящие, диаметром до 1 м, другие - едва заметные парящие проколы. Там, где кипящие конденсаты успели переработать рыхлую породу, водные котлы превращаются в грязевые. Разнообразных котлов на участке боле трех десятков, и все они почти бессточные. Кипящие котлы группируются в небольших плоских котловинах и воронках. Здесь работает обычный для таких условий природный сепаратор: на высоких отметках разгружаются пар и газ - продукты подземного вскипания гидротерм, а отсепарированная вода сливается внизу.

Для I группы источников Академии Наук характерна еще одна форма тепловой разгрузки: сильно прогретые термальные площадки, "сухие" и с рассредоточенным парением. Общая площадь термальных площадок по изотерме 50o на глубине 1 м 18000 м2, из них 7000 м2 прогреты на этой глубине до ~100o . Дебит основной группы источников Академии Наук в 1996 г. был 55 л/с, кроме этого, через парящие площадки и кипящие водные котлы выносилось ~6 кг/с пара. Вынос тепла составлял ~40 МВт [4]. В последующие годы тепловая мощность нарастала за счетсчет увеличения стока из старых ванн и повышения температуры прогретых площадок при некотором сокращении их размеров. В 2000 г. расход воды достиг 70л/с, и вынос пара превысил 6 кг/с. Тепловая мощность, соответственно, увеличилась до ~47 МВт.

Восточне основной группы источников, на южном берегу озера на 650 метров прослеживается прерывистая полоса выходов горячих источников. На всем этом участке крутой, почти без пляжа берег сложен массивными грубообломочными туфобрекчиями, сцементированными отложениями гидротерм (гидрохимические брекчии). Из трещин в туфобрекчиях на уровне озера и под водой выходят горячие и кипящие источники. Выделяются две обособленные группы источников (см. рис. 1).

Группа II. В 450 м от термопроявлений основной группы, на урезе воды озера вдоль открытой на 10-20 см трещины северо-западного направления, заполненной обломочным материалом, выходят небольшие пульсирующие источники. Отдельные кипящие проколы видны на протяжении 2 м в дне озера и на берегу. Температура источников - 97o . Северо-восточне на протяжении 30 м берег прогрет, и из мелких трещин в туфобрекчиях высачивается вода с температурой 40o и выше. Суммарный расход источников группы можно оценить в 1,5-2 л/с. Вверх по склону над источниками, на высоте ~40 м, расположена термальная площадка со слабыми выходами пара - проявление подземного вскипания гидротерм. Здесь несколько бессточных кипящих конденсатных котелков, парящий грунт с возгонами солей на площади порядка 15 м2, угнетенная растительность на площади ~80 м2.

Группа III. В 400 м северо-восточне, у берега на глубине 30-50 см видны кипящие выходы воды, а на поверхности - пузыри газа и пара. Дале берег перекрыт слоистыми плитами гидротермальных брекчий, сквозь которые пробиваются источники с температурой от 40 до 80o . Затем на берегу появляется плоский уступ и фрагменты валунно-галечного и песчаного пляжа. Из каверн в туфобрекчиях выбивают восходящие источники и струйки пара, слышно подземное кипение. Под водой видны кипящие грифоны и струи газовых пузырей. Протяженность прогретой полосы берега - 110 м. С востока прогретый участок ограничен ручьем, образовавшим конус выноса, сквозь который в виде типичного грязевого котла пробивается кипящий источник с температурой 98o . Суммарный дебит термопроявлений группы - 7-9 л/с.

Группа IV появилась после извержения в 350 м западне термальной площадки группы I. Здесь на отрезке 80 м прослеживается разгрузка термальных вод из-под вновь образованного трехметрового берегового уступа. Нисходящие источники выходят между глыб у подножья уступа и образуют ручьи, стекающие в озеро или теряющиеся в песчаном пляже. Температура воды источников от 43 до 20o . 0. Общая протяженность участка разгрузки - 110 м. Максимальные дебиты отдельных источников 0,3 л/с, расход ручьев - до 1 л/с. Суммарный дебит оценивается в 10-12 л/с.

Источники на северном берегу озера, группа V (Медвежьи).

Эти источники появились в 1996 году в 1 км восточне истока реки . Карымская. Здесь и ране наблюдались признаки разгрузки термальных вод: полынья во льду вдоль берега, прогретый пляж, пузырьки газа [17]. После извержения характер береговой линии сильно изменился. В отложениях озерной террасы волновой абразией был выработан уступ высотой до 2,5 м. После снижения уровня озера берег отошел от уступа и образовался песчано-галечный пляж шириной 40-60 м. На урезе воды пляж прогрет. В 1996 г. высачивание воды в виде струек с температурой 20-50o и линейная разгрузка и теплой воды вдоль берега прослеживались на протяжении 150 м. По приблизительным оценкам расход термальных вод тогда был близок к 5 л/с.

В дальнейшем протяженность участка разгрузки и температура источников прогрессивно нарастали. Осенью 2000 г. длина полосы разгрузки достигла ~700 м при максимальной ширине на берегу 10 - 15 м и на мелководье боле 5 м. При этом температура отдельных термопроявлений достигла 64o , а прогрев выше 50o наблюдался на участке 170 м. Суммарный дебит источников,. в пересчете на воду с температурой 64о0, составляет ~75л/с, из которых 40% приходится на воду с температурой 64-50o , 35% - 50-30o , 25% - 20-30o . Вынос тепла за 4 года увеличился с 300 до 4800 ккал/с (~20 МВт в 2000 г.).

Химический состав воды источников постепенно меняется (см. табл. 3, NN 13, 14). С 1996 года е минерализация увеличилась в 1,5 раза. Теперь воду Медвежьих источников можно отнести к минеральным слабощелочным высококремнистым гидрокарбонатно-сульфатно-хлоридным, натриевым.

Источники на кромке кратера Токарева (группа VI)

Источники расположены на северном вогнутом берегу полуострова Новогодний (см. рис. 1). Термальные воды разгружаются в озеро на полутора километровой дуге северной кромки эксплозивной воронки. Берег здесь низкий и очень пологий. Вдоль береговой линии идет неравномерный, местами интенсивный, до 0,3 л/с с погонного метра, сток термальных вод в озеро. Есть признаки прибрежного подводного стока. Хорошо сформированных сосредоточенных источников здесь нет. Общая длина полосы разгрузки в 1996 г. была 580 м, участков с температурой выше 50o - 240 м, максимальная температура - 86o . К осени 2000 г. протяженность участка разгрузки увеличилась до ~700м, а максимальная температура упала до 72o . Наиболе интенсивный сток наблюдается на высокотемпературных участках. В пересчете на воду с максимальной температурой 86o , суммарная разгрузка 1996 г. оценивается в 105 л/с, 2000 г., в пересчете на 72o ,- 110 л/с. Вынос тепла при этом сократился с ~38 МВт в 1996 г. до ~33 МВт в 2000 г.

В отличие от вод Карымского озера, гидротермы, разгружающиеся на кромке кратера Токарева, не несут следов прямого вулканического воздействия. Они почти нейтральные, содержат высокие концентрации хлорида натрия, и кремнекислоты (табл. 4 N 1 - 5). Не отмечается и выделение спонтанного газа. Скоре всего это высокотемпературные гидротермы, которые разгружаются в рыхлые отложения на некотором удалении от кромки кратера, смешиваются с приповерхностными сульфатно-кальциевыми водами выщелачивания вулканогенных пород и стекают в воронку в виде нагретого грунтового потока..

На север от кратера Токарева по полуострову протягивается цепочка боле поздних взрывных воронок. Они прорывают отложения первых взрывов. Эти воронки трассируют зону трещиноватости, по которой после землетрясения высокотемпературные гидротермы поднялись к поверхности.

Гидротермы у истока р. Карымская (группа VII)

Выходы термальных вод появились в истоке реки Карымская после прорыва перемычки, перекрывшей сток из озера во время извержения в январе 1996 г. В нижнем бьефе этой плотины уже в апреле пробивались струйки теплой воды. После прорыва перемычки и падения уровня озера, в новой пойме появились термальные источники с температурой от 20 до 94o .

Первые сочащиеся выходы термальных вод с температурой 20-25o появляются в левобережной пойме на расстоянии 20 м от озера. Они образуют узкую теплую лагуну, переходящую в ручей. В 70 м от истока ручья на его левом берегу начинается полоса разгрузки термальных вод в виде линейного высачивания и небольших нисходящих источников. Их температура, возрастает на протяжении следующих 70 м с 40o до 90o . 0. Дале гидротермы разгружаются между подножием новой озерной террасы и ручьем и на плоской поверхности поймы. Ширина прогретой, сильно парящей площадки до 8 м, длина ~50 м. Источники здесь имеют облик небольших слабо газирующих грифонов, температура воды повышается до 94o , расход горячего ручья в конце площадки достигает 68 л/с. Перед впадением в реку горячий ручей разветвляется на рукава. Источники с температурой 71-85o выходят на островках в устье и из трещин в туфах коренного склона на левом берегу. К середине лета 1996 г. в истоках реки Карымскийая сформировался очень мощный очаг разгрузки высокотемпературных гидротерм c суммарным дебитом источников боле 70 л/с. [4].

В последующие годы очаг разгрузки продолжал развиваться. Парящие площадки по берегам горячего ручья покрылись плотными корками возгонов. На дне реки, в излучине ниже основной термальной площадки появились два мощных грифона с температурой на выходе 98o и площадью бурления на поверхности боле 5 м2.

Рядом на правом берегу образовалась новая термальная площадка с множеством мелких кипящих выходов на берегу и в русле реки. В 180 м ниже, на левом берегу непосредственно из трещины в коренных отложениях, открывшейся при землетрясении, в 1997 г. начался излив воды с температурой 85o .

Общий расход источников почти удвоился за счет появления мощных грифонов на дне реки и высокотемпературных выходов на правом берегу и достиг в 2000 г. 100-110 л/с. Вынос тепла при этом возрос с 27,6 до ~45 МВт. Глубинная температура по силикатному и Na - K геотермометрам 220 - 230o.

По гидрохимическому типу воды источников нейтральные азотно-углекислые сульфатно-хлоридные натриевые высококремнистые (см. табл. 4).

Сопутствующие газы существенно отличаются от газов источников Академии Наук высоким содержанием СО2 и отсутствием О2.. В отдельных источниках наблюдаются ураганные всплески содержания метана (до 53%) и гелия до 0,02% , что не имет пока удовлетворительного объяснения.

Состав источников еще не стабилизировался и видоизменяется с тенденцией приближения к типичным высокотемпературным гидротермам. Расположение и конфигурация выходов позволяют предполагать, что данная группа источников, воронки фреатических взрывов на полуострове, очаг разгрузки гидротерм в кромке кратера Токарева связаны с единой термовыводящей зоной субмеридионального направления, активизированной при землетрясении.


Подобные документы

  • Особенности состава и строения атмосферы Земли. Эволюция земной атмосферы, процесс ее формирования на протяжении веков. Появление водной среды как начало геологической истории Земли. Содержание и происхождение примесей в атмосфере, их химический состав.

    реферат [17,4 K], добавлен 19.11.2009

  • Общие сведения о вулканах, география их расположения в России. Признаки предстоящего извержения. Действия людей после извержения вулкана. Характеристика продуктов извержения, выживание при пеплопаде. Угрозы, связанные с выпадением вулканогенных осадков.

    реферат [25,1 K], добавлен 17.04.2011

  • Основные положения по геодезическим работам в кадастре. Определение границ земельного участка. Состав и последовательность геодезических измерений при выносе границ земельного участка. Физико-географическая и экономическая характеристика местоположения.

    дипломная работа [2,4 M], добавлен 13.10.2017

  • Ранняя эволюция Земли и взаимосвязь данной проблемы с теорией происхождения жизни на планете. Этапы зарождения и развития земных оболочек. Попытки прогнозирования дальнейшего развития Земли. Строение земной коры в разные эпохи существования планеты.

    реферат [18,2 K], добавлен 23.04.2010

  • Понятие, состав и этапы формирования географической оболочки. Принципы существования биосферы, негативные последствия для человечества при ее преждевременных изменениях. Эволюция биосферного яруса в ноосферу. Концепция становления ноогенеза и техногенеза.

    курсовая работа [1,3 M], добавлен 26.06.2015

  • Основные стадии процесса добычи полезного ископаемого. Предел прочности горных пород при растяжении, методы и схемы определения, количественная оценка. Деформация твердого тела. Методы определения хрупкости горных пород. Хрупкое разрушение материала.

    реферат [303,3 K], добавлен 14.02.2014

  • Условия и механизм образования грязевых вулканов, их деятельность, продукты извержения, морфология, главные факторы образования. Закономерности размещения грязевых вулканов как критерии при прогнозировании газонефтеносности недр. Продукты извержения.

    курсовая работа [726,6 K], добавлен 12.12.2012

  • Исследование особенностей осадочных и метафорических горных пород. Характеристика роли газов в образовании магмы. Изучение химического и минералогического состава магматических горных пород. Описания основных видов и текстур магматических горных пород.

    лекция [15,3 K], добавлен 13.10.2013

  • Эволюция климатической системы на протяжении всей истории развития планеты Земля. Основные компоненты климатической системы: атмосферы, океана и криосферы, воды в замерзшем состоянии, поверхности суши и биосферы. Основные черты климата периода голоцена.

    реферат [921,5 K], добавлен 10.10.2009

  • Обзор строения вулканов северной Камчатки, их основных частей и составляющих. Изучение химического состава продуктов извержения, установление очагов наибольшей вулканической активности. Анализ современных методов исследования вулканической деятельности.

    курсовая работа [9,1 M], добавлен 17.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.