Физико-механические свойства мёрзлых грунтов

Мёрзлые грунты и породы, классификация, площадь распространения, физические свойства и механические характеристики. Влияние температуры и основных факторов на проявление реологических свойств мёрзлых грунтов, деформационные характеристики оттаивающих.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 27.08.2010
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

13

Физико-механические свойства мёрзлых грунтов

Введение

Площадь распространения многолетнемёрзлых пород составляет до 25% всей суши земного шара и более 65% площади Российской Федерации. Сплошное распространение многолетнемёрзлых пород наблюдается в Антарктиде и на прилегающих к ней островах, в Гренландии, а также на высокогорных участках в Южной Америке и в Африке. На территории России многолетнемёрзлые породы распространены на побережье европейской части и занимают значительную территорию на Северо-Востоке страны. Австралия является единственным континентом, где не наблюдается распространения многолетнемёрзлых толщ.

Распространение мёрзлых толщ подчинено широтной и высотной зональности. По среднегодовым температурам, характеру распространения и мощности на многлетнемёрзлых пород выделяются пять зон. Географическая граница распространения мёрзлых пород на территории России указана на карте (рис. 1).

Непрерывность мёрзлых толщ по простиранию наблюдается только в самых северных районах. Но и там под крупными водоёмами и в местах усиленной циркуляции подземных вод можно встретить участки со сквозным протаиванием. Такие участки называются «таликами», при этом различают «сквозные талики» и «несквозные», или «ложные» талики. Количество и площадь таликов возрастают в направлении от северных областей распространения мёрзлых пород к их «южной границе», или, точнее, в направлении, перпендикулярном геоизотермам в этой области.

Географическая южная граница распространения многолетнемёрзлых пород представляет собой линию, оконтуривающию с юга область распространения мёрзлых толщ, за исключением отдельных высокогорных участков мёрзлых пород в субтропических и тропических зонах. Кратковременное промерзание почвы связано с ночными заморозками; сезонное промерзание пород вызывается наличием среднесуточных отрицательных температур почвы зимой в связи с сезонными колебаниями климата, а причиной существования многолетнемёрзлых пород является продолжительное существование отрицательных среднегодовых температур пород вследствие многолетних колебаний теплообмена на поверхности Земли, периодически создающих отрицательные температуры в верхнем слое литосферы.

По глубине мёрзлые породы могут распространяться неоднородно (рис.2).

Ю С

2

3

4

5

Рис. 2 Схема вертикального разреза мёрзлых толщ при движении с юга на север:

1 - слой сезонного промерзания (протаивания); 2 - современные сливающиеся; 3-современные несливающиеся толщи; 4 - древние сливающиеся и несливающиеся толщи.

В частности, кратковременномёрзлые и сезонномёрзлые толщи представляют собой обычно непрерывные по вертикали слои, верхняя поверхность которых совпадает с дневной поверхностью, а нижняя поверхность находится на некоторой небольшой (от сантиметров до единиц метров) глубине.

Залегание многолетнемёрзлых толщ более сложно. Их верхняя поверхность залегает на различных глубинах ниже дневной поверхности вследствие процессов сезонного или многолетнего протаивания. Многолетнемёрзлые толщи называются «сливающимися», если их верхняя поверхность совпадает с нижней поверхностью слоя протаивания; если же их верхняя поверхность находиться глубже подошвы слоя сезонного протаивания или промерзания, они называются «несливающимися».

Наблюдаются также залегания двух и более слоёв многолетнемёрзлых пород друг над другом, разделённых талыми прослоями их называют «многослойными или слоистыми». Такие глубоко залегающие несливающиеся древние мёрзлые толщи могут встречаться значительно южнее южной границы распространения современных или сравнительно молодых мёрзлых толщ.

Зона сплошной мерзлоты характеризуется мощностями мёрзлых толщ от 500 и более до 300 м и самыми низкими температурами от -10С и ниже. Островная мерзлота характеризуется малыми мощностями вечномёрзлых пород от нескольких десятков метров до нескольких метров и температурами, близкими к 0С. распределение температур многолетнемёрзлых грунтов по глубине показано на рис.3.

10 п

- С 0 +С

hот

h0 2

h, м

Рис.3 Распределение температуры грунтов () в криолитозоне по глубине(h).

1-поверхность грунта;2-огибающие температуры; п- температура на поверхности;0-температура на уровне нулевых годовых амплитуд (среднегодовая температура грунта); hот -глубина сезонного оттаивания; h0 -глубина уровня нулевых амплитуд.

По характеру промерзания многолетнемёрзлые породы разделяются на два типа:

1) сингенетически промёрзшие породы, т.е. накапливающиеся и промерзающие в геологическом смысле одновременно, и

2) эпигенетические промёрзшие породы, т.е. те, которые перешли в многолетнемёрзлое состояние после того, как процесс их накопления завершился и они претерпели диагенетические изменения, превратясь из осадка в породу.

В криолитозоне наблюдается ряд геокриологических процессов.

Термокарст - представляет собой образование просадочных и провальных форм рельефа вследствие вытаивания подземных льдов или оттаивания мёрзлого грунта. Механизм процесса заключается в уплотнении оттаявших сильнольдистых пород или пород, содержащих мономинеральные залежи льда. Причиной возникновения термокарста является такое изменение теплообмена на поверхности почвы ,при котором глубина сезонного оттаивания начинает превышать глубину залегания подземного люда или сильнольдистого многолетнемёрзлого грунта ,либо происходит смена знака среднегодовой температуры и начинается оттаивание мёрзлых толщ.При развитии термокарста по повторно-жильным льдам образуются положителные формы рельефа: байджерахи и бугристые полигоны.

Морозобойное растрескивание. Механизм процесса заключается в том, что при охлаждении в соответствии с распределением температур по глубине в мёрзлых породах возникают сжимающие и растягивающие напряжения, накопление которых приводит к разрыву пород и образованию трещин.

Морозное пучение дисперсных пород это поднятие поверхности земли, обусловленное увеличением объёма замёрзшей влаги и льдообразованием(вследствие миграции воды) при промерзании. В услових развития отложений, содержащих как мелкозём,так и крупнообломочные грунты, происходит выпучивание крупнообломочного материала и образование на поверхности каменных полей (курумов), или сортировка грунтов с образованием каменных полигонов или полос на склонах.

Для прогноза возможности возникновения геокриологических процессов, периода их протекания, а также для оценки мёрзлых грунтов, как оснований сооружений необходимо знание физических, механических и тепло-массообменных характеристик, основные из которых рассматриваются в настоящей работе.

Рис.1 Карта распространения многолетнёмёрзлых пород. (К.А. Кондратьева,1976)

1-Зона редкоостровного и массивно-островного распространения ММП со среднегодовыми температурами(tср) от +3 до -1С и мощностью мёрзлой толщи (М) от 0 до 100 м;2-5 зона сплошного распространения ММП: 2- tср от -1 до -3, М от 50 до 300 м; 3- tср от -5 до -9 Ю, М от 200 до 600 м; 5- tср от ниже -9С, М от 400 до 900 м и более ;6- граница зон ММП;7 южная граница криолитозоны

Глава 1. Основные физические характеристики мёрзлых грунтов

1.1 Вводные понятия

Термин грунт вошёл в терминологию грунтоведческих наук в 18 веке. В современном определении (Сергеев, Голодовская и др.1973) грунт-это любые горные породы, почвы и техногенные образования, обладающие определёнными генетическими признаками и рассматриваемые как многокомпонентные динамичные системы, находящиеся под воздействием инженерной деятельности человека.

Порода - естественный минеральный агрегат определённого состава и строения, сформировавшийся в результате геологических процессов, в соответствии с которыми их подразделяют на осадочные, магматические и метаморфические.

Мёрзлыми грунтами, породами и почвами называют грунты, горные породы, почвы и дисперсные материалы, имеющие отрицательную или нулевую температуру, в которых хотя бы часть воды замёрзла, т.е. превратилась в лёд, цементируя минеральные частицы. Скальные грунты, имеющие отрицательную температуру и не содержащие в своём составе воды и льда, называются морозными. Крупнообломочные и песчаные грунты, имеющие отрицательную температуру, но не сцементированные льдом и не обладающие силами сцепления называются сыпучемёрзлыми («сухая мерзлота»). Грунты и породы, в которых, несмотря на отрицательную температуру, лёд не кристаллизовался, называются охлаждёнными породами и грунтами.

Классификация мёрзлых грунтов по гранулометрическому составу определяется, как и для немёрзлых грунтов.

Выделяют классификации по Охотину, Сергееву. Кроме того, мёрзлые грунты дополнительно классифицируют по ГОСТ 25100-95, также по: времени нахождения в мёрзлом состоянии (табл.1.1); по льдистости (табл.1.2); по засолённости (табл.1.3); по заторфованности (табл.1.4)

Таблица 1.1

Классификация грунтов по времени нахождения в мёрзлом состоянии по данным различных источников.

Наименования мёрзлых грунтов

Время существования в мёрзлом состоянии

Источники

Многолетнемёрзлые

Сезонномёрзлые

Кратковременно мёрзлые

Годы, сотни, тысячи лет Месяцы

Сутки

В.А Кудрявцев

Б.А, Достовалов, 1978

Э.Д.Ершов,1990

Вечномёрзлые Многолетнемёрзлые Сезонномёрзлые Кратковременно мёрзлые

Века, тысячелетия

От нескольких лет до нескольких десятилетий

От 1 до 2 сезонов

От нескольких часов до нескольких суток

Н.А.Цытович,1973

Вечномёрзлые

Перелетки

Сезонномёрзлые

Три и более года

От 1 года до трёх лет

1-й холодный сезон года

Нормативные документы по строительству и инженерным изысканиям

Таблица 1.2

Классификация мёрзлых грунтов по льдистости за счёт видимых ледяных включений

Разновидность грунтов

Льдистость за счёт видимых ледяных включений i,д.е.

Скальные и полускальные грунты

Дисперсные грунты

Слабольдистый Льдистый Сильнольдистый

Очень сильнольдистый

<0.01

0.01-0.05

>0.05

-

<0.20

0.20-0.40

0.40-0.60

0.60-0.90

Таблица 1.3

Классификация мёрзлых грунтов по степени засолённости Dsol% (для морского типа засоления)

Разновидность

Суммарное содержание легкорастворимых солей,% массы сухого грунта

Песок

Глинистый грунт

Слабозасолённый Среднезасолённый Сильнозасолённый

0.05-0.10

0.10-0.20

>0.20

0.20-0.50

0.50-1.00

>1.00

Таблица 1.4
Классификация грунтов по содержанию органического вещества

Название

Содержание органического вещества (%) в

глинистых

песках

Сильнозаторфованные

50-40

-

Среднезаторфованные

40-25

-

Слабозаторфованные

25-10

-

С примесью орг.веществ

10-3

10-3

Мёрзлые грунты в зависимости от их температуры, величины и времени внешнего воздействия могут вести себя как твёрдые или пластичные. Чем меньше и чем длительнее воздействие, тем в большей мере грунт проявляет пластичные свойства. Образование льда при промерзании грунта приводит к повышению прочности и сопротивления деформируемости, что объясняется возникновением связей между минеральными частицами за счёт льда. С понижением дисперсности, засолённости и температуры прочность структурных связей возрастает. При длительном времени действия нагрузки роль льдоцементационного сцепления снижается, что обусловлено проявлением реологических свойств льда. Разработана классификация мёрзлых грунтов по температурно-прочностным свойствам. (Табл.1.5)

Таблица 1.5

Классификация по температурно-прочностным свойствам

Вид грунтов

Разновидность грунтов

Твёрдомёрзлый

p0.1 кПа-1

при t<ThC

Пластичномёрзлый p>0.1 кПа-1

при t, C

Сыпучемёрзлый при t<0С

Все виды скальных и полускальных грунтов

Th =0

Крупнообломочный грунт

Th =0

Th <t< Tbf

при Sr<0.8

Sr0.15

Песок гравелистый крупный и средней крупности

Th = -0.1

Глинистый грунт

Супесь

Th =-0.6

Th <t< Tbf

Суглинок

Th =-1.0

Глина

Th =-1.5

Заторфованный грунт

Th =-0.7(Jr+Th)

Th <t< Tbf

Торф

-

t<0

Th-температурная граница твёрдомёрзлого сосотояния минеральных грунтов;

Tbf- то же для заторфованных грунтов.

Характер изменения механических свойств грунтов различного состава зависит от вида напряжённо-деформированного состояния и времени действия нагрузки. При инженерных расчётах необходимо знать как прочностные характеристики, так и деформационные: модули общей и упругой деформации, коэффициенты вязкости и сжимаемости, коэффициент Пуассона, характеристики кривых течения и ползучести.

1.2 Грунты как многокомпонентная система

Мёрзлые и вечномёрзлые грунты являются природными многофазными образованиями, состоящими из различных по своим свойствам компонентов, находящихся в различном фазовом состоянии, поэтому допущение об их однокомпонентности имеет смысл лишь в случае отсутствия в данном объёме грунта перераспределения во времени отдельных фаз грунта.

Таким образом, механика мёрзлых грунтов есть механика четырёхфазной системы, содержащей: твёрдые минеральные частицы; идеально-пластичные включения льда (лёд-цемент и лёд прослойков); воду в связанном и жидком состояниях; газовые компоненты: пары и газы.

Все перечисленные компоненты находятся в физико-химическом и механическом взаимодействии, интенсивность и формы которого зависят от температуры.

Твёрдые минеральные частицы оказывают существенное влияние на свойства мерзлых грунтов характеристики, которых зависят от размеров и формы минеральных частиц, физико-химической природы их поверхности, определяемой их минеральным составом и составом поглощённых катионов.

Существенно влияет на свойства грунтов форма частиц. Например, при плоской форме зёрен давление в точках контакта частиц практически равно внешнему давлению от нагрузки, тогда как при остроугольной форме - может достигать огромной величины. И интенсивность протекания физико-химических поверхностных явлений зависит от удельной поверхности частиц грунта, которая может достигать в глинистых грунтах 80 и более м2/г.

Лёд, являясь обязательной компонентой мёрзлых грунтов в противоположность твёрдым минеральным частицам представляет собой мономинеральную криогидратную породу с весьма своеобразными физико-механическими свойствами. Кроме льда в грунтах могут содержаться и другие криогидратные минералы, например, углекислый натрий Na2Co3,хлористый магний MgCl2. Льдом называют все твёрдые модификации воды, независимо от их кристаллического или аморфного состояния. Различают несколько модификаций льда, образующихся при отрицательных температурах и соответствующих давлениях: три кристаллических модификации: 1,2,3,аморфную модификацию, образующуюся при «глубоком» замораживании и кристаллическую воду, существующую при высоких давлениях и положительных температурах. В мёрзлых грунтах содержится лёд 1-й модификации (существующий при температурах до -100С и при обычных давлениях), он является важнейшей компонентой мёрзлых грунтов. Он имеет высокую анизотропию свойств, например, механические свойства его кристаллов в направлении перпендикулярном главной оптической оси подчиняются законам реологической механики, в параллельном же направлении - напротив, после упругих деформаций наступает хрупкое разрушение. Кроме того, электро- молекулярные связи льда значительно превосходят электро- молекулярные связи свободной воды, что и обусловливает адсорбцию свободной воды поверхностью льда.

Льдонасыщенность и характер распределения льда в разрезе многолетнемёрзлых пород во многом определяются условиями их промерзания. Лёд, распределённый в мёрзлой породе в виде различных по величине, в целом относительно небольших, но видимых глазом линз, пропластков, слоёв, зёрен и включений другой формы, а также заполняющий поры в породе (лёд-цемент), определяет криогенную текстуру.

Классификация генетических типов подземных льдов приведена в табл.1.6.

Таблица 1.6

Генетические типы подземных льдов.

Типы

Подтипы

Конституционные льды

Пещерно-жильные льды

Жильные льды

Пещерные льды

Погребённые льды

Конжеляционные льды

Осадочно-метаморфические

В зависимости от заполнения пор льдом различают (Шумский,1957) следующие виды льда цемента: контактный, находящийся в местах контакта частиц скелета; плёночный, обволакивающий поверхность частиц, оставляя часть пор незаполненными; поровый, заполняющий поры целиком; и базальный, образующий основную массу породы и разобщающий частицы минерального скелета.

Вода в жидкой фазе в мёрзлых грунтах, по крайней мере до температуры -70С содержится в том или ином количестве. Вода бывает в двух состояниях: прочносвязанная поверхностью минеральных частиц, когда вследствие огромных электро- молекулярных сил, вода не в состоянии перейти в гексагональную кристаллическую решётку льда, даже при очень низких температурах.

Рыхлосвязанная вода переменного фазового состава, замерзающая при температурах ниже 0С. Понижение температуры замерзания воды происходит вследствие того, что между слоем прочносвязанной и более «тёплой воды» существует энергетическая связь, что обусловливает более низкую температуру её кристаллизации.

Газообразные компоненты в мёрзлых грунтах могут играть в отдельных случаях существенную роль, так как они перемещаются от мест с большей упругостью к местам с меньшей упругостью, и в водонасыщенных грунтах могут явиться причиной перераспределения влажности. Кроме того, газообразные компоненты претерпевают значительное сокращение в процессе понижения температуры, образуя вакуум обуславливающий миграцию влаги.

1.3 Характеристики физических свойств

При оценке многолетнемёрзлых пород используются те же характеристики физико-механических свойств, что и для талых пород, а также, необходимы дополнительные характеристики, которые выражают специфику состава мёрзлых пород и особенностей их поведения под нагрузками. Общими характеристиками талых и мёрзлых грунтов являются:

Плотность - масса грунта в единице объёма

= m/V; г/см3]

m-масса образца ненарушенной структуры;

V -объём грунта;

2. Плотность частиц грунта в единице объёма при плотной упаковке:

s г/см3], определяемая с помощью пикнометра.

3. Плотность скелета грунта

d г/см3]

определяемая, как масса частиц грунта в объёме ненарушенной структуры;

4. Пористость грунта, характеризуемая коэффициентом пористости:

=( s -d )/ d;

5. Суммарная относительная влажность:

Отношение массы воды к массе сухого грунта в единице объёма

Wс=mводы /m сух.гр.

6. Влажность на пределе раскатывания и на пределе текучести соответсвенно:

Wрас% , Wтек%

7. Число пластичности:

Jчисло пласт = Wтек% -Wрас%:

8. Степень водонасыщения:

Sr=Wс/Wп

Где Wп - полная влагоёмкость, равная влажности грунта, при полном заполнении пор водой.

К дополнителным характеристикам относятся:

1.Влажность за счёт незамёрзшей воды Wн (в долях единицы);

2.Льдистость мёрзлого грунта i, равная отношению массы льда к массе всей воды, содержащийся в мёрзлом грунте:

i = (Wc-Wн)/Wc;

3. Температура начала замерзания грунтовой влаги bf;

4. Засолённость грунта (Dsol) ,либо концентрация порового раствораCр:

Dsol=mсоли/mсух.грунта;

Ср=Dsol%/(Dsol% +Wc%);

5. Заторфованность:

характеристика, равна отношению массы органического вещества к массе грунта в сухой навеске.

Im = mторфа/mсух.грунта

6. Относителная влажность Wс в мёрзлых грунтах рассматривается как сумма влажности за счёт включений льда (Wв), влажность минеральных прослоек грунта (Wг), равная сумме влажности за счёт льда цементирующего минеральные частицы (Wц) и влажности за счёт незамёрзшей воды (Wн).

Wc=Wв+Wг=Wв+(Wц+Wн);

Важными характеристиками мёрзлых грунтов являются текстура и структура. В зависимости от интенсивности промораживания, наличия подтока воды и задержек в промораживании формируется текстура мёрзлых грунтов. Основными видами стуктуры грунтов являются слитная (массивная), слоистая и ячеистая (сетчатая). Также выделяют другие дополнительные виды структур.

1.4 Теплофизические характеристики

Теплоперенос в горных породах в общем случае осуществляется тремя механизмами: излучением, конвекцией и кондуктивностью (теплопроводностью).

Теплофизические характеристики оценивают количественную долю тепла:

коэффициент теплопроводности - , (Вт/м*К) - выражает количество тепла проходящее в единицу времени через единицу площади и единичную толщину слоя грунта.

удельная теплоёмкость - С, (Дж /кг*К) - выражает количество тепла, необходимое для нагревания или охлаждения единицы массы грунта на один градус.

объёмная теплоёмкость Соб (Дж/м3*К) выражает количество тепла, необходимое для нагревания или охлаждения единицы объёма грунта на один градус.

коэффициент температуропроводности а (м2/с)- выражает способность грунта изменят свою температуру, под воздействием изменившегося градиента температуры.

Между этими характеристиками существует зависимость:

=Соб а;

Доля тепла переносимого в породе излучением, обычно, не превышает 1% от общего теплопотока поэтому радиационным теплопереносом пренебрегают, а доля конвективной составляющей учитывается лишь при влагопереносе под действием гидростатических сил.

Значения всех теплофизических характеристик зависят от вида грунта, его составных компонентов, как минерального, так и гранулометрического состава и основных физических свойств: плотности и влажности; а также состояния грунта: талого или мёрзлого. Обычно коэффициент теплопроводности мёрзлых грунтов в 1.1-1.5 раза больше коэффициента теплопроводности грунтов в талом состоянии, что связано с большей теплопроводностью льда, по сравнению с незамёрзшей водой. Объёмная теплоёмкость грунтов при промерзании стремится к бесконечно большому значению, в связи с затратами тепла на фазовые переходы влаги.

1.5 Массообменные характеристики

Перемещение влаги и пара в дисперсных породах осуществляется по причине неравновесного состояния системы грунт-вода, вызываемого изменением в пространстве и во времени термодинамических параметров. В случае нарушения равновесных условий в грунтовой системе влага может находиться как в неподвижном состоянии, так и испытывать перемещение в виде молярного переноса пара, объёмно протекать по капиллярам, подчиняясь капиллярному давлению, кроме того, вода и пар могут взаимодействовать порождая комбинированный перенос влаги.

Влагоперенос зависит от гранулометрического состава породы. С ростом дисперсности породы возрастает количество незамёрзшей воды, но уменьшается поток её миграции.

Влагоперенос обусловлен градиентом температуры в грунте.

В равновесном состоянии каждому значению отрицательной температуры образца мёрзлой породы соответствует строго определённое содержание незамёрзшей воды, поэтому возникновение и поддержание в мёрзлой породе градиента температуры приводят к возникновению градиента потенциала влаги по жидкой и парообразной фазам.

Характеристикой влагопереноса является коэффициент потенциалопроводности

a=/(C ск) м2

-коэффициент влагопроводности кг/мчград;

C-удельная влагоёмкость грунта.

Знание коэффициента потенциалпроводности позволяет расчитывать миграцию влаги при промерзании.

1.6 Механические характеристики

Механические характеристики мёрзлых грунтов изучаются для назначения расчётных характеристик прочности и деформируемости, получения зависимостей, описывающих поведение грунтов под нагрузками, при изменении температуры, воздействии криогенных процессов и др.

Мёрзлые грунты по агрегатному состоянию относят к твёрдым телам, однако, наличие в них незамёрзшей воды и льда обуславливает проявление реологических свойств. Поэтому в механике мёрзлых грунтов используются представления, развивающиеся на основе теории упругости, пластичности и вязкости сплошных сред, исходя из которых, создаётся подход к выбору характеристик прочностных и деформационных свойств и методов их определения.

К основным характеристикам прочностных свойств мёрзлых грунтов относятся: сопротивление сдвигу грунта по грунту и по поверхностям смерзания; сопротивление сжатию, растяжению; сцепление и угол внутреннего трения, эквивалентное сцепление.

Различают простое и сложное напряжённые состояния в мёрзлом грунте.

Простое напряжённое состояние соответствует проявлению одного из видов напряжений: сжатия, растяжения, сдвига. Напряжённое состояние в массиве грунта, соответствует сложному напряжённому состоянию, когда проявляются одновременно при различном сочетании все виды простых напряжённых состояний.

Определение прочностных и деформационных характеристик выполняются как в лабораторных, так и в полевых условиях, при простом и сложном напряжённом состояниях. Основными видами испытаний являются:

Одноосное сжатие; разрыв; сдвиг; кручение; компрессия; осесимметричное трёхосное сжатие вертикальной и радиальной нагрузкой; осесимметричное трёхосное сжатие с кручением; осесимметричное сжатие полого цилиндра с кручением; трёхосное сжатие с независимым заданием всех трёх главных направлений; динамометрическое испытание в релаксационно-ползучем режиме.

Испытания, с помощью которых оцениваются деформационные свойства: вдавливание сферического штампа, сдвиг на срезном приборе; сдвиг на клиновидном приборе; сдвиг по поверхности смерзания; сдвиг мёрзлого грунта по поверхности модели сваи; раздавливание образца.

Глава 2. Реологические аспекты механики мёрзлых грунтов

По классическим теориям пластичности и упругости напряжённо-деформированное состояние тела вполне определяется величиной нагрузки и способом её приложения; если эта нагрузка не меняется, то остаются неизменными и возникшие в теле напряжения и деформации. В реальных телах напряжённо-деформированное состояние меняется со временем и зависит от истории предшествующего загружения. Соответственно, соотношение между напряжением и деформацией не является однозначным, а изменяется, даже если одна из этих величин - напряжение или деформация - остаётся постоянной, другая будет изменяться во времени. Изучением закономерностей напряжённо-деформированного состояния занимается наука, называемая реологией.

Исследованиями Н.А. Цытовича и его сотрудников в 30-х годах, а несколько позже М.Н. Гольдштейном было обнаружено наличие у мёрзлых грунтов свойства текучести. Затем, в 50-х годах 20-го века С.С Вяловым был выполнен большой объём экспериментов в Игарской подземной лаборатории по определению деформируемости и прочности мёрзлых грунтов. Их результаты позволили выявить основные закономерности поведения мёрзлых грунтов под нагрузками: проявление ползучести, снижение прочности во времени, релаксацию напряжений. Данные исследований обобщены в монографии (Вялов,1959). В дальнейшем, под его руководством создано реологическое направление в механике мёрзлых грунтов, которое завоевало мировое признание и получило развитие в трудах отечественных и зарубежных учёных: Ю.К. Зарецкого, С.Э. Городецкого, Н.К. Пекарской, Р.В. Максимяк, Ю.С. Миренбурга, Е.П. Шушериной, A.M. Fish, O.B. Anderslaud, D.M. Anderson, J.F. Nixon, R. Pusch, F.M. Sayles, B. Ladanyi, E. Penner и др.

На основании полученных закономерностей проявления реологических свойств мёрзлых грунтов разработаны решения, позволяющие по данным испытаний прогнозировать длительную прочность и деформации мёрзлых грунтов на основе теорий ползучести. Показана также применимость для этих целей методов временных аналогий. Их суть основана на интенсификации процесса разрушения, влияющими на него факторами (повышением температуры, увеличением нагрузки, льдистости, засолённости, заторфованности и т.д.) и на идентичности влияния времени и перечисленных факторов на прочность и ползучесть, что позволяет осуществлять прогнозы деформации и прочности на длительное время. (Роман, 1987)

В целом реология мёрзлых грунтов рассматривает проявление ползучести, релаксации напряжений и снижения прочности тел при длительном воздействии нагрузок.

Ползучесть- процесс деформирования, развивающийся во времени, даже при постоянной нагрузке. Обычно в процессе испытаний мёрзлых грунтов при всех напряжённых состояниях определяют семейство кривых ползучести. В зависимости от напряжения проявляются затухающая, либо незатухающая ползучесть. Выделяют три стадии ползучести, показанные на (рис.2.1)При инженерных изысканиях важно учитывать, что третья стадия ползучести не допускается при использовании грунтов в качестве оснований.

2

1

t

I IIIII

Рис.2.1 Зависимость деформации () от времени (t) с проявлением затухающей ползучести при напряжёнии(1)и незатухающей ползучести при напряжении(2)

Стадии незатухающей ползучести: I-неустановившаяся ползучесть; II-ползучесть с постоянной скоростью; III-прогрессирующее течение.

Виды кривых ползучести зависят от величины нагрузки. Для нагрузок: 1 >2 >3 >… >n кривые ползучести образуют семейство кривых для определённого вида грунта (рис.2.2). Представленный на рис. 2.2 а характер развития деформаций при разных нагрузках во времени является идентичным для всех способов нагружения: одноосного сжатия; растяжения; сдвига грунта по грунту или по поверхности смерзания; при сложном напряжённом состоянии. По результатам испытаний на ползучесть определяется кривая длительной прочности (рис. 2.2-б), с помощью которой прогнозируется время до разрушения при данной нагрузке, что очень важно для решения инженерных задач, касающихся вопросов длительной прочности и длительной деформации. Для получения кривой длительной прочности строится график зависимости напряжений от соответствующего времени перехода ползучести в третью стадию.

Способы прогноза длительной деформации мёрзлых грунтов разработаны на основе технических теорий ползучести; теории старения; упрочнения; течения; наследственной ползучести. Общий закон развития деформаций, по которому производится прогноз, имеет вид (Вялов,1978):

t=(/A(t, )1/m (2.1)

где t - деформация за период времени t при напряжении; , A(t, ) и m -опытные параметры; - температура грунта.

На основании уравнения (2.1) длительная прочность грунта за период времени t

определится:

t= A (t, )t m, (2.2)

Релаксация. При нагружении постоянной силой F возникают деформации, развивающиеся во времени. Для прекращения развития этих деформаций необходимо уменьшать силу по некоторому закону F(t).Уменьшение во времени напряжения, необходимого для поддержания постоянной деформации называется релаксацией (расслаблением) напряжений. С позиции статистической физики релаксацию можно рассматривать как процесс установления статистического равновесия в физической системе, когда микроскопические величины, характеризующие состояние системы (напряжения), ассимптотически приближаются к своим равновесным значениям. Характеристикой явления расслабления напряжений является время релаксации, равное времени за которое напряжение уменьшается в e раз, которое характеризует продолжительность «осёдлой жизни» молекул, т. е. определяет подвижность материала. Например, горные породы, формирующие земную кору, обладают временем релаксации измерямым тысячелетиями, у стекла эта характеристика порядка столетий, у воздуха10-10, у воды10-11, у льда сотни секунд. Таким образом, в пределах 100-1000 секунд лёд ведёт себя как упругое тело (например, хрупко разрушается при ударе в условия большой нагрузки). При уменьшении нагрузки лёд течёт как вязкая жидкость. Аналогичное поведение - хрупкое разрушение при быстром приложении нагрузки и вязкое течение при длительном воздействии нагрузки-отчётливо проявляется у мёрзлых грунтов. (Вялов,1978)

1 2 3 4

5

i

t1 t2 t3 t4 t5 t

0

t

t1 t2 t3 t4 t5 t

Рис.2.2 Семейство кривых ползучести (а); кривая длительной прочности (б).

0- условно-мгновенная прочность;t-длительная прочность;-предельно-длительная прочность.

Глава 3. Влияние температуры и основных физических характеристик на проявление реологических свойств мёрзлых грунтов

3.1 Влияние минерального и гранулометрического состава

При прочих равных условиях длительные деформации мёрзлых пород уменьшаются, а прочность увеличивается в ряду: лёд > глина > суглинок > супесь > песок. Увеличение деформируемости грунтов с ростом дисперсности вызвано, прежде всего, увеличением содержания незамёрзшей воды, а большие деформации льда связаны с особенностями его структурной решётки, которые придают свойства идеального реологического тела.

Деформируемость и прочность крупнообломочных мёрзлых грунтов обусловлена мелкодисперсными минеральными заполнителями, либо ледяными включениями. При этом необходимо учитывать вид напряжённого состояния. Если при плотной упаковке минеральных частиц сопротивление сжатию мёрзлых крупнообломочных грунтов может превышать прочность мелкодисперсных грунтов за счёт жёсткости скелета, то сопротивление растяжению, либо сдвигу может быть весьма незначительным в связи с низкими цементационными связями между отдельными обломками.

3.2 Влияние льдистости

В целом, мёрзлые грунты обладают более высокой прочностью (в несколько раз, порой даже в несколько десятков) по сравнению с талыми. Это обусловлено цементацией льдом частиц грунта, превращение его по агрегатному состоянию в твёрдое тело.

В зависимости от интенсивности промораживания (величины температурного градиента) и граничных условий (одностороннего промораживания или промораживания с нескольких сторон), наличия подтока воды и задержек в продвижении границы промораживания, в процессе промерзания грунтов формируется своеобразная криогенная текстура, существенно определяющая и свойства (рис 3.1)

Рис 3.1 Основные виды криогенной текстуры в мёрзлых грунтах. (Цытович,1973)

А - слитная(массивная); б - слоистая; в - ячеистая

Увлажнение дисперсных грунтов до влажности соответствующей примерно 0.8-0.9 от полной влагоёмкости увеличивает их прочность при промерзании. Это обусловлено возрастанием количества цементационных связей льда с частицами грунта, вместе с тем формируется монолитная криогенная текстура. Однако, показано, что прочность льдистых грунтов зависит не только от общей льдистости, но и от количества и толщины ледяных шлиров, а также влажности грунтовых прослоев, а поскольку дальнейшее увлажнение приводит к распучиванию, образованию ледяных прослоек и включений, то увеличение льдистости за счёт включений приводит к уменьшению прочности. В свою очередь, расположение прослоев льда имеет влияние на предельно длительную прочность. Противоречивые результаты получались у разных авторов при исследовании зависимости площади контакта минеральных частиц грунта и льда: в одних случаях большая площадь, достигаемая большим количеством ледяных прослоев, обусловливала большую прочность, в сравнении с образцами грунта, имеющими меньшее количество ледяных прослоев большей величины, при одинаковой льдистости. Тем не менее, незатухающая ползучесть льда вне зависимости от расположения шлиров и их размеров приводит к длительным деформациям, протекающим в процессе всего срока эксплуатации мёрзлого грунта.

Однако, характер влияния влажности-льдистости на прочность грунта тесно связан с дисперсностью грунта, его минеральным составом, температурой.

3.3 Влияние засолённости

Присутствие легкорастворимых солей в грунтовой влаге существенно влияет на механические свойства грунтов. В засолённом грунте наблюдаются снижение прочности и увеличение деформируемости (Ю.Я. Велли 1990, В.И. Аксёнов, 1978 и др.). Это обусловлено, в основном, изменением состава порового раствора, что обусловливает понижение температуры его замерзания и увеличение количества незамёрзшей воды. Экспериментально установлено влияние на механические свойства мёрзлых засолённых грунтов не только количества солей, но и их химического состава. (Роман, 1994; Роман, Свинтицкая, 1996).

Засоление мёрзлых пород обусловлено их генезисом, специфической геохимической обстановкой, различной для эпигенетического и сингенетического способов промерзания пород. Однако, для всех типов пород будут присущи все типы элементарных реакций: растворение, гидратация, гидролиз, замещение , окисление -восстановление. Различают морской, континентальный и техногенный типы засоления.

Морской тип засоления наблюдается в мёрзлых грунтах самых северных территорий - вдоль арктического побережья России и на островах. Для морского типа засоления характерно наличие хлоридов, в частности NaCl. Наименьшее значение Dsal =0.2-0.5% отмечается в песках; в супесях, суглинках и глинах засолённость колеблется от 0.4 до 2.1 %.

Континентальный тип засоления наблюдается в областях, где сочетание высоких летних температур воздуха с отрицательным балансом влаги способствовало соленакоплению в почвах и подстилающих грунтах. В солевом составе грунтов континентального типа засоления присутствуют ионы: SO42- Cl-, HCO3- , Na2+, Ca2+, Mg2+.

При промерзании рыхлых отложений в первую очередь происходит образование твёрдой фазы воды - льда. Морские воды с минерализацией более 30 г/л кристаллизуются при температурах, близких к -1.5….-2С, а рассолы могут не замерзать при температурах -20С и ниже., образуя криопэги. Процесс замерзания воды сопровождается сильной дифференциацией солей между твёрдой и жидкой фазами воды. Часть солей, растворённых в воде, оказывается вовлечённой в лёд, часть менее растворимых в воде солей выпадают в осадок, а часть отжимается в нижележащие слои воды, что приводит к увеличению минерализации этих вод.

Постепенное промерзание приводит к образованию слабоминерализованных льдов, а ниже границы промерзания - высококонцентрированных вод порядка 200 г/л и более, что обеспечивает существование горизонтов воды при отрицательной температуре. Процесс засоления породы характеризуется возникновением особенностей физико-механических свойств.

Следует отметить, что степень влияния растворённых солей обусловлена не характеристикой засолённости Dsal, а концентрацией порового раствора Кпр, формирующегося в процессе промерзания.

При одной и той же засолённости концентрация порового раствора будет снижаться с увеличением влажности. А, значит, и влияние засолённости на сопротивление мёрзлых грунтов нагрузкам будет снижаться с увеличением суммарной влажности. Поскольку в природных грунтах очень часто влажность грунта близка к полной влагоёмкости, то в ряду, в котором увеличивается влагоёмкость: песок <супесь <суглинок <глина< торф наблюдается уменьшение влияния засолённости на ползучесть и прочность.

В засолённых грунтах отмечаются все три стадии ползучести. Однако, стадии незатухающей ползучести и прогрессирующего течения наступают при меньших напряжениях.

3.4 Влияние заторфованности

Наличие биогенных остатков в мёрзлых грунтах влияет на течение деформаций во время нагружения. В целом, анализ результатов исследований показывает, что для торфа, минеральных заторфованных грунтов при заторфованности более 30% и влажности, близкой к полной влагоёмкости, деформации носят вязкий характер с преобладанием стадии установившегося течения. Причём, если напряжение не превышает предела длительной ползучести, то стадия установившегося вязкого течения длится неограниченно долго. При увеличении нагрузки больше предела длительной ползучести установившаяся стадия переходит в стадию прогрессирующего течения с возрастающей скоростью. Характер деформирования слабозаторфоованных грунтов сходен с характером деформирования мёрзлых незаторфованных минеральных грунтов с выраженными стадиями ползучести. При напряжении меньшем предела длительной прочности для них отмечается затухающая ползучесть, а при напряжении, превышающем указанный предел - незатухающая.

Важно отметить, что для мёрзлых торфяных грунтов , как и для льда отмечены более высокие значения условно мгновенной прочности по сравнению таковой для минеральных грунтов. Длительная же прочность уменьшается быстрее и ее предельно-длительное значение меньше.

Очень важно учитывать степень разложения торфа. Менее разложившийся торф более гидрофильный, поэтому удерживает большое количество внутриклеточной влаги, основной объём которой находится в свободном рыхлосвязанном состоянии. С увеличением степени разложения повышается гидрофобность, но и вместе с тем увеличивается площадь удельной поверхности частиц. Количество связанной и, соответственно, незамёрзшей воды увеличивается, что приводит к снижению прочности.

3.5 Влияние температуры

При использовании многолетнемёрзлых грунтов в качестве оснований или среды для сооружений инженер встречается с совершенно своеобразным природным материалом, не похожим по своим свойствам на другие материалы, настолько чувствительным к внешним воздействиям, что даже незначительное изменение их величины, характера и времени действия сказывается на его механических свойствах. Одним из основных факторов обуславливающих нестабильность механических свойств промерзающих и протаивающих мёрзлых грунтов является температура. Распределение температуры по глубине показано на рис.3 введения.

Влияние температуры на физико-механические свойства мёрзлых грунтов зависит от диапазона её изменения, который обусловливает интенсивность фазовых превращений, происходящих при данной температуре. Согласно принципу динамического равновесия (Цытович, 1973), в мёрзлых грунтах всегда содержится определённое количество незамёрзшей воды, зависящее от внешних факторов.

Влажность за счёт незамёрзшей воды зависит от значения температуры и вида грунта. (Рис.3.2)

Выделяют три области интенсивных фазовых превращений:

1) Область значительных фазовых превращений, в которой изменение количества незамёрзшей воды Wн на 1С составляет 1% и более (по отношению к массе высушенного грунта);

2) Переходная область, где изменения содержания незамёрзшей воды менее! %, но более 0.1%;

3) Область практически замёрзшего состояния, где фазовые переходы превращения воды в лёд на 1С не превышают 0.1%.

Wн %

30

20

5

10

4

3

2

0

1 - 2 - 4 - 6 - 8 -1 0 С

Рис.3.2 Кривые содержания незамёрзшей влаги в мёрзлых грунтах в зависимости от величины отрицательной температуры:

1-кварцевый песок;2-супесь;3-суглинок;4-глина;5-глина, содержащая монтмориллонит. (Цытович,1973)

В области значительных фазовых превращений (для песчаных грунтов от 0С до -0.5С и для глинистых от 0С до -5С) факторами определяющими прочность являются содержание незамёрзшей воды и количественное содержание льда. Например, при понижении температуры от -1 до -2С предельно-длительная прочность песка при простом сжатии увеличивается на 15%, тогда как для мёрзлой глины эта величина увеличивается примерно на 50%, поскольку содержание незамёрзшей воды уменьшилось в песке на 0.1%, тогда как у глины на 5%.(Основы геокриологии, п.р. Э.Д. Ершова,1995)

При понижении температуры мёрзлых пород их прочность повышается, а скорость ползучести снижается, уменьшается вязкость, в большей степени проявляется хрупкое разрушение. Указанное влияние обусловлено тремя основными процессами, протекающими в мёрзлых породах: уменьшением количества незамёрзшей влаги и увеличением содержания льда цемента; упрочнением кристаллической решётки льда и всех твёрдых компонентов; структурным уплотнением, вызванным температурным сокращением компонентов мёрзлого грунта. Однако, увеличение прочности мёрзлых пород происходит до температур, близких к -70С. При температурах ниже -60 -70 С установлено снижение прочности мёрзлых грунтов за счёт того, что напряжения от температурных сокращений всех компонентов грунта становятся выше прочности обусловленной цементацией льдом частиц грунта. При этом наблюдается развитие трещин, разуплотнение грунтов (Шушерина,1974)

Глава 4. Деформационные характеристики оттаивающих грунтов

Если осадки, возникающие при оттаивании многолетне мёрзлых грунтов в основаниях сооружений превышают предельно-допустимые значения для данного сооружения, то неизбежно появятся недопустимые деформации и разрушения фундаментов и надфундаментных строений. Мёрзлые грунты, при оттаивании (особенно сильнольдистые) часто превращаются в разжиженные массы, не способные нести нагрузку от сооружений.

Если деформации мёрзлых грунтов при оттаивании, обусловленные резким (лавинным) изменением их структурных льдоцементных связей, имеют местный провальный характер (например, при действии локальных источников тепла) и протекают быстро, сопровождаясь в большинстве случаев выдавливанием оттаявших гунтов, то они называются просадками.

Если же при оттаивании многолетнемёрзлых грунтов имеют место общие деформации уплотнения, то такие деформации называются осадками.

Строение мёрзлых грунтов (их структура и текстура) существенно сказывается на свойствах мёрзлых грунтов при оттаивании и уплотнении. Лёд в порах грунта начинает таять при любом повышении температуры. Уменьшаются льдоцементационные связи. При температуре, равной температуре оттаивания грунтовой влаги, сцепление между частицами резко скачкообразно падает до совершенно незначительных величин. При оттаивании мёрзлых грунтов происходят два противоположных процесса: уплотнение, за счёт уменьшения пористости при отжатии оттаявшей влаги, и набухание частиц и агрегатов в набухающих глинистых и торфяных грунтах. В результате оттаивания в грунтах может частично сохраняться посткриогенная структура: поры образованные формированием ледяных включений полностью не смыкаются даже при приложении внешней нагрузки. Это обстоятельство необходимо учитывать при дальнейшем динамическом воздействии на оттаявшие грунты - прочность уплотнённых агрегатов грунта может снизиться, что приведёт к дополнительным осадкам. В большинстве случаев при оттаивании грунтов наблюдаются просадки. Это наглядно видно из рис.4.1, на котором приведена зависимость изменения коэффициента пористости грунта (е) при оттаивании и дальнейшем уплотнении, в процессе которых происходит резкое уменьшение коэффициента пористости.

Очень важно выяснить зависимость возможных осадок мёрзлых грунтов от их физических характеристик. Этим занималось множество учёных, предлагавших свои расчётные формулы осадок мёрзлых грунтов при оттаивании, среди них: М.Ф. Киселёв, В.П. Ушкалов, И.Н. Вотяков, Crory F.E.

Некоторые из формул, определяющих зависимость осадки (S) при оттаивании от физических свойств грунтов возможных осадок приведены в таблице 4.1

Таблица 4.1

Автор

Формула

Киселёв М.Ф.(1952)

Crory F.E.(1973)

S=(Pdth-Pdf)h/ Pdth

Ушкалов В.П.(1962)

S=(mefK4+b)h

Вотяков И.Н.(1975)

S=K5Wtoth/(2.7Wtot+0/92)

Примечание:

Pdth -плотность скелета грунта после оттаивания под давлением 0.2-0.5МПа; Pdf -плотность скелета мёрзлого грунта; ef -коэффициент пористости мёрзлого грунта; K4 - поправочный эмпирический коэффициент, учитывающий отклонения одельных значений осадок от средних значений, равный 0.95 для суглинков и 1.3 для песчаных грунтов; m,b -параметры, зависящие от вида грунта и давления; Wtot -влажность мёрзлого грунта; K5-эмпирический коэффициент, зависящий от вида грунта, влажности и уплотняющего давления.

Как можно видеть из приведённых формул, осадка при оттаивании зависит от показателей плотности (плотности мёрзлого грунта f, скелета грунта d, частиц грунта c), от показателей влажности (суммарная влажность мёрзлого грунта, льдистость, влажность за счёт незамёрзшей воды).С увеличением плотности осадки при оттаивании уменьшаются, а с увеличением влажности и льдистости- увеличиваются. Прогнозные формулы определяют величину осадки при оттаивании весьма приближённо т.к. они не учитывают влияния структуры и текстуры грунта, фильтрационной консолидации оттаявшего массива и др. Поэтому прогноз осадок оттаивающих грунтов должен осуществляться на основе опытных определений деформационных характеристик оттаивающих грунтов. Основными из них являются:

коэффициент оттаивания A (д.е.), равный относительной осадке грунта при оттаивании в условиях отсутствия внешней нагрузки;

коэффициент сжимаемости a (МПа-1), равный отношению приращения относительной деформации () к приращению напряжения от внешней нагрузки (,МПа).

А = /

Суммарная осадка (S) оттаивающего грунта с мощностью слоя, равной h записывается:

S = (A+a)h.

Для инженерных расчётов иногда бывает необходимо знать характер протекания процесса осадки грунта при оттаивании во времени, поскольку он не прекращается после оттаивания.

Осадка оттаивающего грунта (St) пропорциональна корню квадратному из величины времени.


Подобные документы

  • Предельные абсолютные и относительные деформации пучения фундамента. Физико-механические характеристики мерзлых грунтов. Классификация мёрзлых грунтов по гранулометрическому составу, льдистости и засоленности. Свойства просадочных грунтов лёссовых пород.

    курсовая работа [558,0 K], добавлен 07.06.2009

  • Характеристика крупнообломочных и песчаных грунтов. Анализ влияния состава, структуры, текстуры и состояния грунтов на их свойства. Инженерно-геологическая классификация грунтов. Характер связей между частицами в породах. Механические свойства грунтов.

    контрольная работа [27,9 K], добавлен 19.10.2014

  • Состав и строение грунтов, типы просадки. Методы устранение просадочности лессовых грунтов. Лессовые просадочные грунты западной Сибири. Изменения физико-механических характеристик лессовых грунтов г. Барнаула в зависимости от сроков эксплуатации зданий.

    реферат [633,7 K], добавлен 02.10.2013

  • Характеристики и свойства горных пород и их породообразующих минералов. Условия образования эоловых отложений. Составление инженерно-геологической характеристики грунтов. Описание подземных межмерзлотных вод, особенности их существования и движения.

    контрольная работа [588,9 K], добавлен 31.01.2011

  • Способы определения плотности горных пород. Механические свойства, твердость и абразивность. Основные характеристики магнитных и акустических свойств горной породы. Характеристика электромагнитных свойств, их роль в разведке полезных ископаемых.

    контрольная работа [101,4 K], добавлен 14.06.2016

  • Породообразующие минералы и горные породы. Водно-физические свойства грунтов. Экзогенные процессы и вызванные ими явления. Геологическая деятельность атмосферных осадков. Геологическая деятельность озер, болот и водохранилищ. Особенности лессовых грунтов.

    курс лекций [1,8 M], добавлен 20.12.2013

  • Общее представление и классификация грунтов, их физико-механические свойства: прочность, деформируемость, изменчивость во времени. Генетический подход к грунтам – методологическая основа грунтоведения. Виды фракций и пород по гранулометрическому составу.

    презентация [8,6 M], добавлен 30.04.2014

  • Физические свойства коллекторов, их виды, классификация, геометрические параметры. Гранулометрический состав породы. Составляющие нормального поля напряжений. Деформационные и прочностные свойства горной породы. Порядок насыщения пористой среды.

    презентация [2,7 M], добавлен 15.03.2015

  • Оценка инженерно-геологических условий строительной площадки. Расчет физико-механических свойств грунтов. Определение показателей текучести слоя, коэффициента пористости и водонасыщенности, модуля деформации. Разновидности глинистых грунтов и песка.

    контрольная работа [223,4 K], добавлен 13.05.2015

  • Физико-географические, геологические и гидрогеологические условия территории строительства. Физико-механические свойства грунтов в зоне влияния участка. Расчет устойчивости откосов, крена и осадки свайного фундамента. Определение несущей способности свай.

    курсовая работа [538,3 K], добавлен 06.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.