Методы изучения месторождений подземных промышленных вод

Стадийность и содержание гидрогеологических и геолого-экономических исследований. Методика и значение гидрогеологических исследований на месторождениях подземных промышленных вод. Изучение гидрогеологических параметров глубоких водоносных горизонтов.

Рубрика Геология, гидрология и геодезия
Вид книга
Язык русский
Дата добавления 25.08.2010
Размер файла 237,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Методы изучения месторождений подземных промышленных вод

Стадийность и содержание гидрогеологических и геолого-экономических исследований

Одним из важнейших принципов изучения месторождений полезных ископаемых в нашей стране является принцип стадийности проведения геологоразведочных работ. Практическое применение этого принципа предотвращает вовлечение в детальную разведку малоперспективных месторождений и, следовательно, необоснованное расходование государственных средств, а также позволяет осуществлять своевременный контроль за ходом геологоразведочных работ и управление процессом этих работ в масштабах отдельных отраслей народного хозяйства и страны в целом в зависимости от текущей и перспективной потребности в том или ином виде полезного ископаемого.

Принцип стадийности в полной мере относится и к разведке месторождений глубоких подземных промышленных вод. Подразделение разведочного процесса на стадии и требования к изученности месторождений на каждой стадии геологоразведочных раб. от применительно к подземным водам определяются приказом Министерства геологии РФ от 7 марта 1978 г. № 63, являющимся обязательным для всех организаций.

В полном объеме процесс изучения и оценки месторождений подземных вод включает следующие стадии: гидрогеологическая съемка, поиски, предварительная разведка, детальная разведка, эксплуатационная разведка. В определенных гидрогеологических условиях отдельные стадии геологоразведочных работ могут исключаться или объединяться. Для подземных промышленных вод, распространение которых связано с глубокими частями крупных артезианских бассейнов, проведение гидрогеологической съемки нецелесообразно, хотя она имеет ведущее значение при поисках месторождений пресных подземных вод, а также всех типов вод (пресных, минеральных, термальных и промышленных) в горноскладчатых областях. Рассмотрим кратко задачи и содержание работ на каждой стадии.

Поисковая стадия подразделяется на подстадии общих и детальных поисков.

При общих поисках производят оценку перспектив на все типы или определенные типы вод крупных гидрогеологических регионов или их частей. В результате проведения работ выделяют перспективные водоносные комплексы, определяют положение их в плане и разрезе, устанавливают приближенно состав вод и растворенных газов, отмечают благоприятные участки для постановки более детальных разведочных работ. При возможности производят региональную оценку прогнозных ресурсов и эксплуатационных запасов. Общие поиски базируются на целенаправленном анализе региональных геолого-геофизических и гидрогеологических материалов. В связи с этим основными видами работ являются сбор и анализ имеющейся геологической, геофизической и гидрогеологической информации, полученной при проведении площадных геофизических работ, бурении и опробовании скважин различного назначения, эксплуатации действующих водозаборов, изучении режима подземных вод и др. В необходимых случаях проводят ревизионное обследование и опробование существующих скважин и естественных водопроявлений.

Подстадия детальных поисков проводится на месторождениях III и реже II группы сложности, т. е. в горно-складчатых районах или в предгорных и межгорных впадинах со сложной тектоникой. Задачей детальных поисков является выявление и оконтуривание месторождений или участков, перспективных для постановки разведочных работ. Технологические исследования на стадии детальных поисков .проводят в лабораторных и укрупненных масштабах по возможности с использованием пластовых вод изучаемого месторождения. Технико-экономическое обоснование перспектив Проведения геологоразведочных работ и последующего освоения месторождений оформляется на этой стадии в виде технико-экономических расчетов или соображений; дается сравнительный анализ ожидаемых технико-экономических показателей различных участков месторождений, сопоставление с действующими и проектируемыми предприятиями по добыче и переработке гидроминерального сырья.

По результатам выполненных работ производят оценку эксплуатационных запасов по категориям С| и С2, разрабатывают ориентировочное ТЭО. Принимают принципиальные решения по сбросу отработанных вод.

Предварительная разведка является основной стадией в разведке всех крупных месторождений, так как на этой стадии принимается решение о народнохозяйственной целесообразности освоения месторождения и вовлечения его в детальную разведку. Задачей предварительной разведки являются изучение основных геолого-гидрогеологических особенностей месторождения -- геолого-структурных, фильтрационных, гидродинамических, гидрогеохимических, гидрогеотермических, установление источников формирования ресурсов и эксплуатационных запасов подземных вод.

Виды и содержание работ зависят от типа и группы сложности месторождений. На месторождениях I и в некоторых случаях II группы основными видами работ являются бурение и опробование, откачки из гидрогеологических скважин, каротажные работы, лабораторные исследования образцов керна, воды и газа. В отдельных случаях выполняют наземные геофизические исследования. На месторождениях III и иногда II группы осуществляют более сложный комплекс работ: бурение разведочных скважин с выполнением в них каротажных исследований, опробование опытными откачками, изотопные, гидрохимические, лабораторные исследования, наблюдения на действующих водозаборах.

Целью геолого-экономической оценки на стадии предварительной разведки является экономическое обоснование целесообразности постановки детальных разведочных работ или отказа от дальнейшей разведки месторождений (участков). На этой стадии составляют ТЭО (технико-экономическое обоснование) или ТЭД (технико-экономический доклад), содержащий проект временных кондиционных требований к месторождению и условиям его разработки. Вопросы технологии и экономики решают путем проведения укрупненных опытных технологических исследований с использованием оборудования и аппаратов, позволяющих осуществлять эти исследования в непрерывном режиме с целью разработки технологического регламента и экономических показателей процесса переработки гидроминерального сырья и получения продукции в количествах, достаточных для ее анализа и определения соответствия ее государственным стандартам и техническим условиям использования. Как правило, по результатам предварительной разведки выбирают участки под проектные водозаборы, обосновывают их рациональную конструкцию, производят оценку эксплуатационных запасов по категориям d и С2 (иногда В), разрабатывают технологический регламент и временные кондиции, предварительно прорабатывают и согласовывают варианты сброса отработанных вод. Предварительную разведку глубоких подземных вод выполняют при наличии заявок, оформленных в соответствии с существующим законодательством. Основанием для разведки промышленных вод может служить решение директивных органов.

Детальная разведка может проводиться на новых месторождениях и в пределах уже эксплуатируемых месторождений.

На новых месторождениях детальная разведка ставится в тех случаях, когда по результатам предыдущих стадий получена положительная геолого-экономическая оценка и отраслью намечается освоение месторождения в ближайшие 5 -- 10 лет. Детальная разведка проводится на участках, согласованных с землепользователями, потребителями, с органами санитарного и рыбного надзора и др. Для проведения разведочных работ оформляется временный отвод земли.

На стадии детальной разведки уточняется природная модель и расчетная схема месторождения, определяются и принимаются расчетные значения гидрогеологических параметров, показатели качества вод и др. Виды и содержание работ принципиально не отличаются от таковых на предварительной стадии разведки. Однако на месторождениях I и II групп изучают, как правило, только продуктивные водоносные комплексы, а на месторождениях III группы основным видом работ служит длительный опытно-эксплуатационный выпуск, сопровождаемый комплексом лабораторных исследований и режимных наблюдений.

На стадии детальной разведки целью геолого-экономической оценки является экономическое обоснование целесообразности вовлечения в народнохозяйственное использование разведанного участка (месторождения) подземных промышленных вод, строительства (а при детальной разведке эксплуатируемого месторождения -- расширения, реконструкции) предприятия по добыче и переработке гидроминерального сырья. Эта задача на вновь разведуемых месторождениях решается путем проведения длительных полупромышленных технологических испытаний гидроминерального сырья с использованием опытных и опытно-промышленных технологических установок. На этой стадии разрабатывается технико-экономическое обоснование постоянных кондиций для месторождения (участка), которые являются основой для подсчета запасов промышленных подземных вод и определения производственной мощности промышленного предприятия как по объему перерабатываемого гидроминерального сырья, так и по объему выпуска полезной продукции. Для месторождений промышленных вод кондиции и эксплуатационные запасы утверждаются только ГКЗ РФ. Отчеты по детальной разведке (или доразведке) месторождений служат обоснованием проектов строительства или реконструкции водозаборов.

Эксплуатационная разведка проводится на месторождениях (участках) с утвержденными запасами в процессе строительства и эксплуатации водозаборов с целью установления соответствия данных эксплуатации прогнозным расчетам, переоценки запасов по результатам эксплуатации, уточнения режима эксплуатации и др. Основными видами работ являются организация

и проведение режимных наблюдений за дебитами, уровнями и качеством воды по всем эксплуатационным и наблюдательным скважинам, обобщение и анализ материалов многолетней эксплуатации. Эксплуатационная разведка выполняется геологической службой эксплуатируемых организаций либо для проведения ее привлекаются специализированные организации.

По результатам эксплуатационной разведки уточняют эксплуатационные запасы, корректируют способ и режим эксплуатации, обосновывают целесообразность доразведки месторождения. В необходимых случаях пересматривают кондиции и запасы и переутверждают их в установленном порядке; проводят реконструкцию водозабора.

Методика гидрогеологических исследований на месторождениях подземных промышленных вод

Разведка месторождений глубоких подземных вод сопряжена с значительными затратами денежных, материальных и трудовых ресурсов. Объясняется это в основном объективными причинами, к числу которых относятся: большая глубина залегания продуктивных водоносных комплексов, необходимость применения тяжелого и сложного оборудования и приборов, высокие требования к степени изученности месторождений для передачи их в промышленное освоение и др. Особенно велики затраты на разведку в отдаленных районах. Вместе с тем имеются и субъективные причины, например, отсутствие специального гидрогеологического оборудования и технических средств является одной из причин не только высокой стоимости, но и в ряде случаев низкой эффективности исследований либо их значительной продолжительности.

Гидрогеологические работы при поисках и разведке месторождений глубоких подземных вод включают комплекс различных методов исследований, которые могут применяться в разных модификациях и сочетаниях.

Виды и объемы гидрогеологических работ и исследований зависят от типа и сложности строения месторождения и стадийности изысканий. На начальных стадиях изысканий применяют в основном косвенные методы, направленные на выявление месторождений, определение их масштабов и принципиальных особенностей геолого-гидрогеологического строения. К таким методам относятся гидрогеологические съемки, специализированные съемки (термометрические, гидрогазохимические, инфракрасные), площадные геофизические исследования и т. д.

На стадиях предварительной и детальной разведки используют в основном прямые методы (бурение и гидрогеологическое опробование глубоких скважин), в некоторых случаях в сочетании с площадными геофизическими исследованиями. Имеют свою специфику и гидрогеологические исследования на действующих водозаборах.

Основные виды и назначение гидрогеологических исследований

Гидрогеологические исследования в горно-складчатых районах имеют многоцелевое назначение: выявляются особенности тектоники района с определением характера раскрытости нарушений, оценивается тепловой потенциал (тепловая мощность), месторождения, устанавливаются основные продуктивные водоносные комплексы или зоны и их положение в плане и разрезе, качество подземных вод, масштабы и группа сложности месторождения и др. На основе съемок и геофизических исследований многие задачи решаются на качественном уровне. Однако косвенные методы дают возможность эффективно определять места заложения поисково-разведочных скважин, обоснованно выбирать их глубину. Опробование разведочных гидрогеологических скважин также имеет свою специфику. Скважины опробуются обычно поинтервально сверху вниз, так как положение обводненных зон в разрезе даже предположительно неизвестно. При выявлении обводненных зон хорошие результаты дают термометрия (с помощью термокос), глубинное поинтервальное опробование, расходометрия, изотопные исследования воды и газа и др.

Имеет свои особенности комплекс гидрогеологических исследований на месторождениях промышленных вод в межгорных - и предгорных впадинах, выполненных мощными толщами осадочных отложений. На месторождениях этого типа роль косвенных методов снижается. Из косвенных методов наиболее широко используются различные площадные геофизические исследования (электроразведка, сейсморазведка и др.). Задачей геофизических работ является выявление тектонических нарушений и установление структурного плана (в частности, под акваториями), определение необходимых проектных глубин скважин и мест их бурения в соответствии со структурным планом месторождений. Основными видами исследований являются традиционные гидрогеологические методы -- бурение и опробование глубоких скважин. Опробование проводится под защитой колонны по способу снизу вверх с установкой между интервалами разделительных цементных мостов. Большую роль играют каротажные геофизические исследования, позволяющие решать большинство геологических и гидрогеологических вопросов: расчленение разреза на водоносные комплексы и водоупоры, определение суммарных и эффективных мощностей, предварительная оценка водно-физических свойств вмещающих пород и минерализации, геотермического градиента и др. Основным же средством изучения водоносных комплексов служат опытные откачки, при которых получают необходимые исходные, данные ДЛЯ определения гидрогеологических параметров и установления качества воды.

На месторождениях глубоких подземных вод в артезианских бассейнах древних платформ и эпипалеозойских плит гидрогеологические исследования включают обычно бурение и опробование глубоких разведочных скважин с комплексом сопутствующих исследований. Площадные геофизические исследования проводятся в очень редких случаях -- при изучении карбонатных водоносных комплексов.

В процессе бурения скважин выполняется обширный комплекс геофизических исследований и опробование вскрытых интервалов пластоиспытателями на трубах. Опробование водоносных комплексов или горизонтов осуществляется под защитой эксплуатационной колонны по способу снизу вверх с последовательным вскрытием горизонтов перфорацией и проведением пробных, опытных или опытно-эксплуатационных откачек. В связи с внедрением способа эксплуатации месторождений промышленных вод с поддержанием пластовых давлений или захоронением отработанных вод водоносные горизонты, предназначенные для закачки промстоков (отработанных вод), опробуют также опытными нагнетаниями.

Перечисленные виды полевых изысканий выполняются непосредственно на месторождениях и направлены на их геолого-гидрогеологическое изучение. Геологоразведочные работы сопровождаются лабораторными исследованиями. Они включают изучение водно-физических свойств водовмещающих пород (на образцах керна), химического и газового состава подземных вод, физических свойств, теплосодержания, технологических свойств. В ряде случаев выполняется комплекс исследований для изучения агрессивности воды и солеотложений в стволе и призабойной зоне скважины, а также для решения некоторых других вопросов.

Гидрогеологические исследования при поисково-разведочных работах

Комплекс поисково-разведочных работ на подземные воды в каждом случае определяется не только сложностью гидрогеологических условий территории, но и степенью ее изученности, которая оценивается с помощью анализа материалов всех предшествующих геологических, гидрогеологических и геофизических исследований.

Основными видами работ при изучении месторождений глубоких подземных вод являются буровые, опытно-фильтрационные, геофизические, гидрологические исследования, наблюдения за естественным и нарушенным режимом подземных вод, обследование действующих водозаборных сооружений, отбор проб и химические исследования воды, специальные виды исследований (гидрогеохимические, геотермические, изотопные и др.). Как указывалось выше, геолого-гидрогеологические и специальные съемки, играющие ведущую роль при поисках и разведке месторождений пресных, минеральных и теплоэнергетических вод, особенно в горно-складчатых регионах, для глубоких подземных промышленных вод такого значения не имеют, хотя материалы их обычно полностью используются для характеристики общих гидрогеологических условий района исследований.

Буровые работы обеспечивают основной объем информации о месторождении и включают бурение поисковых, разведочных, разведочно-эксплуатационных, наблюдательных и при необходимости нагнетательных скважин.

Поисковые скважины бурят на стадии поисков для изучения геологического разреза, выделения и опробования всех встреченных водоносных горизонтов с целью выявления перспективных в качестве источника минерального и теплоэнергетического сырья, а также минеральных вод для лечебных и бальнеотерапевтических целей. Учитывая, как правило, большие глубины залегания промышленных вод, поисковые скважины бурят при крайней необходимости, когда полностью отсутствуют данные для решения задач поисковой стадии.

Бурение разведочных скважин осуществляется с целью изучения литологического состава, мощности, условий залегания, водообильности перспективных водоносных горизонтов, определения их коллекторских и фильтрационных свойств и качества подземных вод, граничных условий. Разведочные скважины бурят на стадии предварительной разведки на наиболее сложных месторождениях промышленных вод и на стадии детальной разведки.

Разведочно-эксплуатационные скважины бурят обычно на стадии детальной разведки с учетом проектной схемы водозабора. Бурение их согласовывается с заинтересованными организациями, а по своей конструкции и оборудованию они должны отвечать условиям эксплуатации с учетом проектируемого водоподъемного оборудования, агрессивных и коррозионных свойств воды. На многих месторождениях минеральных, а иногда и термальных вод разведочно-эксплуатационные скважины могут буриться уже на стадии предварительной разведки. По окончании бурения они передаются эксплуатирующей организации.

Наблюдательные скважины сооружают для наблюдений за естественным и нарушенным режимом подземных вод, а при проведении опытно-фильтрационных работ используют для изучения развития депрессионной воронки, определения гидрогеологических параметров, степени подвижности контуров подземных вод, их качества (химический состав, содержание полезных компонентов, температура). При изучении глубоких горизонтов в связи с большими материальными затратами число наблюдательных скважин ограничено либо они отсутствуют совсем.

Поскольку буровые работы требуют, как правило, наибольших затрат, бурение каждой из скважин должно быть нацелено на решение максимально возможного числа поставленных задач. Это требует серьезного внимания к проектированию бурения, т.е. к вопросам размещения скважин, выбору их оптимальных. Конструкций, способа бурения, технологии вскрытия продуктивных водоносных горизонтов и опробования скважин. Решение этих вопросов в каждом конкретном случае зависит от целевого назначения скважин, геолого-структурной обстановки и геолого-технических условий проходки скважин.

Схема размещения, число разведочных скважин и расстояния между ними определяются, прежде всего, типом месторождения промышленных вод и его основными геолого-структурными особенностями. Площадная разведка оправдана либо при изучении пластовых месторождений широкого регионального распространения, либо при изучении месторождений со сложной структурой, особенно при наличии большого количества различно ориентированных разрывных нарушений, роль которых требуется выяснить. При выборе оптимальных схем размещения скважин на исследуемой площади и определении необходимого их числа следует исходить из следующих обязательных требований:

ѕ тщательного анализа геолого-гидрогеологических условий по данным всех предыдущих исследований;

ѕ использования опыта изучения месторождений, имеющих аналогичные геолого-тектонические и гидрогеологические условия;

ѕ учета предполагаемой гидродинамической расчетной схемы и схемы водозабора.

При гидрогеологических исследованиях сейчас успешно используются методы математического моделирования, которое на крупных месторождениях целесообразно применять уже на стадии предварительной разведки, основываясь на принципе последовательных приближений. На каждом этапе программируется и задается на машине сумма сведений, накопленных к данному моменту. В зависимости от степени сложности месторождения возможно решение одной-двух задач, что позволяет корректировать работы, в частности, выбирать наиболее рациональное размещение на площади разведочных скважин.

Глубина скважин должна обеспечивать полное вскрытие перспективного водоносного горизонта (зоны), а диаметр и устьевое оборудование -- возможность установки насосов для их опробования, наблюдений за уровнем подземных вод, для самоизливающихся скважин -- за давлением, проведения геофизических и различных глубинных исследований. При определении глубин и диаметров скважин, а также при размещении их при разведке месторождений промышленных вод особенно важно учитывать возможность использования одной и той же скважины для различных целей, например, разведочных -- в качестве разведочно-эксплуатационных и наблюдательных -- в качестве разведочных и т. д. Конструкция разведочно-эксплуатационных скважин выбирается с учетом возможности их последующей эксплуатации с проектной производительностью, что особенно важно при разведке глубокозалегающих горизонтов.

Способ, технология бурения и конструкции фильтров должны обеспечивать получение объективных характеристик водоносных горизонтов как по их водообильности и фильтрационным свойствам, так и по качеству воды. Прежде всего, это правильный подбор промывочных жидкостей, учитывающий предполагаемый химический состав подземных вод, бурение чистой водой при устойчивых коллекторах и невысоких напорах подземных вод, разглинизация скважин при применении глинистых растворов.

Гидрогеологические исследования скважин включают наблюдения и поинтервальное опробование в процессе бурения, опытно-фильтрационные работы и глубинное опробование скважин.

Наблюдения в процессе проходки скважин без специальных остановок бурения для гидрогеологических опробований производятся с целью выявления или уточнения положения в геологическом разрезе, вскрываемом скважиной, горизонтов (зон) промышленной воды. При этом о водоносности пород судят по косвенным показателям: составу проходимых пород, изменению объема и физических свойств промывочной жидкости и ее химического состава (фильтрата).

Параметры разреза получают (помимо исследования керна) по результатам наблюдений за скоростью бурения и характером работы бурильного агрегата. Кроме того, некоторые сведения получают путем изучения шлама, выносимого промывочной жидкостью. Важную роль играет наблюдение за балансом глинистого раствора. По изменению его объема судят о вскрытии водоносного горизонта и его водопроницаемости. О притоке воды в скважину свидетельствует изменение минерализации и состава промывочной жидкости (фильтрата). Следует иметь в виду, что увеличение минерализации может произойти не только из-за притока сильноминерализованных вод из вскрываемых водоносных горизонтов, но и вследствие выщелачивания промывочной жидкостью солей из пород. Поэтому при гидрогеологической интерпретации Данных об изменении химических свойств фильтрата глинистого раствора нужно учитывать результаты всех других наблюдений (режим бурения, баланс глинистого раствора, состав шлама).

Поинтервальное опробование скважин откачками (выпусками) в процессе проходки проводится с целью установления интервала, содержащего промышленные воды, а также получения сведений о всех других водоносных горизонтах. На месторождениях, где ожидаются высокие избыточные напоры, следует предусматривать Оборудование устья скважин противовыбросной арматурой -- Превенторами.

Поинтервальное опробование может производиться как с обсадкой ствола скважины (с надежной изоляцией ранее опробованных интервалов), так и без обсадки путем наращивания опробуемого интервала, применения пластоиспытателей, а также изоляции опробуемых интервалов с помощью системы пакеров, если водоносные горизонты разобщены водоупорными слоями. В зависимости от типа месторождения, стадии его изучения, а также от глубины и категории скважин шаг таких поинтервальных опробований может быть различным и должен обеспечивать уверенную интерполяцию в пределах разреза. Для месторождений, приуроченных к крупным пластовым системам, поинтервальное опробование чаще всего не имеет смысла. Оно не исключается в тех случаях, когда разрез сложен породами, литологически мало отличающимися друг от друга, а гидрогеологическую роль каждого из пластов оценить по косвенным показателям не удается.

В процессе проходки скважин и при поинтервальных откачках большое внимание должно уделяться замеру уровней (напоров) воды в скважинах. При этом следует добиваться того, чтобы точные данные по напорам были получены для различных глубин, так как они необходимы для выявления гидродинамической структуры месторождения.

Опытно-фильтрационные работы являются основным видом исследований при поисках и разведке подземных вод. Задачей их является определение основных гидрогеологических параметров, граничных условий горизонтов, возможной производительности скважин. Методика опытно-фильтрационных работ определяется их целевым назначением, стадией исследований и гидрогеологическими условиями конкретного месторождения. По способу производства они подразделяются на выпуски (для самоизливающих скважин) и откачки, когда применяются водоподъемные средства. По целевому назначению откачки (выпуски) подразделяются на пробные, опытные и опытно-эксплуатационные. Общими для всех видов откачек (выпусков) являются следующие требования. Устья самоизливающихся скважин оборудуют специальной фонтанной арматурой, применяемой на нефтяных скважинах, которая позволяет регулировать и замерять дебит скважин, и устьевые давления, проводить глубинные исследования. При проведении принудительных откачек должна быть обеспечена возможность замера уровня в скважинах, главным образом путем спуска в них пьезометрических трубок.

Обязательным условием для получения достоверных значений гидрогеологических параметров является соблюдение режима откачки (выпуска), обеспечивающего применение существующих методов расчета. Наиболее надежный и доступный на практике метод -- проведение откачек при постоянном дебите скважины. Если же обеспечить постоянство дебита самоизливающейся скважины невозможно (при небольшой производительности и избыточном давлении), выпуск проводится с постоянным понижением, либо при свободном самоизливе, либо при постоянном остаточном давлении на устье.

При всех видах откачек (выпусков) на каждом из понижений, если их несколько, проводят: замеры дебита воды и газа, уровня воды (или давления), температуры воды, а при необходимости -- атмосферного давления и температуры воздуха; отбор проб воды и газа на химический анализ. При выборе измерительной техники для проведения опытно-фильтрационных работ следует стремиться к использованию наиболее надежных и высокочувствительных приборов, предпочтительней с постоянной записью измеряемых параметров. Например, для замеров дебита -- газорасходомеров, для замеров устьевых давлений -- образцовых манометров такой точности и чувствительности, которая соответствует конкретным условиям; чувствительность приборов по меньшей мере должна в 2 -- 3 раза превышать минимальную величину изменения показателя или параметра. Вообще вопрос оборудования глубоких скважин и измерительной техники исключительно важен при опробовании глубоких скважин, особенно при высоких газонасыщенности и температуре воды самоизливающихся скважин. В таких случаях возникают значительные трудности как при проведении опыта, так и при последующей интерпретации его результатов. Частично эта проблема решается применением глубинных манометров, с помощью которых замеряется давление непосредственно в исследуемом пласте или уж, во всяком случае, ниже зоны выделения растворенного газа в спонтанную фазу.

Частота всех видов наблюдений в процессе опытно-фильтрационных работ определяется их целевым назначением, общей продолжительностью откачки и задачей самих наблюдений.

Пробные откачки (выпуски) проводят преимущественно на стадии поисковых работ для предварительной оценки фильтрационных свойств и качества воды отдельных водоносных горизонтов и трещинных зон и различных участков распространения изучаемых вод с целью выбора наиболее перспективных для постановки разведочных работ. На стадиях предварительной и детальной разведки пробные откачки (выпуски) проводятся с целью определения возможной производительности скважин для планирования опытных работ.

Опытные откачки проводят на стадии предварительной и детальной разведки, их подразделяют на одиночные, кустовые и групповые. Задачей опытных откачек являются определение расчетных гидрогеологических параметров и выявление закономерностей их изменения в пространстве, определение зависимости между дебитом скважин и понижением уровня воды, изучение химического и газового состава промышленных вод, температуры, их изменения в зависимости от водоотбора, изучение агрессивных свойств вод и рассолов и процессов солеотложения. Режим и продолжительность опытных откачек, число понижений определяются целевым назначением, стадией разведки, характером водоносного горизонта и сложностью гидрогеологических условий месторождения.

Длительность опытных откачек определяется на основании данных о горизонтах, полученных с помощью пробных откачек. В процессе работ ее можно корректировать в зависимости от характера изменения гидродинамических и физико-химических показателей, учитывая, что во многих случаях полная стабилизация гидродинамического режима недостижима. Это касается, прежде всего, пластовых месторождений платформенных областей, для которых характерно также постоянство химического состава и минерализации воды в пределах горизонта на большой площади. Длительность опытных откачек здесь минимальная. Более длительные откачки с несколькими ступенями проводятся при наличии предпосылок зависимости качества воды от дебита. В этом случае должна быть выявлена связь качества воды с интенсивностью водоотбора, с тем, чтобы учесть это при проектировании опытно-эксплуатационного выпуска. Кроме того, по результатам опытной откачки определяют оптимальный эксплуатационный дебит скважин с учетом их пескования, пульсирующего режима и явления термогазлифта, солеотложения и др.

Опытные кустовые откачки проводят с целью определения гидрогеологических параметров, степени подвижности гидрохимических и геотермических границ, определения срезок уровня при оценке запасов гидравлическим методом.

Методика опытных кустовых откачек определяется в зависимости от основной задачи и гидрогеологических особенностей. Исходя из задачи определения гидрогеологических параметров, наблюдательные скважины должны располагаться в зоне квазистационарного режима, а величина понижения уровня на конец откачки в наблюдательной скважине должна значительно превышать точность замера уровня. Число наблюдательных скважин в значительной степени определяется глубиной залегания водоносного горизонта. По экономическим соображениям на месторождениях глубоких подземных вод наблюдательные скважины бурят в минимальном количестве и в то же время максимально используют все пробуренные ранее скважины различного назначения. Это необходимо иметь в виду при завершении исследований скважин на любой стадии поисково-разведочных работ, предусматривая их консервацию до следующей стадии, а не ликвидацию, что часто имеет место.

При определении расстояния между наблюдательными и опытными скважинами, а также продолжительности откачки необходимо стремиться к оптимальному варианту, когда с помощью кустовой откачки будет решено максимальное число задач в расчете на то, чтобы продолжительность откачки не превышала 20 -- 30 сут.

В некоторых случаях для создания необходимой степени возмущения пласта, определения эксплуатационных возможностей месторождения (участка) опытные откачки проводят из группы скважин.

Опытно-эксплуатационные откачки (выпуски) проводят на стадии детальной разведки подавляющего большинства месторождений минеральных вод, а на месторождениях промышленных вод -- при весьма сложных гидрогеологических условиях. Основная задача их заключается в выявлении закономерностей изменения уровня (реже дебита) и качества промышленных вод, чаще всего при заданной величине водоотбора.

При разведке промышленных вод, приуроченных к многопластовым водонапорным системам, возникает вопрос оценки возможностей совместной эксплуатации нескольких водоносных пластов с различными фильтрационными свойствами, напорами и качеством воды. Это связано с тем, что при работе скважины, вскрывающей несколько таких горизонтов, происходит переток по стволу скважины довольно длительное время, хотя перераспределение напоров в ней практически мгновенное. Специальными исследованиями (например, на месторождениях Западной Туркмении) установлено, что прогнозирование понижений возможно с помощью существующих решений, не учитывающих перетока по стволу скважины; в то же время при прогнозировании качества - воды игнорирование перетока может привести к существенным ошибкам.

В настоящее время существуют аналитические решения для такого прогноза в основном для двухслойной системы, пока не нашедшие применения на практике. Поэтому на данном этапе. Наиболее целесообразный, а для многослойной системы единственно возможный путь решения вопроса о совместной эксплуатации таких горизонтов -- это опытно-эксплуатационная откачка (выпуск) при условиях, близких к эксплуатационным.

Методика опытно-эксплуатационной откачки обосновывается с помощью анализа результатов всех проведенных на предыдущих стадиях работ. Несколько режимов водоотбора целесообразны в том случае, когда имеются предпосылки (или данные): 1) ограниченности естественных ресурсов подземных вод горизонта и соответственно возможности их оценки по результатам такой откачки; 2) зависимости качества вод от интенсивности водоотбора. При этом следует учитывать реальную возможность установления опытным путем закономерностей изменения качества подземных вод.

Продолжительность опытно-эксплуатационных откачек (выпусков) определяется их задачами и сложностью гидрогеологических и гидрохимических условий месторождения. Для выявления условий совместной эксплуатации многопластовых водоносных комплексов длительность их зависит от соотношения напоров, водопроводимости и дебита скважины, определяющих скорость перетоков по стволу, которую ориентировочно можно рассчитать по данным раздельного опробования пластов. Эмпирическим показателем является достижение усредненного химического состава воды и стабилизация его.

Правильность с методических позиций проведения всех видов опытно-фильтрационных работ и их интерпретации существенно зависит от своевременности и тщательности обработки полученных данных. Все результаты уже в процессе опыта нужно подвергать графической обработке: строить графики изменения во времени уровней (или понижений), дебита воды, газа, температуры, содержания характерных компонентов, что позволяет судить о степени стабилизации режима откачки, зависимости различных показателей друг от друга, сезонных и других внешних факторах. Соответственно при необходимости может быть откорректирована дальнейшая методика проведения опыта. Кроме того, строят гидрогеологические профили и карты, на которых отражают результаты наблюдений за развивающейся депрессией и продвижением гидрохимических контуров в плане и разрезе.

Исследования химического состава и физических свойств подземных вод обязательны при поисках и разведке, поскольку химические и физические характеристики, прежде всего, определяют принадлежность их к соответствующему типу промышленных вод. Основными задачами гидрохимических исследований являются: 1) оценка качества подземных вод с точки зрения использования их в качестве промышленных; 2) получение гидрохимических данных, необходимых для выявления источников и механизмов формирования подземных вод, прогноза их качества при эксплуатации, в том числе с учетом обратной закачки отработанных вод. Тем самым определяется необходимость таких исследований, которые обеспечат надежную информацию о закономерностях изменения качества подземных вод по площади и в разрезе. При этом помимо основного состава существенное внимание уделяется составу свободных и растворенных газов, а также содержанию специфических компонентов.

В зависимости от конкретной задачи химические анализы воды по степени детальности (типу определяемых компонентов) и точности подразделяются на оперативные (отдельные свойства или характерные компоненты), краткие (в том числе полевые), сокращенные и полные. Промышленные воды кроме обычных подвергаются специальным технологическим исследованиям, на основании которых оценивают возможность извлечения из них полезных компонентов и допустимые нижние пределы концентраций этих компонентов.

Изучение режима подземных вод исследуемого месторождения очень важно для установления его гидрогеологических условий, источников и путей восполнения ресурсов промышленных подземных вод. Наблюдения за режимом должны составлять важную часть исследований в общем комплексе геологоразведочных работ.

Основной гидрогеологической задачей, на решение которой должны быть направлены режимные наблюдения, являются определения характера происходящих при разведке изменений рельефа пьезометрических поверхностей, распределения по площади и в вертикальном разрезе вод различной минерализации и состава, степени взаимодействия гидрогеологических выработок. Для этого необходимо определить дебиты, динамические или статические уровни (избыточных давлений), замерить температуры на изливе, произвести отбор проб воды, определить на месте отдельные характерные компоненты ионно-солевого или газового состава воды. Наблюдения должны осуществляться в фиксированные сроки с частотой, обеспечивающей достоверную интерпретацию полученных закономерностей изменения тех или иных показателей в зависимости от поставленных задач.

Режимные наблюдения особенно важны в тех случаях, когда при оценке эксплуатационных запасов используются эмпирические зависимости, полученные при опытно-эксплуатационных откачках. В этом случае информация о естественных колебаниях уровня обязательна для достоверной интерпретации полученных в процессе опыта данных. Этим предопределяется необходимость организации режимных наблюдений в начале поисково-разведочных работ, с тем, чтобы цикл их охватывал все сезонные колебания уровня и химического состава подземных вод.

Гидрогеологические исследования на эксплуатируемых месторождениях

Гидрогеологические исследования на эксплуатируемых месторождениях включают прежде всего, наблюдения за гидродинамическим и гидрохимическим режимом эксплуатации водозаборных сооружений, которые имеют большое значение для всех типов вод и месторождений и совершенно незаменимы на месторождениях со сложными гидрогеологическими условиями (II и III групп сложности). Две основные задачи из числа тех, что решаются на основании таких наблюдений, касаются непосредственно эксплуатации месторождений: 1) уточнение эксплуатационных запасов (или подсчет их, если ранее он не был выполнен) и перевод запасов в более высокие категории; 2) выбор наиболее рационального способа эксплуатации с учетом экологических проблем (охраны подземных вод от истощения и загрязнения, а также защиты окружающей среды от негативного воздействия эксплуатации подземных вод). Анализ опыта эксплуатации позволяет решать также такие важные методические задачи, как оценка достоверности гидрогеологических прогнозов и усовершенствование методов разведки с целью повышения эффективности оценки эксплуатационных запасов. Месторождения промышленных вод, за редким исключением, отличаются сложными гидрогеологическими условиями и большими глубинами залегания, в связи с чем бурение поисково-разведочных скважин ограничено. Классификацией эксплуатационных запасов и прогнозных ресурсов подземных вод [23] узаконено проектирование водозаборных сооружений при таком соотношении различных категорий запасов, когда запасы высшей категории (А) не превышают 40% для первой группы месторождений, а для третьей -- отсутствуют вообще. Кроме того, в ряде случаев освоение месторождений промышленных вод допускается при меньших соотношениях запасов разной категории изученности. Таким образом, перевод эксплуатационных запасов в более высокие категории является насущной задачей для большинства месторождений при их реконструкции, расширении и т. д. Кроме того, нередки случаи, когда требуется анализ причин неподтверждения выполненных при оценке запасов гидрогеологических прогнозов. Представительные гидрогеологические наблюдения при эксплуатации позволяют существенно уточнить гидрогеологические условия, в первую очередь различного рода границы (литологические и тектонические экраны, фильтрационную неоднородность в отдаленных от скважин областях, боковое питание, перетекание между горизонтами и т. п.), которые достоверно выявить в процессе разведочных работ затруднительно вследствие их краткосрочности по сравнению с периодом эксплуатации. Выполненный во ВСЕГИНГЕО анализ опыта эксплуатации ряда месторождений промышленных вод позволил выявить недостатки гидрогеологических исследований на разрабатываемых месторождениях, а где оказалось возможным решить некоторые из перечисленных выше задач. Создание специальной наблюдательной сети в проектах разработки ряда месторождений не предусмотрено либо запланировано в недостаточном объеме без соблюдения требований к конструкции и оборудованию наблюдательных скважин. Практически для наблюдений используют единичные скважины, непригодные по каким-либо причинам для эксплуатации. Систематические наблюдения на некоторых водозаборных сооружениях промышленных вод ведутся только за дебитом и содержанием полезных и вредных компонентов.

Тем не менее, даже при существенных недостатках современных гидрогеологических наблюдений выполненный анализ опыта эксплуатации семи месторождений промышленных вод позволил существенно уточнить гидрогеологические границы некоторых из них и определить фильтрационные параметры водоносных горизонтов. Большинство из вновь выявленных границ играют весьма существенную роль в оценке эксплуатационных запасов. Например, в Азербайджанской и Туркменской ССР на месторождениях промышленных вод установлена экранирующая роль многих тектонических нарушений, а в Пермском Предуралье обнаружено перетекание из одного горизонта в другой.

Следует отметить такой вид исследований, как опробование эксплуатационных скважин перед вводом их в эксплуатацию, которое на современном этапе, как правило, выполняется неудовлетворительно. Насущной современной задачей является коренное улучшение гидрогеологических исследований в процессе строительства и эксплуатации водозаборных сооружений на всех месторождениях подземных промышленных вод.

Изучение гидрогеологических параметров глубоких водоносных горизонтов

Оценка эксплуатационных запасов глубоких подземных вод пластовых водонапорных систем в большинстве случаев производится путем гидродинамических расчетов, или так называемым гидродинамическим методом. Этот метод заключается в определении дебитов и динамических уровней подземных вод в течение расчетного срока эксплуатации водозаборов. Для промышленных подземных вод, добыча которых обеспечивает работу производственных предприятий и выпуск определенного объема продукции, оценка эксплуатационных запасов обычно сводится к определению дебита водозабора при заданном допустимом понижении динамического уровня от поверхности земли или к расчетам понижения уровней в период эксплуатации при заданном дебите водозабора. Для оценки эксплуатационных запасов этим методом необходимо достаточно точно знать параметры, характеризующие подземные промышленные воды и вмещающие их породы.

К числу основных расчетных гидрогеологических параметров относятся: 1) мощность водоносных пород; 2) фильтрационные свойства пород (коэффициент фильтрации, проницаемость, водопроводимость); 3) пьезопроводность (уровнепроводность) пород; 4) упругие свойства водоносных горизонтов, сжимаемость вод и твород; 5) температура подземных вод; 6) минерализация, плотность и вязкость подземных вод. Ниже приводятся основные введения об этих параметрах.

Проницаемость характеризует способность породы пропускать сквозь себя жидкость или газ под действием давления. Впервые этот параметр был предложен Дарси в 1856 г.; в современном виде закон Дарси выражается следующим образом:

где Q -- расход жидкости; F -- площадь сечения потока; kn -- коэффициент проницаемости; ц, -- вязкость жидкости; dP/dx -- градиент давления.

Проницаемость характеризует только свойства пористой среды и не зависит от свойств фильтрующихся жидкостей; измерение ее производится обычно в лабораторных условиях на фильтрационных приборах. Для определения проницаемости образцов пород ис-пользуют воду, керосин или газ. Нередко величины проницаемости одних и тех же образцов пород, полученные разными методами, существенно отличаются, причем газовая проницаемость оказывается, как правило выше жидкостной. Это явление связано с факторами, обусловленными сложным физико-химическим взаимодействием фильтрующихся жидкостей со скелетами горных пород, причем далеко не всегда можно однозначно выявить факторы такого взаимодействия и удовлетворительно их объяснить, и тем более дать количественную оценку их воздействия на точность лабораторных экспериментов. В связи с этим предпочтение обычно отдается значениям проницаемости пород, определяемым по результатам опытных гидрогеологических исследований, хотя лабораторные определения этого параметра широко используются для характеристики разреза водоносных пород, определения мест притока воды в скважины и т. д.

Коэффициент фильтрации k в отличие от коэффициента проницаемости характеризует свойства водопроводящих пород в зависимости от свойств фильтрующихся жидкостей. Он имеет размерность скорости и численно выражает расход потока пластовой жидкости через единицу площади его живого сечения при уклоне пьезометрической поверхности, равном единице. Связь коэффициентов фильтрации и проницаемости выражается соотношением

где k -- коэффициент фильтрации; у -- плотность воды.

Существует много методов определения k по действующему диаметру и пористости пород, однако ни один из них не обеспечивает достаточной точности оценки этого параметра. Поэтому основными наиболее достоверными являются методы определения коэффициента фильтрации по данным опытных откачек из скважин.

Коэффициент- пьезопроводности а характеризует скорость перераспределения давления в пласте по площади под влиянием первоначального его изменения. Этот параметр является комплексным показателем, зависящим от фильтрационных и упругих свойств водоносных горизонтов. Он определяется по формуле

где |3* -- коэффициент упругоемкости. Пьезопроводность наиболее точно определяется по данным откачек из скважин.

Коэффициент упругоемкости |3* физически показывает, какое количество жидкости может высвободиться из единицы объема пласта при снижении в нем давления на 0,1 МПа. Упругоемкость зависит, таким образом, от пористости породы, сжимаемости породы и жидкости:

Или

где n -- пористость породы; |3П -- сжимаемость водонасыщенной породы; Рж -- сжимаемость пластовой жидкости; |3С -- сжимаемость скелета породы.

Рис. 7. График зависимости сжимаемости пород Рп от пористости n. По Р. Холлу: 1 -- известняки; 2 -- песчаники

Рис. 8. График зависимости между разностью плотностей дистиллированной и минерализованной вод ДY и их минерализацией М

Коэффициент упругого сжатия |3, или сжимаемость, характеризует способность вещества изменять свой объем под влиянием приложенного давления; измеряется он в относительных единицах (МПа-1). Для определения коэффициента упругого сжатия используют приборы типа стабилометра, позволяющие осуществлять всестороннее сжатие образца породы или воды. Наиболее часто встречающиеся значения этих коэффициентов: для пластовых вод рж=(2,0-7)* 10-6 МПа-1; для пород рс =(0,7-5)X10-6МПа-1.

Коэффициенты упругого сжатия могут быть с достаточной для практических целей точностью получены расчетным путем. Коэффициент упругого сжатия породы, как показали эксперименты, зависит в основном от ее пористости и весьма незначительно -- от состава зерен породы. Коэффициент упругого сжатия пор |Зп, может быть определен по графику Холла (рис. 7), а коэффициент упругого сжатия породы определяется по формуле

|з = |зп.

Для приближенных расчетов при n = 0,15 -- 0,25 можно принимать |Зс=1*10-4 МПа=1*10-6 м2/т.

Коэффициент упругого сжатия жидкости зависит от минерализации, плотности, газонасыщенности, температуры и давления. Для пластовой воды коэффициент сжимаемости с достаточной для практических целей точностью определяется по эмпирической формуле. Мамуны с учетом формулы Додсона -- Стендинга, учитывающей растворенного газа:

|Зж=(1-0,05 Vo) (|Зо -- 7,16*10-3м/Y),

где |З0 -- коэффициент сжимаемости чистой воды (обычно принимаемый равным 4,2*10-6 м2/т); М -- минерализация воды; Ко -- газовый фактор.

Плотность пластовой воды играет существенную роль при региональном изучении гидрогеодинамики. Не менее важное значение имеет учет плотности пластовых вод при определении расчетных гидрогеологических параметров. Это связано с тем, что плотность воды заметно изменяется в зависимости от минерализации, температуры и давления. Возможные ошибки в определении параметров без учета этих факторов будут тем больше, чем глубже от поверхности залегает водоносный горизонт, чем больше разница пластовых и устьевых (в скважинах) температур воды и чем больше минерализация последней. Необходимость в определении пластовой плотности подземных вод возникает, когда нужно оценить изменение этого параметра по стволу скважин, когда производится прогноз изменения плотности воды в пластовых условиях на площади распространения водоносного горизонта и т. д, Плотность воды необходимо определять также при расчетах величин k, kn, рж и а.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.