Подбор штангово-глубенной насосной установки

Общие сведения о Карачаганакском нефтегазоконденсатном месторождении. Его стратиграфия и тектоника. Расчет штангово-глубенной установки и подбор основного оборудования. Охрана труда и техника безопасности при эксплуатации скважин штанговыми насосами.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 01.06.2010
Размер файла 479,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образование и науки Республики Казахстан

Атырауский колледж Бизнес и Права

Курсовая работа

на тему: «Подбор штангово-глубенной насосной установки»

Выполнил:

студент IV-курса

Абенов Нурлыбек

Проверил:

преподаватель Шугаепов Асхат

Атырау - 2010

Содержание

Введение

1. Геологическая часть Р.К.

1.1 Общие сведения о месторождении

1.2 Стратиграфия и тектоника

2. Технико-технологическая часть

2.1 Расчет ШГНУ и подбор основного оборудования

3. Специальная тема ( два чертежа по спец. теме)

3.1 Подбор штангово-глубенной насосной установки

4. Охрана труда и окружающей среды нефтяной промышленности

5. Техника безопасности при эксплуатации скважин штанговыми насосами

Заключение

Использованная литература

Введение

Газовая промышленность является одной из ведущих отраслей нашего народного хозяйства. Природный газ и конденсат являются ценным сырьем для энергетической и химической промышленности.

Месторождение расположено в северной части бортовой зоны Прикаспийской впадины на территории Западно-Казахстанской области и имеет большое значение для развития промышленности Республики Казахстан в целом.

Большое содержание конденсата обуславливает высокую ценность добываемой пластовой смеси, которая является ценным исходным сырьем химической переработки.

На данном этапе разработки нефтегазоконденсатного месторождения остро встает вопрос о сохранении коэффициента конденсатоотдачи на высоком уровне, поддержание пластового давления начала конденсации для предотвращения ретроградных явлений и потерь конденсата в пласте и в призабойной зоне скважины.

Из существующих методов поддержания пластового давления газоконденсатных месторождений наибольшее распространение получил сайклинг-процесс.

Карачаганакское газоконденсатное месторождение открыто в 1979 году, когда Уральской нефтеразведочной экспедицией была пробурена первая разведочная скважина.

Это нефтегазовое месторождение имеет площадь свыше 200 км2 и является одним из самых продуктивных в мире по добыче нефти и газа.

Месторождение отличается сложным геологическим строением, значительным изменением рабочего давления на устье скважины различных объектов разработки, значительными колебаниями пластового состава по объектам разработки высоким содержанием конденсата от 490 до 1000 г/м3 и токсичных корозионно-активных элементов.

Установленный этаж газоносности составляет более 1600 м (интервал глубин 3700 - 5360 м).

Принимая во внимание все эти факторы, нужно знать о том, какие вредные вещества и газы присутствуют на месторождении, каковы их свойства и какие средства защиты необходимо применять.

1. Геологическая часть

1.1 Общие сведения о месторождении

Карачаганакское нефтегазоконденсатное месторождение расположено в Бурлинском районе Западно-Казахстанской области Республики Казахстан, в 30 км к северо-востоку от города Аксай, в 150 км к востоку от города Уральск.

Дорожная сеть представлена автомобильными дорогами с твердым покрытием Аксай - Оренбург, Уральск - Оренбург и Западно-Казахстанской железной дорогой, проходящей через город Аксай. Основными видами транспорта является автомобильный и железнодорожный.

В географическом отношении район представляет равнину с редкой сетью оврагов и балок. Абсолютные отметки рельефа изменяются от 80 до 130 метров. Гидрографическая сеть представлена к северу от месторождения рекой Урал, к северо-востоку рекой Илек, на западе рекой Утва. На площади встречаются небольшие естественные водоемы.

Техническое водоснабжение обеспечивается преимущественно за счет подземных вод. Водоносные горизонты, залегающие на глубинах от 5 до 110 метров и приурочены к трещиноватым мергелям и известнякам, а также песчаником. Климат района резко континентальный, температура воздуха от - 400С зимой и до + 400С летом.

Превалируют ветры юго-восточного и северо-западного направления. Среднегодовое количество осадков составляет 0,3 - 0,35 м, выпадающих в основном летом, осенью и зимой. Снеговой покров, как правило, незначительный, на возвышенных местах практически отсутствует. Глубина промерзания грунта колеблется от 1 до 1,5 метров в зависимости от толщины снежного покрова.

Продолжительность отопительного сезона 176 дней с 15 октября по 15 апреля. Растительность типичная для сухих степей. В пределах площади месторождения степи сплошь распаханы, свободны лишь участки вдоль оврагов и балок.

1.2 Стратиграфия и тектоника

Карачаганакское месторождение расположено на северной окраине Прикаспийской впадине. На основании данных сейсмической разведки в пределах территории Карачаганакского месторождения был выявлен хребет основания (слоя земной коры под осадочным слоем и над поверхностью Мохоровича). По оценке амплитуда хребта составляет 700 м, а глубина до его кровли - приблизительно-7 км. На основании сейсмических данных было высказано предположение о том, что основание покрыто комплексом древних терригенных отложений, над которыми залегают карбонатные отложения среднего и верхнего палеозоя. Эти отложения формируют крупный подсолевой массив, простирающийся в широтном направлении, параллельно окраине Прикаспийской впадины. Протяженность массива превышает 10 х 20 км, и его пределах общая толщина предсолевых карбонатных отложений верхнего девона и нижней перьми превышает 2000 м. За пределами массива мощность этих отложений составляет не более 600 м, и только изредка до 800 м. Карбонатные породы на всей площади покрыты карбонатно-сульфатными отложениями, мощность которых меняется значительным образом (от 7 - 10 до 3000 м).

С точки зрения взаимного положения по отношению к солевым структурам, большинство подсолевых поднятий Карачаганакского месторождения расположено в межкупольном пространстве между соленосными массивами - Карачаганакской, Кончебайской и Сухореченской солевыми структурами. Межкупольный прогиб в основном заполнен верхними пермскими и триасовыми терригенными отложениями, имеющими тенденцию к падению в южном направлении. Как межкупольные прогибы, так и солевые купола покрыты тонким слоем юрско-меловых, неогеновых и четвертичных отложений, мощность которых не превышает нескольких сотен метров.

Основной карбонатный массив Карачаганакского месторождения является составной частью фаменско - артинского структурного яруса, который образует крупный, протяженный подсолевой массив, залегающий параллельно склону Прикаспийской впадины. Размеры Карачаганакского карбонатного массива в плане составляет 15 х 30 км, а его высота равна 1600 м. Стуктурный ярус подразделяется на три подъяруса: верхний девонский - тунейский, визейский - башкирский и ранний пермский. Отклонения среднего визейского периода залегают на размытой поверхности верхнего девонского - турнейского подъяруса. Нижняя часть среднего визейского разреза содержит аргиллитовый карбонатный маркирующий горизонт, толщина которого изменяется от 1,75 до 23,5 м. Поверх этого горизонта проходит субширотная антиклинальная складка, северное крыло которой характеризуется более крутым уклоном. В горизонтальном разрезе эта складка совпадает с северо-западным и северо-восточным склонами приподнятого основания.

Визейско-башкирский подъярус сверху ограничен допермским перерывом в осадконакоплении. В уплощенной приподнятой части, там, где свод достигает максимальной ширины, гребень свода образует дугу. Эта антиклинальная часть поднятия оконтурена стратоизогипсами 4400 и 4500 м, образуя основание нижней пермской структуры.

Пермский суперструктура залегает поверх хребта каменноугольного массива в пределах стратоизогипсы 4500 м. Данные, полученные по результатам бурения, указывает на то, что первоначально ранний пермский атолл начал формироваться в широкой восточной части изометрического каменноугольного основания. Однако степи понижения западной части основания превышало скорость рифообразования, в результате чего риф приобрел дугу образную форму. В западной части каменноугольного основания процесс раннего пермского рифообразования обладал меньшой интенсивности, и на этом участке была обнаружена низкоамплитудная органическая структура размера 3 х 4 км и мощностью свыше 100 м.

Кунгурско-татарский структурный ярус, отмеченный соляной тектоникой, образует перекрывающие породы Карачаганакского месторождения. Особенности соляной тектоники вели к формированию соляных хребтов на северной и южной окраинах подсолевой структуры со сложными переходами между соленосными и терригенными породами. В плане средняя часть подсолевой структуры залегает согласно с межкупольным прогибом, где солевые отложения практически отсутствуют, при этом при движении с северо-востока на юго-запад кунгурское сульфатное подразделение последовательно покрыто уфимскими, казанскими и татарскими отложениями. Триасовые отложения, залегающие в прогибе, демонстрируют моноклинальное понижение с севера на юг. На севере они залегают под неогеново-четвертичными отложениями, и при перемещении к югу они последовательно покрыты юрскими и меловыми отложениями.

От верха пермского периода, около 3600 м ниже уровня моря, до глубины около 4950 м ниже уровня моря в каменноугольном регионе газовый конденсат медленно становится жирнее с увеличением глубины. Полученный при добыче газовый фактор уменьшается с приблизительно 2000 ст. м3 в верхней части газового региона до приблизительно 800 ст. м3 при глубине 4950 м ниже уровня моря. Остаточная (не разжижаемая) нефть, как видно, занимает около 4,5 % всего порового пространства в газовом регионе Карачаганака. Так как эта нефть не находится в состоянии равновесия с газом, газ в результате недонасыщен, так что конденсат не выпадает немедленно при снижении давления в резервуаре.

С 4950 м ниже уровня моря вниз до водонефтяного контакта, около 5150 м ниже уровня моря, находится нефтяное крыло. Этот нефтяной регион должен быть разделен на две части, в каждой из которых нефть имеет довольно различные жидкостные свойства. На юге и на западе месторождения нефть быстро уплотняется с увеличением глубины, а содержание газа снижается с 800 ст. м3 на 4950 м ниже уровня моря до приблизительно 250 ст. м3 при 5150 м ниже уровня моря. На северо-востоке месторождения плотность нефти возрастает с увеличением глубины гораздо медленнее, и газовый фактор снижается меньше - с 800 м3 на 4950 м ниже уровня моря вниз до приблизительно 500 ст. м3 при водонефтяном контакте. Нефть в юго-западном регионе явно находится в состоянии гравитационного равновесия (или близко к нему) с увеличением глубины, в то время как нефть на северо-востоке не достигла этого состояния, что, возможно, предполагает произошедший позднее приток газа в эту область.

Различие между нефтями юго-западного и северо-восточного региона не абсолютна, и в некоторых скважинах добывается промежуточный тип. Есть еще некоторая неопределенность относительно характера нефти северо-восточного региона.

Важно признать, что в Карачаганаке нет очень четкой границы между газом и нефтью. Состав жидкостей таков, что при водонефтяном контакте пластовая жидкость довольно близка к своей критической точке. Это означает, что газ и нефть имеет очень схожие составы, так что при переходе от газа к нефти изменения в жидкостных свойствах происходят постепенно, а не внезапно. Поэтому точная позиция водонефтяного контакта не ясна из данных, и в любом случае при построении данной модели использовалось цифра 4950м ниже уровня моря, принятая российскими исследователями.

Карачаганакское месторождение расположено во внутренней части северной бортовой зоны Прикаспийской впадины, характеризующийся большой толщиной осадочного чехла и проявлениям солевой тектоники. По данным сейсморазведки в районе месторождения выделяются выступы фундамента со сложным строением и глубиной залегания поверхности в 6-7 км. Месторождение пространственно сопряжено с поднятием фундамента, амплитудой около 100м, ограниченного с севера дугообразным прогибом. С юга поднятие окаймляется двумя ветвями субширотного сброса, по которым поверхность фундамента ступенчато погружается с севера на юг. Амплитуда сбросов нарастает в западном направлении достигая 1200м. Сбросы древнего заложения по кровле терригенного девона не прослеживаются. Основной карбонатный массив связан фаменскоартинским структурным этапом.

Основная нефтегазоконденсатная залежь приурочена к крупному нижнепермскому карбонатному массиву с растворами 29 х 16 км и амплитудой около 1700м. Залежь массивная экранируется галогенно-терригенной покрышкой, представленной отложениями кунгурского яруса и верхней перми. Кроме основной нефтегазоконденсатной залежи установлена продуктивность карбонатного горизонта, из которого в скважине под № 30 получен приток газа с конденсатом, дебитом 47,7 тыс.м? / сут. Толщина филипповского горизонта колеблется от первых метров до 302 м. В горизонте практически повсеместно встречаются доломитовые прослои толщиной от долей до 10 метров. Ловушка в горизонте пластов литологически замещённые границы залежей в краевых частях структуры определены уровнем газонефтяного контакта основной залежи. Коллекторские свойства пласта невысокие. По геофизическим исследованиям средние значения пористости в скважинах колеблются от 6 до 9% , достигая иногда 13%. Резервуар основной части залежи месторождения сложен аргоногенными известняками, доломитами и их переходными разностями. Тип коллектора поровый, порово-каверновый и в меньшей мере порово-трещинный и порово-каверно-трещинный. Залежь состоит из двух частей, газоконденсата, приуроченного к нижнепермско-каменноугольным отложениям и нефтяной подушки в каменноугольных отложениях. Газоконденсатная часть залежи охарактеризована 170 скважинами. Эффективные газонасыщенные толщины изменяются по скважинам от 30 до 1041метра, при средневзвешенной по площади 280м. Зоны максимальных толщин приурочены к области развития нижнепермского рифогенного комплекса в центральной части месторождения, эффективный объём которого равен 30 % всей части залежи.

Карачаганакское месторождение расположено в пределах погруженной части Северо-Каспийского артезианского нефтегазоконденсатного бассейна. В осадочном чехле бассейна выделяется серия водоносных горизонтов и комплексов, составляющих два гидрогеологических этажа (надсолевой и подсолевой), разделённых региональным водоупором соленосно-ангидритовой толщей кунгурского яруса. Данные этажи представляют собой самостоятельные водонапорные системы, отличающиеся как гидродинамическим режимом, так и особенностями подземных вод. В надсолевом этаже суммарная толщина которого достигает 3500 - 4000м, водоносные горизонты и комплексы приурочены к отложениям четвертичного, неогенового, мелового, юрского, триасового и верхнепермского возраста. Данные о пластовых водах получены по разведочным скважинам, в которых вода изливалась.

Дебит излива колеблется по скважинам от 1,9 до 49 м? / сут. Устьевое статическое давление составляет 2,29-3,303 МПа. Плотность воды колеблется от 1,0784 до 1,1127 кг /м?. Общая минерализация от 117 до 189 кг/м?. Пластовое давление 60,19 - 61,12 МПа.

2. Технико-технологическая часть

2.1 Расчет ШГНУ и подбор основного оборудования

Q дебскв = 35 м/сутк.

Y уд..вес = 0,8 м/м2.

H жуб.скв. = 1570м.

Коэфф.под.М = 0,75.

H дин.урвен у -прем.насос.

По диаграмме А донина пересечений проекции Q дебскв = 35 м/сутк.

L= 1570 м находим 7 ск 12-2,5-4000 диаметр плунжера насоса 32 мм.

При глубине больше 1200 метров следует выбрать вставной.

Насос НСВ - 1,32 - 3,5 = 15диаметр НКТ 60 мм трехступенчатая 25,22,19 мм.

423 м будет 25 мм, 471 м будет 22 мм, 675 м будет - 19 мм.

Режимные параметры 6 ск - 6 - 2,1 - 2500 по ГОСТ 5866 - 76.

для обеспечения продолжительной работы СК следует принять максимальную длина хода и найти по диаграмме А.Н. Адонина максимальную производительность насоса диаметром 32 мм, которая может быть получена при работе станка - качалки максимальных параметрах.

Q max = 38 м/сутк.

После этого находим максимальное число качаний по формуле

N = 12* 38 / 35 = 13 мин.

3. Специальная тема

3.1 Подбор штангово-глубенной насосной установки

Принцип работы станка качалки.

Электродвигатель через клиноремённую передачу и редуктор придаёт двум массивным кривошипам, расположенных с двух сторон редуктора, круговое движение. Крившипнно шатунный механизм в целом преобразовывает в возвратно-поступательное движение балансира, который вращается на опорной оси, укреплённой на стойке. Балансир сообщает возвратно-поступательное движение канатной подвеске, штангам и плунжеру.

При ходе плунжера вверх нагнетательный клапан под действием жидкости закрывается и вся жидкость, находящиеся под плунжером, поднимается вверх на высоту равную длине хода плунжера. В это время скважинная жидкость через всасывающий клапан заполняет цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, жидкость под плунжером сжимается, и открывается нагнетательный клапан. В цилиндр погружаются штанги, связанные с плунжером.

Таким образом, ШСН - поршневой насос однородного действия, а в целом комплекс из насоса и штанг - двойного действия.

Жидкость из НКТ вытисняется через тройник в нефтесборный трубопровод.

Принцип работы штанговой насосной установки.

Штанговая насосная установка состоит из скважинного насоса, который спускается в скважину под динамический уровень на насосно-компрессорных трубах диаметром 38-102мм. и штангах диаметром 16-25мм. индивидуального привода, состоящего из станка-качалки и электродвигателя, и устьевого оборудования, в состав которого входят: тройник с сальником и планшайба. Верхняя штанга, называемая полированным штоком, пропускается через сальник и соединяется с головкой балансира станка-качалки с помощью канатной подвески и траверсы.

Плунжерный насос приводится в действие от станка-качалки, где вращательное движение, получаемое от двигателя при помощи редуктора, кривошипно-шатунного механизма и балансира, преобразуется в возвратно-поступательное движение, передаваемое плунжеру штангового насоса через колонну штанг.

При ходе плунжера вверх под ним снижается давление, и жидкость из межтрубного пространства через открытый всасывающий клапан поступает в цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, а нагнетательный клапан открывается, и жидкость из цилиндра переходит в подъёмные трубы. При непрерывной работе насоса уровень жидкости в НКТ повышается, жидкость доходит до устья скважины и через тройник переливается в выкидную линию.

Эксплуатационная колонна;

Всасывающий клапан;

Цилиндр насоса;

Плунжер;

Нагнетательный клапан;

Насосно-компрессорные трубы;

Насосные штанги;

Крестовина;

Устьевой патрубок;

Обратный клапан для перепуска газа;

Тройник;

Устьевой сальник;

Устьевой шток;

Канатная подвеска;

Головка балансира;

Балансир;

Стойка;

Балансирный груз;

Шатун;

Кривошипный груз;

Кривошип;

Редуктор;

Ведомый шкив;

Клиноременная передача;

Электродвигатель на поворотной салазке;

Ведущий шкив;

Рама;

Блок управления.

Рисунок 1 - Схема штанговой скважинно-насосной установки (УШГН).

Описание работы насоса.

Скважинные штанговые насосы предназначены для откачивания из нефтяных скважин жидкости обводнённостью до 90 %, температурой не более 1300С, содержанием сероводорода не более 50 г/л, минерализирующей воды не более 10 г/л.

Скважинные насосы представляют собой вертикальную конструкцию одинарного действия с неподвижным цилиндром, с подвижным металлическим плунжером и шариковыми клапанами; спускаются в скважину на колонне насосно - компрессорных труб и насосных штанг.

Скважинные насосы изготавливаются следующих типов:

· НВ1 - вставные с замком наверху;

· НВ2 - вставные с замком внизу;

· НН - не вставные без ловителя;

· НН1 - не вставной с захватным штоком;

· НН2 - не вставной с ловителем.

Выпускаются насосы следующих конструктивных исполнении:

по конструкции (исполнению) цилиндра:

5 - с толсто стенным цельным (безвтулочным) цилиндром;

С - с составным (втулочным) цилиндром;

по конструктивным особенностям, определяемым функциональным назначением (областью применения):

Т - с полым трубчатым штоком, обеспечивающим подъём жидкостью по каналу колонны трубчатых штанг;

А - со сцепляющим устройством (только для насосов типа «НН»), обеспечивающим сцепление колонны насосных штанг с плунжером насоса;

Д 1 - одноступенчатые, двух плунжерные, обеспечивающие создание гидравлического низа;

Д 2 - одноступенчатые, двух плунжерные, обеспечивающие двухступенчатое сжатие откачиваемой жидкости (насосы исполнении Д 1 и Д 2 - одноступенчатые, одноплунжерные);

по стойкости к среде:

без обозначения - стойкие к среде с содержанием механических примесей до 1,3 г/л (нормальные);

И - стойкие к среде с содержанием механических примесей более 1,3 г/л (абразивостойкие).

В условном обозначении насоса, например НН25А-44-18-15-2, первые две буквы и цифры указывают тип насоса, следующие буквы - исполнение цилиндра и насоса, первые две цифры диаметр насоса, последующие - длину хода плунжера в мм. и напор в метрах, уменьшенные в 100 раз и последняя цифра - группу посадок.

Вставные скважинные насосы закрепляются в насосно-компрессорных трубах на замковой опоре типа ОМ, в условное обозначение, в которое входит: тип опоры; условный размер опоры; номер отраслевого стандарта.

Скважинный штанговый насос - гидравлическая машина объемного типа, где уплотнения между плунжером и цилиндром достигается за счёт высокой прочности их рабочих поверхностей и регламентируемых зазоров. В зависимости от размера зазора (на диаметр) в паре «цилиндр-плунжер» выпускают насосы четырёх групп посадок.

Цилиндры насосов выпускают в двух исполнениях:

ЦБ - цельный (без втулочный), толстостенный;

ЦС - составной из набора втулок, стянутых внутри кожуха переводниками.

В зависимости от назначения и области применения скважинных насосов плунжеры и пары «седло-шарик» клапанов выпускаются различных конструкций, материальных исполнении и различными видами уплотнений их рабочих поверхностей.

Плунжеры насосов выпускают в четырёх исполнениях:

П1Х - с кольцевыми канавками, цилиндрической расточкой на верхнем конце и с хромовым покрытием наружной поверхности;

П2Х - то же, но без цилиндрической расточки на верхнем конце;

П1И - с кольцевыми канавками, цилиндрической расточкой на верхнем конце и упрочнением наружной поверхности напылением износостойкого порошка;

П2И - то же, без цилиндрической расточкой на верхнем конце.

Пары «седло-шарик» клапанов насоса имеют три исполнения:

К - с цилиндрическим седлом и шариком из нержавеющей стали;

КБ - то же, с седлом с буртиком;

КН - с цилиндрическим седлом из твёрдого сплава и шариком из нержавеющей стали.

Конструктивно все скважинные насосы из цилиндра, плунжера, клапанов, замка (для вставных насосов), присоединительных и установочных деталей. При конструкции насосов соблюдается принцип максимально возможной унификации указанных узлов и деталей для удобства замены потребителем изношенных деталей и сокращения номенклатуры потребных запасных частей.

Скважинные насосы исполнения НСВ1 предназначены для откачивания из нефтяных скважин маловязкой жидкости с содержанием механических примесей до 1,3 г/л и свободного газа на приёме насоса не более 10 %.

Насос состоит из составного цилиндра исполнения ЦС, на нижний конец которого навёрнут сдвоенный всасывающий клапан, а на верхний конец - замок, плунжера исполнения П1Х, подвижно расположенного внутри цилиндра, на резьбовые соединения которого навинчены: снизу - сдвоенный нагнетательный клапан, а сверху - клетка плунжера.

Для присоединения плунжера к колонне насосных штанг насос снабжен штоком, навинченным на клетку плунжера и закрепленный контргайкой. В расточке верхнего переводника цилиндра расположен упор, упираясь на который, плунжер обеспечивает срыв скважинного насоса с опоры. Клапаны насосов комплектуются парой «седло-шарик» исполнения КБ или К.

Скважинный насос спускается на колонне насосных штанг в колонну НКТ и закрепляется в опоре.

Принцип работы заключается в следующем. При ходе плунжера вверх в межклапанном пространстве цилиндра создаётся разряжение, за счёт чего открывается всасывающий клапан и происходит заполнение цилиндра. Последующим ходом плунжера вниз межклапанный объём сжимается, за счёт чего открывается нагнетательный клапан и поступившая в цилиндр жидкость перетекает в зону над плунжером. Периодические совершаемые плунжером перемещения вверх и вниз обеспечивают откачку пластовой жидкости и нагнетания ее на поверхность.

Конструктивно скважинные насосы состоят из цельного цилиндра исполнения ЦБ с всасывающим клапаном, навинченным на нижний конец. На всасывающий клапан навинчен упорный ниппель с конусом. На верхнем конце цилиндра расположен защитный клапан, предотвращающий осаждение песка в цилиндре при остановке насоса.

Внутри цилиндра подвижно установлен плунжер исполнения П1Х с нагнетательным клапаном на нижнем конце и клеткой плунжера на верхнем конце. Клапаны насосов комплектуются парой «седло-шарик» исполнения К или КБ. Для присоединения плунжера насоса к колонне насосных штанг насос снабжен штоком, навинченным на клетку плунжера и закреплённый контргайкой.

В расточке верхнего переводника цилиндра расположен упор. Насос спускается в колонну НКТ на колонне насосных штанг и закрепляется в опоре нижней частью при помощи ниппеля упорного с конусом. Такое закрепление насоса позволяет разгрузить от пульсирующих нагрузок. Это обстоятельство обеспечивает применение его на больших глубинах скважин.

Скважинные насосы исполнения НСН1 предназначены для откачивания из малодебитных, относительно неглубоких скважин маловязкой жидкости с содержанием механических примесей до 1,3 г/л и свободного газа до 10 % по объёму.

Конструктивно скважинные насосы состоят из составного цилиндра исполнения ЦС с седлом конуса на нижнем конце, в конусной расточке которого размещен всасывающий клапан. Внутри цилиндра подвижно расположен плунжер исполнения П1Х с навинченным на нижний конец наконечником, а на верхний конец - нагнетательным клапаном.

На всасывающий клапан навинчен захватный шток, располагающийся внутри плунжера.

Насосы диаметром 29, 32 и 44 мм. снабжены штоком для соединения колонны насосных штанг с плунжером, а у насосов диаметром 57 мм плунжер привинчивается к насосным штангам резьбой на нагнетательном клапане.

Длина хода плунжера насосов исполнения НСН1 составляет 900мм.

Принцип работы насоса НСН1 аналогичен принципу насоса НСВ1, однако цилиндр насоса НСН1 спускается на колонне НКТ, а плунжер с клапанами - на колонне насосных штанг. При подъёме штанг головка захватного штока упирается в наконечник плунжера и обеспечивает извлечение соединенного с ним всасывающего клапана для слива из колонны НКТ.

Скважина 890 заложена согласно технологической схемы разработки Карачаганакское газоконденсатное месторождения утверждённой Центральной комиссией по разработке нефтяных месторождений.

Описание процесса освоения скважинны.

Устье скважин оборудовано арматурой тип.

ЭТГр БЗ 65х140 №419. Арматура опрессована. Герметична.

25 июня 1989 года в скважине проведена кумулятивная перфорация ПКС-80 в интервале 1476,0-1492,0 м.(-1231,5 - 1247,5) всего сделано 288 отверстий.

В скважину спущены 73 мм. НКТ до глубины стоп - кольца.

Скважина освоена компрессором.

73 мм. НКТ спущено 154 трубы мерой 1458,45м.

В скважине в интервале перфорации сделана соляно - кислотная обработка с сульфатом аммония. За 2 часа, при Р=100 атм. закачено 12 м3. В процессе обработки давления колебалось от 150 до 90 атм. Скважина освоена компрессором. Получена нефть. Силами ЦНИПРА снята кривая восстановления давления до и после кислотной обработки.

Таблица 1 - Карачаганакское нефтегазоконденсатное месторождение

Рнас (кгс/см2)

105

Пластовая температура (0С)

25

Объёмный коэф. нефти (ед.)

1,101

(Сп)

9

(г/см3)

0,824

Рпл. начал. (кгс/см2)

154

Газовый фактор

46

Газосодержание нефти (м3/т)

46

Пористость (доли ед.)

0,1

Рзаб. в доб.скважинах

70

(г/см3)

0,912

(Сп)

113,6

(Сп)

1,64

(г/см3)

1,181

Продуктианость (г/сМПа)

0,35

Проницаемость (Д)

0,111

Гидропроводность (МПас)

1,12

Пьезопроводность (см2/с)

119

Содержание: Серы (%)

2,79

Смол (%)

18,98

Парафина (%)

3,01

Анализ добывных возможностей скважин № 890, 893, 894,895, 896.

1) Определение коэффициента продуктивности скважин;

;

коэффициент продуктивности;

фактическая подача;

пластовое давление;

забойное давление.

2) Определение максимально допустимого давления;

максимально допустимое давление;

давление насыщения;

скв. № 893

скв. № 890

скв. № 894

скв. № 895

скв. № 896

3) Определение максимально допустимого дебита скважины;

максимально допустимый дебит скважины;

коэффициент продуктивности;

пластовое давление;

максимально допустимое давление.

скв № 893

скв № 890

скв № 894

скв № 895

скв № 896

4) Определение разности между max. дебитом и фактическим дебитом скважины;

разность между максимальным и фактическим дебитами;

максимально допустимый дебит скважины;

фактическая подача;

скв № 893

скв № 890

скв № 894

скв № 895

скв № 896

Вывод:

Исходя из расчётов, которые приведены выше видно, что в скважинах № 893, 890, 894 разница между фактическим и максимально допустимым дебитом невелика, по этому я рекомендую оставить добычу на прежнем уровне. А у скважин № 895, 896 - очень большая разница между фактическим и максимально допустимым дебитом, поэтому нужно произвести замену оборудования (ШСН).

Анализ технологических режимов.

1) Определение газового фактора;

коэффициент обводненности;

плотность нефти

скв № 890

скв № 893

скв № 894

скв № 895

скв № 896

2) Определение относительную плотность газа по воздуху;

плотность газа;

плотность воздуха

3) Определение газосадержания;

относительная плотность;

газовый фактор;

скв № 890

скв № 893

скв № 894

скв № 895

скв № 896

4)Определяем плотность пластовой жидкости;

при :

плотность воды;

плотность нефти;

коэффициент обводненности;

газовый фактор;

объёмный коэффициент;

скв № 890

скв № 893

скв № 894

скв № 895

скв № 896

5) Определение приведенного давления;

пластовое давление;

средне критическое давление.

скв № 890

скв № 893

скв № 894

скв № 895

скв № 896

6) Определение оптимальной глубины погружения насоса под динамический уровень;

приведённое давление;

затрубное давление;

плотность жидкости или смеси;

ускорение свободного падения

скв № 890

скв № 893

скв № 894

скв № 895

скв № 896

7) Определение фактической глубины погружения насоса под динамический уровень;

глубина спуска насоса;

динамический уровень;

скв № 890

скв № 893

скв № 894

скв № 895

скв № 896

8) Определение разности между оптимальной и фактической глубиной погружения насоса;

оптимальная глубина;

фактическая глубина;

скв № 890

скв № 893

скв № 894

скв № 895

скв № 896

9) Определение коэффициента подачи насоса;

фактический дебит;

теоретический дебит;

скв № 890

скв № 893

скв № 894

скв № 895

скв № 896

Вывод:

В результате сделанных расчётов я пришел к выводу что насосы в скважинах № 890, 893, 894, 896 спущен больше чем нужно по этому я рекомендую поднять насосы на 593, 54, 455, 91 метров соответственно. А на скважине № 895 поднять на 94 метра.

Коэффициент подачи насоса у скважин № 893, 894, 895, 896 в норме а у скважины № 890 я рекомендую произвести замену насоса.

Выбор оборудования скважины № 890.

1) Определение дебита скважины;

коэффициент продуктивности;

пластовое давление;

забойное давление.

2) Определение глубины спуска насоса;

фактическая глубина;

забойное давление;

предельно оптимальное давление;

плотность смеси;

ускорение свободного падения.

пластовое давление.

3)Определение объёмной теоретической производительности установки;

дебит;

плотность смеси;

коэффициент полезного действия.

4) По диаграмме А.Н. Адоненова выбирают диаметр насоса;

5) Определяют тип насоса;

маркировка станка качалки;

максимальная нагрузка на головку балансира;

длина хода полированного штока;

максимальный крутящийся момент электродвигателя.

6) Выбирают по рекомендательным таблицам конструкцию насосных штанг;

7) Определяют число качаний СК;

дебит скважины;

площадь поперечного сечения плунжера;

длина хода штока;

плотность смеси;

диаметр плунжера;

КПД насоса.

8)Определяют мощность электродвигателя;

диаметр плунжера;

длина хода штока;

коэффициент подачи насоса;

КПД насоса;

КПД станка-качалки;

коэффициент уравновешивания СК;

глубина до динамического уровня;

плотность смеси;

забойное давление;

Вывод:

Выбранное мной оборудование не совпадает с установленным СК6-2,1-2500 и 20 кВт двигатель, по этому я рекомендую установить на скважину № 890, СК3-0,75-400 и двигатель АОП63-4.

4. Охрана труда и окружающей среды нефтяной промышленности

На Карачаганакский месторождений значительное внимание уделяется мероприятиям по охране недр и окружающей среды. В своей работе я использую материалы за 2000 год.

Общий комплекс мероприятий составляет гигантский список, остановлюсь только на основных:

1) Контроль за состоянием подземных вод;

2) Замеры газовоздушной среды на объектах нефтедобычи, для охраны атмосферного воздуха;

3) Контроль за техническим состоянием объектов нефтедобычи, подготовки м транспорта нефти, предотвращение аварий;

4) Отбор проб с водоёмов содержание радионуклидов, для контроля радиационной обстановки;

5) Контроль, за состоянием малых рек, для охраны водоёмов;

6) Поддержка работоспособного состояния гидрозатворов на реках и ручьях;

7) Закачка (утилизация) пластовой воды, для поддержания пластового давления;

8) Использование ингибиторов коррозии для обработки сточных вод, для сокращения порывов;

9) Согласование проекта и начало строительства спец. хранилища для захоронения грунта загрязненного радионуклидами, для утилизации загрязнённого грунта;

10) Капитальный ремонт нефтепроводов, в том числе с эмалированным покрытием для предотвращения порывов;

11) Обустройство в обваловках промысловых объектах водосливных устройств, для спуска незагрязнённых ливневых вод и предотвращения промыва обваловок, для предотвращения порывов;

12) Проверка готовности аварийных средств для ликвидации последствий аварий и строительства гидрозатворов, для предотвращения попаданий загрязнений;

13) Рекукультивция земель, для охраны земли;

14) Контроль за состоянием площадок скважин при проведении ремонтных работ, для охраны земель.

5. Техника безопасности при эксплуатации скважин штанговыми насосами

Устье скважины оборудуются запорной арматурой и сальниковым устройством герметизации устья.

Обвязка устья скважины должна позволять смену набивки сальника полировочного штока при наличии давления в скважине, замер устьевого давления и температуры.

До начала ремонтных работ или перед осмотром оборудования периодически работающей скважины с автоматическим, дистанционным или ручным пуском, электродвигатель должен отключатся, контр. Груз должен быть опущен в нижнее положение и заблокирован тормозным устройством, а на пусковом устройстве должен быть вывешен знак: «Не включать работают люди».

На скважинах с автоматическим и дистанционным управлением станков - качалок вблизи пускового устройства на видном месте должны быть укреплены плаката с надписью: «Внимание! Пуск автоматический».

Кривошипно - шатунный механизм станка - качалки, площадка обслуживания электропривода и пусковое устройство должны быть покрашены и иметь ограждения.

Система замера дебита, пуска, остановки скважины должны иметь выход на диспетчерский пульт.

Станок - качалка должен быть установлен так, чтобы исключалось соприкосновение движущийся части с фундаментом или грунтом.

Для обслуживания тормоза станка - качалки устанавливается площадка с ограждением.

При крайнем нижнем положении головки балансира расстояние между траверсой подвески сальникового штока или штангодержателем и устьевым сальником должно быть не менее 20 метров.

Кондуктор (техническая колонна) должен быть связан с рамой станка - качалки не менее чем двумя заземляющими стальными проводниками, приваренных в разных местах к кондуктору. Сечение прямоугольного проводника должно быть не менее 48 мм толщина стенок угловой стали не менее 4 мм, диаметр круглых заземлителей 10мм.

Заземляющие проводники, соединяющие раму СК с кондуктором(технической колонной), должны быть заглублены в землю не менее, чем на 0,5 м.

Применение для этих целей стального каната не допускается. Соединение заземляющих проводников должно быть доступным для осмотра.

Противопожарные мероприятия.

На каждом предприятии необходимо иметь данные о показателях пожаровзрывоопастности веществ и материалов, применяемых в технологических процессах.

Параметры режима работы технологического оборудования, связанного с применением горючих газов, сжиженных горючих газов, легковоспламеняющихся жидкостей, а также с наличием взрывопожароопасной пыли, обеспечивает взрывопожаробезопасность технологического процесса.

Температура подогрева темных нефтепродуктов при хранений, а также при проведении сливоналивных операций ниже температуры вспышки нефтепродукта в закрытом тигле на 350 С и не превышать 900 С.

На приборах контроля и регулирования обозначают допустимые области взрывопожаробезопасных параметров работы технологического оборудования.

При отклонений одного или нескольких взрывоопасных параметров от допустимых пределов приборы контроля и регулирования подают предупредительные и аварийные сигналы.

Для каждого резервуара устанавливается максимальный придел заполнения.

Схема обвязки трубопровода предусматривает, как правило, возможность выключения неисправного оборудования из технологического процесса и обеспечивает аварийный слив.

Основное и вспомогательное технологическое оборудование предприятия защищает от статического электричества.

Работы на взрывопожароопасных технологических объектов выполняется инструментом, исключающим образование искр.

Оборудование линейной части магистральных нефтепродуктопроводов, а также их ограждение содержат в исправном состояний, а растительность в пределах ограждения систематический удаляют.

Сооружения защиты от разлива нефтепродуктов, своевременно ремонтируется, очищаются от нефтепродукта и отложений.

Помещения насосных станций должны быть оснащены газоанализаторами взрывоопасных концентраций, а при их отсутствии на объекте устанавливают порядок отбора и контроля проб.

Устанавливают постоянный контроль за герметичность резервуаров и их оборудование.

Люки, служащие для замеров уровня и отбора проб из резервуаров, имеют герметичные крышки. С внутренней стороны люки снабжают кольцами из металла, исключающего образование искр.

Перед розжигом огневой печи трубопроводы подачи топлива ко всем неработающим форсункам отглушаются. Зажигать форсунки огневой печи без предварительной продувки камеры сгорания и дымовой трубы водяным паром запрещают. Продувку следует вести не менее 15 минут после появления пара из дымовой трубы.

Для отогрева трубопроводов и узлов задвижек применяют пар, горячею воду или песок, а затем также электроподогрев во взрывозащищенном исполнении.

Сети эвакуационного освещения и систем пожарной автоматики присоединяются независимым от основной сети источникам питания или автоматически переключаются при отключений основных источников.

Здания, сооружения и открытые производственные установки в зависимости от назначения, класса взрывоопасных и пожарных зон, среднегодовой продолжительности гроз в районе их расположения и ожидаемого количества поражений молнией обеспечивают молниезащитных зданий и сооружений и настоящих правил.

Заключение

При составлении проекта разведки месторождения Карачаганак были проанализированы материалы сейсморазведки, данные промыслово-геофизических исследований по всем пробуренным скважинам на структуре, которые вскрыли разрез надсолевых отложений.

В сводной таблице приведены основные виды и объемы ГРР (объемы бурения, ГИС, отбор керна, исследования).

Весь период проектируемых разведочных работ по данному проекту, включающий сейсмические работы, бурение скважин, будет выполнен за 2008-2010 годы согласно календарному плану.

Проектом разведки предусматривается бурение 10 разведочных скважин с целью выявления и оконтуривания залежей нефти и газа в меловых, триасовых отложениях.

В соответствии с существующими инструкциями на проектные скважины возложены задачи: вскрытие в наиболее оптимальных структурно-геологических условиях на полную мощность разреза продуктивных отложений, оконтуривание залежей, изучение физических свойств коллекторов по промыслово-геофизическим материалам и лабораторными методами, изучение физико-химических свойств пластовых флюидов, гидродинамических особенностей.

Использованная литература

1) СП « Бектель Снампрожетти»: «Проект разработки месторождения Карачаганак», 1999.

2) Материалы, собранные на практике.

3) ЭНГС «Недра» 1989. А.И. Акульшин, и др.

4) Айткалиева Н., Кожабаев А.С. и др. Генеральная программа ГРР на нефть и газ на территории Междуреченского блока.

5) В.М. Муравьёв, Эксплуатация нефтяных и газовых скважин., М., «Недра», 1989.

6) Техническое черчение. Вышнепольский Москва 1988.

7) Добыча нефти и газа. Ф.С. Абдулин Москва, «Недра» 1983.

8) Нефтепромысловое оборудование. Е.И. Бухаленко Москва, «Недра», 1990.

9) Макет проекта разведки площади нефти и газа.

10) Юрчук А.М. Расчеты в добыче нефти. - М.: Недра, 1974.

11) Муравьев И.М. Технология и техника добычи нефти и газа. - М.: Недра, 1971.

12) Бухаленко Е.И., Абдуллаев Ю.Г. Монтаж, обслуживание и ремонт нефтепромыслового оборудования: Учебник для учащихся профтехобразования и рабочих на производстве. - М.: Недра, 1985.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.