Геология
Значение инженерной геологии для строительства и эксплуатации промышленных и гражданских сооружений. Основные физико-механические свойства горных пород. Методы определения абсолютного и относительного возрастов пород. Процессы внутренней динамики Земли.
Рубрика | Геология, гидрология и геодезия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 10.03.2010 |
Размер файла | 159,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Вопрос №1. Объясните значение инженерной геологии для строительства и эксплуатации промышленных и гражданских сооружений
Ответ:
Инженерная геология - отрасль геологии, изучающая верхние горизонты земной коры и динамику последней в связи с инженерно-строительной деятельностью человека. Рассматривает состав, структуру, текстуру и свойства горных пород как грунтов; разрабатывает прогнозы тех. процессов и явлений, возникающих при взаимодействии сооружений с природной обстановкой, и пути возможного воздействия на процессы с целью устранения их вредного влияния.
Трудно переоценить значение инженерно-геологических изысканий для строительства любого по величине и значимости сооружения. Дороже становится дом, возведенный на недостаточно исследованном участке. Ведь под зданием могут оказаться подземные воды, торф, просадочные грунты. В результате - “кривые” стены, трещины, сырость и плесень в подвалах и прочее, что приносит определенные сложности при эксплуатации зданий. Вода способствует растворяемости различных химических соединений, в том числе и агрессивных, что приводит к неблагоприятному воздействию на цементный раствор, каменную кладку, бетон. И хотя процесс разрушения фундамента незаметен, его последствия ощутимо сказываются на здании: нарушается целостность несущих конструкций, плесень и грибок проникают через подвал на верхние этажи и “заражают” в конце концов, весь дом. Дверные коробки и оконные рамы деформируются, что становится причиной появления щелей и зазоров, через которые дом начинает ускоренно терять тепло. Паркет или любое другое напольное покрытие под воздействием сырости коробится. Ремонт становится неотвратимым. А он влечет новые затраты, причем без гарантии, что восстановительные процессы не придется повторять снова и снова. Все это, в большинстве своем, возможно лишь при некачественной или несвоевременной оценке инженерно-геологических условий стройплощадки.
Инженерно-геологические изыскания для строительства обеспечивают комплексное изучение природных и техногенных условий территории (региона, района, площадки, участка, трассы) объектов строительства, составление прогнозов взаимодействия этих объектов с окружающей средой, обоснование их инженерной защиты и безопасных условий жизни населения. На основе материалов инженерных изысканий для строительства осуществляется разработка предпроектной документации, в том числе градостроительной документации и обоснований инвестиций в строительство, проектов и рабочей документации строительства предприятий, зданий и сооружений, включая расширение, реконструкцию, техническое перевооружение, эксплуатацию и ликвидацию объектов, ведение государственных кадастров и информационных систем поселений, а также рекомендаций для принятия экономически, технически, социально и экологически обоснованных проектных решений.
Топографо-геологические изыскания. Наличие материалов инженерно-геологических и геодезических изысканий на площадке проектируемого дома позволяет избежать многих ошибок проектирования, строения и прокладки наружных инженерных систем: правильно расположить все строения на отведенном участке, вспомогательные помещения внутри коттеджа, которые требуют подачи воды и отвода хозфекальных стоков, организовать отвод поверхностных вод с учетом рельефа местности.
При обустройстве автономного источника водоснабжения (колодец или скважина) и местных очистных сооружений без инженерно-геодезических и гидрогеологических изысканий просто нельзя обойтись. Изыскания проводят для определения несущих характеристик грунтов, состава и уровня грунтовых вод. Характер грунта на участке диктует конструктивное устройство фундамента, возможность устройства подвала, способ прокладки коммуникаций, тип очистных сооружений и в целом влияет на экономичность строительства.
Геологические работы включают: 1) бурение; 2) отбор проб грунта и воды (на постройку здания - от 2 до 6 скважин различной глубины в зависимости от габаритов здания и состава грунтов); 3) лабораторные испытания; 4) составление отчета с рекомендациями по типу фундаментов, способам прокладки коммуникаций и мероприятиям по их защите.
При исследовании грунта учитываются следующие основные показатели:
- пучинистость, то ест сила, с которой грунт при воздействии отрицательных температур будет выталкивать из себя фундамент, трубы и заглубленные очистные сооружения. На основе полученных данных прогнозируют допустимую деформацию инженерных сооружений и, соответственно, выбирают материалы, способы строительства и обустройства систем;
- водонасыщенность, то есть уровень грунтовых вод. Знание этого показателя помогает, во-первых, определить глубину будущего колодца или частной скважины и, во-вторых, позволяет прогнозировать устойчивость строения и проложенных коммуникаций;
- агрессивность вышестоящих грунтовых вод: в случае высокой концентрации некоторых химических соединений приходится использовать специальные марки бетона и думать о специальной защите труб и кабелей.
Неразумно строить или реконструировать сооружение, не зная точно геологического строения участка (на каких грунтах будет монтироваться фундамент, физико-механических характеристик и несущей способности грунтов под нагрузкой, их коррозионной активности, режима подземных вод и т.д. и т.п.), а, следовательно - какую выбрать конструкцию и глубину заложения фундамента. Одни и те же грунты ведут себя по разному в результате обводнения или промерзания, серьезно меняют свои прочностные характеристики в результате разрушения их природной структуры и влажности.
Строительные нормы и правила устанавливают основные положения по определению опасных природных воздействий, вызывающих проявления и (или) активизацию природных процессов, учитываемых при разработке предпроектной документации (обосновании инвестиций в строительство объектов, схем и проектов районной планировки, генеральных планов городов, поселков и сельских поселений и другой документации), технико-экономических обоснований и рабочей документации на строительство зданий и сооружений, а также схем (проектов) их инженерной защиты.
Вопрос №2. Опишите минералы (табл.1) и породы (табл.2), отвечая на вопросы, помещенные в примечаниях к этим таблицам
Таблица 1
Исходные данные к описанию минералов
Последняя цифра шифра |
Минерал |
|
2 |
Гипс |
Таблица 2
Исходные данные к описанию пород
Предпоследняя цифра шифра |
Породы |
Последняя цифра шифра |
Породы |
|
0 |
Сиенит-порфир, лёсс |
2 |
Гнейс |
Ответы:
№1.
Гипс -- минерал из класса сульфатов, по составу CaSO4*2H2O. Цвет белый, серый, иногда красноватый. Черта белая. Блеск стеклянный или шелковистый (у волокнистых разностей), спайность весьма совершенная в одном направлении (расщепляется на тонкие пластинки). Волокнистые разности дают занозистый излом. Твердость 1,5-2. Гипс является типичным осадочным минералом. Встречается гипс в пластах осадочных пород в форме чешуйчатых, волокнистых или плотных мелкозернистых масс; в виде бесцветных или белых кристаллов, иногда окрашенных захваченными ими при росте включениями и примесями в бурые, голубые, жёлтые или красные тона. Образует прожилки параллельно-волокнистой структуры (селенит) в глинистых осадочных породах, а также сплошные мелкозернистые агрегаты, напоминающие мрамор (алебастр). Иногда в виде землистых агрегатов, а также слагает цемент песчаника. В почвах аридной зоны формируются новообразования гипса: одиночные кристаллы, двойники («ласточкины хвосты»), друзы, «гипсовые розы». Гипс при реакции с соляной кислотой остаётся инертным.
Сиенит-порфир - это субвулканическая или жильная горная порода, состоящая в основном из крупных кристаллов калий-натриевого полевого шпата, амфиболов или моноклинного пироксена, помещённых в основную скрытокристаллическую массу из тех же минералов. Цвет розово- или буровато-серый, структура трахитовая. Встречается среди верхнедевонских вулканогенных образований на юго-востоке республики.
Сиенит:
Кислотность. SiO2 52-65 % -- средняя порода.
Химический состав: калиевый полевой шпат, плагиоклаз, с примесью цветных минералов: роговой обманки, биотита, пироксена, изредка оливина. В отличие от гранита практически не содержит кварца (менее 5%). В зависимости от содержания цветных минералов сиениты называют роговообманковыми, слюдяными, кварцевыми и др. В химическом отношении сиениты характеризуются содержанием кремнезёма от 55 до 65%, а по содержанию щелочей разделяются на нормальные и щелочные. В нормальных сиенитах плагиоклазы представлены олигоклазом и андезином; в щелочных - присутствуют калиевые полевые шпаты, реже -- альбит.
Цвет: светлоокрашенные породы, сероватые и розоватые, в зависимости от цвета калиевого полевого шпата и содержания темноцветных минералов.
Структура: полнокристаллическая, равномерно кристаллическая, иногда порфировидная, мелко- и среднезернистая.
Текстура: массивная. Форма залегания: дайки, штоки. Отдельность: пластовая или параллелепипедальная. Генезис: интрузивная (плутоническая) порода. Месторождения: Украина (Волынская область), Урал, Казахстан, Кавказ, Средняя Азия, США, Канада, Германия, Норвегия и др. Сиенитами сложены знаменитые Красноярские столбы. Практическое значение: строительный материал. Разновидности: при содержании кварца более 5% порода называется кварцевым сиенитом. Сиениты, содержащие щелочные пироксены и амфиболы, выделяются как щелочные сиениты, а фельдшпатоиды -- как фельдшпатоидные сиениты. Диагностика: в отличие от гранита «не блестит», так как практически не содержит кварца.
Порфимр: общее название эффузивных кислых горных пород, имеющих порфировую структуру. Палеотипный аналог липаритов (кварцевый порфир) и трахитов (полевошпатовый порфир, ортоклазовый порфир). Мелкокристаллическая изверженная горная порода с крупными включениями. По химическому составу близок к граниту. Цвет: тёмно-красный, пурпурный. Название происходит от своеобразной красной породы с белыми крупными вкрапленниками ортоклаза. Для порфира характерна основная масса из стекла, замещённого фельзитом (субмикроскопическим кварц-полевошпатовым агрегатом), и микролитов альбита или ортоклаза, а также вкрапленников ортоклаза или ортоклаза и кварца. Часто к ним присоединяются биотит или роговая обманка. Порфир -- типичный компонент древних вулканогенных толщ. Различают порфиры кварцевые -- относятся к кислым горным породам, характеризующихся явным включением кристаллов кварца (например, риолит, дацит) и бескварцевые (ортоклазовый порфир -- ортофир) -- относятся к группе пород, включающих кристаллы пироксенов и амфиболов (например, трахит, латит, андезит).
Лёсс: осадочная горная порода, неслоистая, однородная известковистая, суглинисто-супесная, имеет светло-жёлтый или палевый цвет. Лёсс залегает в виде покрова: от нескольких метров до 50--100 м -- на водоразделах, склонах и древних террасах долин.
Вопрос о происхождении лёсса ещё не получил общепринятого решения. Его образование связывали с различными геологическими процессами (на суше -- с деятельностью ветра, дождевых и талых снеговых вод, почвообразованием и выветриванием, вулканизмом, осаждением космической пыли, осадкообразованием в озёрах и морях) и стадиями породообразования. В 1877 немецкий учёный Ф. Рихтгофен предложил гипотезу субаэрального (при ограниченной роли воды) происхождения китайского лёсса. Популярны теории эолового (В. А. Обручев), почвенного (Л. С. Берг) и комплексного (эоловые, делювиальные и почвенно-элювиальные процессы в засушливом климате) происхождения лёсса.
Минеральный состав: по своему составу лёсс относится обычно к суглинкам, реже к супесям. Крупные частицы в лёссе состоят преимущественно из кварца и полевого шпата, в меньшем количестве -- из слюд, роговой обманки и т. д. В отдельных прослоях изобилуют зёрна вулканического пепла, переносившегося ветром на сотни километров от места извержения. Тонкие частицы в лёссе состоят из различных глинистых минералов (гидрослюда, каолинит, монтмориллонит). В лёссе иногда встречаются известковистые конкреции, раковины наземных моллюсков и кости млекопитающих, особенно грызунов и мамонта.
Лёсс является материнской породой чернозёмных и серозёмных почв. Он используется для изготовления кирпича («сырец», «саман») и цемента, для отсыпки тела дамб и плотин. После увлажнения лёсса под давлением собственного веса или веса сооружений часто уплотняется, происходят просадки грунта, что может вызывать аварии сооружений.
Дисперсный состав (гранулометрия): в лёссе преобладают частицы 0,01--0,05 мм; глинистые частицы менее 0,005 мм присутствуют в количестве 5--30 %; некоторое количество частиц 0,01-0,05 мм представлено агрегатами, образовавшимися при коагуляции коллоидной части породы.
Пористость лёсса 40--55 %. Обычно он пронизан тонкими канальцами (макропорами, следами растительных остатков).
Гнейс: метаморфическая горная порода, главными минералами которой являются плагиоклаз, кварц и калиевый полевой шпат (микроклин или ортоклаз), в подчиненном количестве могут присутствовать биотит, мусковит, роговая обманка, пироксен, гранат, дистен, силлиманит и другие минералы. По химическому составу гнейсы близки гранитам и глинистым сланцам. Гнейсы могут образовываться при региональном метаморфизме как осадочных (глинистые сланцы), так и магматических пород кислого и среднего состава (граниты, диориты и т. п.). В первом случае они называются парагнейсами, во втором -- ортогнейсами. Однако, отличить ортогнейсы от парагнейсов удаётся далеко не всегда.
Название происходит от славянского слова «гнус» -- гнилой. Саксонские рудокопы определяли словом «гнейс» выветренную рыхлую породу, сопровождающую рудные тела.
Гнейсы являются одними из наиболее распространённых в земной коре пород. Они слагают большую часть гранитно-метаморфического слоя континентальной земной коры, который обнажается на кристаллических щитах (например, Балтийский, Украинский, Канадский) и слагают фундаменты древних платформ (например, Сибирская).
Наиболее древние из известных в настоящее время на Земле пород -- серые гнейсы района Акаста, слагающие фундамент эократона Слейв Канадского щита имеют возраст 3,92 млрд лет. Однако далеко не все гнейсы имеют древний возраст -- известны гнейсы кайнозойского возраста формирование которых связано с высокотемпературным метаморфизмом (например в гранитно-метаморфичеких ядрах кордильерского типа).
Структура полнокристаллическая (мелко-, средне-, или грубозернистая, гранобластовая или лепидогранобластовая). Текстура полосчатая (гнейсовая), часто плойчатая. Матрацевидная или толстоплитчатая отдельность.
Разновидности: основанием для выделения разновидностей могут служить особенности минерального и химического состава, а также структуры и текстуры породы. Например -- плагиогнейсы, породы в которых полевые шпаты представлены главным образом плагиоклазом, силлиманитовые гнейсы -- то есть породы, кроме обязательного для гнейсов набора минералов (кварц и полевые шпаты) содержащие еще и силлиманит и т. д. Гнейсы возникающие при метаморфизме осадочных пород, обычно обогащены глинозёмом и нередко содержат такие минералы как андалузит, силлиманит, кианит, гранат. Такие гнейсы называют высокоглиноземистыми. Гнейсы порфиробластической структуры, содержащие крупные порфиробласты или порфирокласты полевых шпатов (обычно микроклина) нередко называют очковыми (augne gneiss).
Вопрос №3. Назовите основные физико-механические свойства горных пород, знание которых необходимо для проектирования и строительства. Опишите условия образования и строительные свойства грунтовых отложений (табл.3).
Таблица 3
Исходные данные к описанию строительных свойств отложений
Последняя цифра шифра |
Отложения |
|
2 |
Элювиальные |
Основные физико-механические свойства горных пород:
Показатели физических и механических свойств скальных и нескальных грунтов между собой довольно значительно разнятся, особенно физические. Характеристики физических свойств выражают физическое состояние грунтов (плотность, влажность и др.) и позволяют их классифицировать по типу, виду и разновидностям. Под механическими подразумевают такие свойства, которые появляются в грунтах под воздействием внешних усилий (давлении, удара.).
Для решения задач проектирования зданий и сооружений все физико-механические характеристики грунтовых оснований разделяют на две группы:
1) показатели физико-механических свойств, которые используют непосредственно в расчетах оснований;
2) вспомогательные показатели, с помощью которых осуществляют классификацию грунтов, прогнозируются механические характеристики первой группы, выделяют инженерно-геологические элементы в толще грунтов
Характеристики физико-механических свойств используемых в расчетах оснований
Прочность грунта оценивается максимальной нагрузкой, приложенной к нему в момент разрушения (потери сплошности). Эта характеристика называется пределом прочности Rc измеряется в МПа, или временным сопротивлением сжатию.
На прочность грунтов влияют: минеральный состав, характер структурных связей, трещиноватость, степень выветрелости, степень размягчаемости в воде. Для нескальных грунтов другой важной характеристикой прочности является сопротивление сдвигу. Определение этого показателя необходимо для расчета устойчивости оснований, а так же для оценки устойчивости грунтов в откосах строительных котлованов, расчета давления грунта на подпорные стены и т. д. Сопротивление сдвигу оценивается силами внутреннего сдвига ц измеряется в градусах, сцепления C, кПа. Под первыми понимают силы сопротивления, которые возникают между соприкасающимися друг с другом частями грунта, а под вторым - сопротивление структурных связей грунта всякому перемещению слагающих частиц.
Для практических расчетов по деформациям и несущей способности грунтов применяются показатели удельного сопротивление C, кПа, ц, град. Сдвиговые характеристики определяют полевыми работами (срез целиком грунта, вращательный срез, зондирование) и лабораторными исследованиями в приборе плоского среза (стабилометре)
Деформационные свойства характеризуют поведение грунтов под нагрузками, не превышающими критические и не приводящие к разрушению. Деформируемость грунтов зависит как от сопротивляемости и податливости структурных связей, пористости, так и от способности деформироваться слагающих их минералов.
Для проведения расчетов по деформациям грунтов используют модуль общей деформации E, измеряется в МПа. Для его определения проводят штамповые и прессиометрические полевые работы, а так лабораторные исследования компрессионные и стабилометрические испытания грунтов.
При определении ориентировочных размеров подошвы слоя по таблицам СНиП 2.02.01-83 находят значение расчетного сопротивления грунтов R0 (кПа)
Для расчета стабилизации осадок зданий и сооружений определяющим показателем будет коэффициент фильтрации kф. Определяется в лабораториях, по таблицам, по опытным откачкам воды для водонасыщенных и наливы для сухих грунтов.
В расчетах по деформациям и по несущей способности грунтов используется плотность грунта p (отношение массы образца к его объему).
Вспомогательные характеристики, отражающие физические свойства дисперсных грунтов
Важными расчетными характеристиками являются коэффициент пористости е, степень влажности Sr и показатель текучести JL. Они характеризуют состояние грунтов. По наименованию грунтов и их коэффициенту пористости определяют плотность сложения песчаных грунтов. Показатель текучести характеризует подвижность глинистых частиц при механических воздействиях на грунт. JL отражает степень заполнения пор грунтовой водой
В лабораторных условиях для определения гранулометрического состава исследуют зерновой и микроагрегатный состав (по ГОСТ 12536-84), природную влажность W, влажность на границе раскатывания (пластичности) для глинистых грунтов Wp, влажность на границе текучести только для пылеватоглинистых грунтов WL (по ГОСТ 5180-84).
Кроме указанных характеристик на свойства грунтов во многих случаях существенное влияние оказывают минеральный и химический составы, структуры и текстуры, для скальных грунтов - трещиноватость, степень выветрелости, для дисперсных - содержание водорастворимых солей, присутствие органического вещества.
Реологические свойства грунтов. При оценке свойств грунтов следует помнить, что эти свойства могут изменяться во времени в силу воздействия процессов выветривания и многолетнего воздействия больших нагрузок. Всё это приводит к «усталости» грунтов. В грунтах возникают процессы деформации в виде ползучести и даже текучести. - этот процесс называется реологическим. В результате грунт разрушается, издание деформируется.
Условия образования и строительные свойства морских грунтовых отложений:
К морским отложениям относятся большинство известняков, доломитов, мергелей и кремнистых пород, значительная часть глин и аргиллитов, алевролитов, песчаников, конгломератов, а из полезных ископаемых -- многие железные и марганцевые руды, большинство фосфоритов, горючие сланцы и др. Многие метаморфические горные породы (гнейсы, сланцы, мраморы) первоначально накапливались как морские отложения.
В прибрежной зоне морские осадки (обломочные горные породы) формируются как за счет продуктов разрушения берегов, так и за счет продуктов привноса материала ветром и особенно реками. В морях обитают организмы, имеющие твердые скелеты (раковины, панцири), состоящие из CaCO3 или SiO2.nH2O, поставляющие тем самым органические осадки, образующие органические горные породы. Морская вода богата солями, поэтому среди морских отложений большое место занимают отложения химического происхождения.
У берегов моря накапливаются грубообломочная масса (галечники, гравий). За пляжной зоной, на низких берегах формируются береговые валы из гальки, песка, битой ракушки высотой 1-5м, шириной до 10-12м. Валы возникают на расстоянии наибольшего набегания волн на низкие берега.
Между валами и берегом располагаются пляжные отложения - пески илы, гравий, реже галечник.
В зоне шельфа - пески различной крупности. Здесь осаждается основная масса осадков в основном обломочного происхождения.
По мере удаления от берега обломочным накоплениям все более примешиваются органический материал, формируя илы и осадки химического происхождения
На материковом склоне и океанском ложе преобладает глинистый материал. Более всего развиты органогенные осадки.
Строительная оценка пород морского происхождения определяется условиями их образования. Так глубоководные отложения в отличие от мелководных имеют более выдержанный состав, значительную мощность, однородность, однотипные свойства. Отложения шельфов довольно однообразны по напластованию, породы, рожденные у береговой линии изменчивы во всех отношениях.
Древние морские отложения являются надежным основанием под здания и сооружения, но в таких породах могут присутствовать примеси негативного характера, например, пирита и ряда водорастворимых солей. Глубоководные глины часто находятся в переуплотненном состоянии: в крутых откосах в них часто возникают оползни. Всегда надежным основанием служат пески, галечники и другие породы обломочного происхождения. К слабым грунтам по прочности и устойчивости относятся мощные толщи современных прибрежных илов.
Элювиальные отложения -- рыхлые отложения, возникающие при выветривании исходных (материнских) горных пород на месте их залегания. Элювий слагает коры выветривания и почвы. Различают ортоэлювий кристаллических (магматических и метаморфических) горных пород, метаэлювий уплотнённых осадочных пород и неоэлювий молодых рыхлых отложении (в двух последних исходные породы в значительной мере состоят из переотложенных и слабо изменённых продуктов выветривания). Наиболее типичен ортоэлювии, состав которого изменяется от щебнисто-глыбового в холодном климате до глинистого во влажном и жарком. По степени разложения различают грубый сиаллитный эллювий, в котором сохраняются первичные алюмосиликаты, кислый сиаллитный эллювий, сложенный главным образом из новообразованных водных алюмосиликатов группы глинистых минералов, и аллитный, или ферраллитный эллювий, в котором значительная часть силикатов разложена и представлена свободными гидроокислами алюминия и железа.
Вопрос №4. Перечислите методы определения абсолютного и относительного возрастов пород. Пользуясь данными табл.4 и 5, назовите эры и периоды геологической истории Земли.
Таблица 4
Исходные данные к вопросу определения возраста пород
Предпоследняя цифра шифра |
Индексы |
Последняя цифра шифра |
Индексы |
|
0 |
2 |
Ответ:
Для определения абсолютного возраста породы применяют методы, основанные на использовании процессов радиоактивных превращений, которые происходят в некоторых химических элементах (уран, калий, рубидий и д. р.) входящих в состав этих пород. Например, зная, какое количество свинца образуется из 1 г. урана и, определяя их совместное содержание в данном минерале, можно найти абсолютный возраст минерала и той горной породы, в которой он находится. Это позволяет определять возраст в миллионах лет. По углероду 14С, период полураспада которого 5568 лет, устанавливает возраст более молодых образований. Для оценки возраста геологических объектов огромное значение приобрёл радиоуглеродный метод, основанный на том, что в атмосфере Земли под воздействием космических лучей за счёт обильного азота идёт ядерная реакция 14N + n = 14С + Р; вместе с тем 14С радиоактивен и имеет период полураспада более 5700 лет. В атмосфере установилось равновесие между синтезом и распадом этого изотопа, вследствие чего содержание 14С в воздухе постоянно. Растения и животные при их жизни всё время обмениваются углеродом с атмосферой. Измеряя содержание 14С с помощью высокочувствительной радиометрической аппаратуры, можно установить возраст органических остатков.
Аргоновый метод основан на радиогенном накоплении аргона в калиевых минералах. Стронциевый метод, основанный на радиоактивном распаде 87Rb и превращении его в 87Sr,
Для определения относительного возраста используют два метода: стратиграфический и палеонтологический.
Стратиграфический метод основан на том, что ненарушенный горизонтальный слой толщи парод распределен так, что нижележащие слои породы являются более древними, чем вышележащие. Относительный возраст интрузивных пород и других неслоистых геологических образований определяется по соотношению с толщами слоистых горных пород. Послойное расчленение геологического разреза, т. е. установление последовательности напластования слагающих его пород, составляет стратиграфию данного района. При залегании слоев, в складки, этот метод не используют, т. к. более древние слои могут находиться выше более молодых.
Палеонтологический метод позволяет определить возраст пород исходя из исторического развития жизни на Земле. Остатки вымерших организмов захоронялись в тех осадках, которые накапливались в тот отрезок времени, когда они жили. Сопоставление окаменелостей различных пластов позволило установить процесс необратимого развития органического мира и выделить в геологической истории Земли ряд этапов со свойственным каждому из них комплексом животных и растений. Исходя из этого, сходство флоры и фауны в пластах осадочных пород может свидетельствовать об одновременности образования этих пластов, т. е. об их одновозрастности.
В результате трудов нескольких поколений геологов была установлена общая последовательность накопления слоев земной коры, получившая название стратиграфической шкалы. Верхняя часть её (фанерозой) составлена при помощи палеонтологического метода с большой тщательностью. Для нижележащего отрезка шкалы (докембрий), соответствующего огромной по мощности толще пород, палеонтологический метод имеет ограниченное применение из-за плохой сохранности или отсутствия окаменелостей. Вследствие этого нижняя - докембрийская - часть стратиграфической шкалы расчленена менее детально. По степени метаморфизма горных пород и др. признакам докембрий делится на архей (или археозой) и протерозой. Верхняя - фанерозойская - часть шкалы делится на три группы (или эратемы): палеозойскую, мезозойскую и кайнозойскую. Каждая группа делится на системы (всего в фанерозое 12 систем). Каждая система подразделяется на 2-3 отдела; последние в свою очередь делятся на ярусы и подчинённые им зоны. Как системы, так и многие ярусы могут быть прослежены на всех континентах, но большая часть зон имеет только местное значение. Наикрупнейшим подразделением шкалы, объединяющим несколько групп, служит эонотема (например, палеозойская, мезозойская и кайнозойская группы объединяются в фанерозойскую эонотему, или фанерозой). Стратиграфическая шкала является основой для создания соответствующей ей геохронологической шкалы, которая отражает последовательность отрезков времени, в течение которых формировались те или иные толщи пород. Каждому подразделению стратиграфической шкалы отвечают определённые подразделения геохронологической шкалы. Так, время, в течение которого отложились породы любой из систем, носит название периода. Отделам, ярусам и зонам отвечают промежутки времени, которые называются соответственно эпоха, век, время; группам соответствуют эры. Крупнейшему стратиграфическому подразделению - эонотеме - отвечает хронологический термин - эон. Существуют два эона - докембрийский, или криптозойский, и фанерозойский. Продолжительность более древнего - докембрийского эона составляет около 5/6 всей геологической истории Земли. Каждый из периодов фанерозойского эона, за исключением последнего - антропогенового (четвертичного), охватывает примерно равновеликие интервалы времени. Антропогеновая система, соответствующая времени существования человека, намного короче. Расчленение антропогена проводится, в отличие от других периодов, по фауне наземных млекопитающих, которая эволюционирует гораздо быстрее, чем морская фауна (в составе последней за время антропогена не произошло принципиальных изменений), а также на основе изучения ледниковых отложений, характеризующих эпохи всеобщего похолодания. Некоторые исследователи считают выделение антропогеновых отложений в особую систему неправомочным и рассматривают её как завершающий этап предшествующего неогенового периода.
- кайнозойская эра KZ, четвертичный период (антропогеновый), современный отдел (голоцен). Голоцемн -- эпоха четвертичного периода, которая продолжается последние 11 тысяч лет вплоть до современности.
- палеозойская эра PZ, девонский период D, нижнедивонский отдел. Девомнский период начался около 416 млн., закончился 360 млн. лет назад. Продолжительность девона -- 50 млн. лет. Этот период богат биотическими событиями. Жизнь бурно развивалась и осваивала новые экологические ниши.
- палеозойская эра PZ, силурийский период S, верхнесилурийский отдел. Силурийский период- третий период палеозоя, после ордовика, перед девоном. Начался 443 млн лет назад, длился 27 млн лет. Нижняя граница силура определяется по крупному вымиранию, в результате которого исчезло около 60% видов существовавших в ордовике морских организмов, так называемому ордовикско-силурскому вымиранию.
- палеозойская эра PZ, кембрийский период, среднекембрийский отдел.
Кембрийский период начался около 542±1 млн лет назад, закончился 488±2 млн лет назад, продолжался примерно 51-57 млн лет.
Вопрос №5. Опишите сущность процессов внутренней динамики Земли (эндогенных процессов). Приведите схемы нарушений форм залегания пород (табл.6). Покажите зависимость силы землетрясения от геоморфологического строения участка, состава и обводнённости пород.
Таблица 6
Исходные данные к описанию форм дислокации пород
Предпоследняя цифра шифра |
Формы дислокации |
Последняя цифра шифра |
Формы дислокации |
|
0 |
Сброс |
2 |
Моноклиналь |
Ответ:
Эндогенные процессы (греч.Endon - внутри + Genes - рождающий, рожденный) - рельефообразующие геологические процессы, связанные с энергией, возникающей в недрах твёрдой земли и обусловленные ее внутренней энергией, силой тяжести и силами, возникающими при вращении Земли. Эндогенные процессы проявляются в виде тектонических движений земной коры, магматизма, метаморфизма горных пород, сейсмической активности. Главными источниками энергии эндогенных процессов являются тепло и перераспределение материала в недрах Земли по плотности (гравитационная дифференциация). Эндогенные процессы играют главную роль при образовании крупных форм рельефа.
Тектоническими движениями называют движения земной коры, вызывающие изменение залегания геологических тел.
Тектонические движения земной коры разделяют на три основных типа:
1. Колебательные движения, выражающиеся в медленных поднятиях и опусканиях отдельных участков земной коры и приводящие к образованию крупных поднятий и прогибов.
Колебательные движения не изменяют первоначальных условий залегания горных пород, но от них зависит положение границ между сушей и морями, обмеление и усиление размывающей деятельности рек.
Различают следующие виды колебательных движений земной коры:
1) прошедших геологических периодов, 2) новейшие, связанные с четвертичным периодом; 3) современные
2. Складчатые движения. Осадочные породы первоначально залегают горизонтально или почти горизонтально. Это положение сохраняется даже при колебательных движениях земной коры. Складчатые тектонические движения выводят пласты из горизонтального положения, придают им наклон или сминают в складки. Отсюда возникают складчатые дислокации.
Все формы складчатых дислокаций образуются без разрыва сплошности слоёв. Основными среди этих дислокаций является: моноклиналь, флексура, антиклиналь и синклиналь.
Моноклиналь - самая простая форма нарушения первоначального залегания пород и выражается в общем наклоне слоёв в одну сторону.
Флексура - коленоподобная складка, образующаяся при смещении одной части толщи пород относительно другой без разрыва сплошности.
Антиклиналь - складка, обращенная своей вершиной вверх.
Синклиналь - складка с вершиной, обращенной вниз.
3. Разрывные движения. В результате интенсивных тектонических движений могут происходить разрывы сплошности слоёв. Разорванные части пластов смещаются относительно друг друга. Смещение происходит по плоскости разрыва, которая проявляется в виде трещины. Величина амплитуды смещения бывает разной - от сантиметров до километров. К разрывам относят сбросы, взбросы, горсты, грабены, надвиги.
Сброс образуется в результате опускания одной части толщи относительно другой. Если при разрыве происходит поднятие, то образуется взброс.
Грабен возникает, когда участок земной коры опускается между двумя крупными разрывами. Если участок поднимается, то образуется горст.
Надвиг в отличие от предыдущих форм разрывных дислокаций возникает при смещении толщ в горизонтальной или сравнительно наклонной плоскости. В результате надвига молодые отложения могут быть сверху перекрыты породами более древнего возраста.
Сдвиг - смещение одних блоков горных пород относительно других в горизонтальном направлении по разлому, Сдвиг - представляет собой разрывное нарушение, в котором происходит горизонтальное смещение горных пород по простиранию.
рис. 1. Складчатые дислокации: моноклиналь
рис. 2: Разрывной тип дислокаций: сброс
а - неподвижная часть земной коры, б - подвижная часть
Сейсмические движения - проявляются в виде упругих колебаний земной коры. Присущи районам геосинклиналей, где активно действуют современные горообразовательные процессы, а также зонам субдукции и обдукции.
Сотрясения сейсмического происхождения происходят почти непрерывно, но только более из 100 тысяч землетрясений к разрушительным последствиям приводят около 100, а только отдельные к катастрофам.
Очаг зарождения сейсмических волн называют гипоцентром. По глубине залегания гипоцентра различают землетрясения: поверхностные: от 1 до 10 км глубины, коровые - 30-50 км и глубокие (плутонические) - от 100-300 до 700 км. От гипоцентра во все стороны расходятся сейсмические волны, по своей природе являющиеся упругими колебаниями. Различают продольные и поперечные сейсмические волны. Продольные волны вызывают растяжение и сжатие пород в направлении их движения. Они распространяются во всех средах - твердых, жидких и газообразных. Поперечные колебания перпендикулярны продольным, распространяются только в твердой среде и вызывают в породах деформации сдвига.
Непосредственно над гипоцентром на поверхности земли располагается эпицентр. На этом участке сотрясение поверхности происходит в первую очередь и с наибольшей силой. На поверхности земли от эпицентра во все стороны расходятся поверхностные волны, по природе они являются волнами тяжести (подобно морским валам).
Тектонические сейсмические явления возникают как на суше, так и на море. В связи с этим различают землетрясения и моретрясения.
Моретрясения возникают в глубоких океанических впадинах Тихого, реже Индийского и Атлантического океанов. Быстрые поднятия и опускания дна океанов вызывают смещения крупных масс горных пород и на поверхности океана порождают пологие волны (цунами). Цунами перемещаются на расстояния в сотни и тысячи километров со скоростью 500-800 и даже 1000 км/ч. По мере уменьшения глубины моря крутизна волн резко возрастает, и они со страшной силой обрушиваются на берега, вызывая разрушения сооружений и гибель людей.
Зависимость силы землетрясения от геоморфологического строения участка, состава и обводнённости пород. В зависимости от геологических особенностей конкретного района оценка силы землетрясения может меняться в большую или меньшую сторону. Породы делят на категории по сейсмическим свойствам:
Породы I категории уменьшают оценку силы землетрясений на 1 балл от общей оценки по сейсмической карте района, т. е. последствия землетрясений будут менее катастрофичны. К ней относятся: скальные, например, граниты, гнейсы, известняки, песчаники; полускальные, например, мергель, глинистые песчаники, туфы, гипсы породы, крупнообломочные особо плотные породы при глубине залегания грунтовых вод более 15 метров.
Породы II категории по своим сейсмическим свойствам свою исходную бальность сохраняют без изменения. Это глины и суглинки, находящиеся в твердом состоянии, пески и супеси при глубине залегания грунтовых вод менее 8 метров, крупнообломочные породы при глубине залегания грунтовых вод от 8 до 10 метров.
Породы III категории на участках таких пород при оценке последствий землетрясений балл повышают на единицу, т. е. последствия землетрясения на такой площадке будут более разрушительными. К таким породам относят: глины и суглинки, находящиеся в пластичном состоянии, пески и супеси при глубине залегания грунтовых вод менее 4 метров, крупнообломочные породы при глубине залегания грунтовых вод 3 метров.
Крайне опасным для строительства являются участки с сильно расчлененным рельефом, слоны оврагов и ущелий, берега рек. Весьма затруднительно строить при высоком залегании уровня грунтовых вод (1-3 метра). Опасны для строительства оползневые и карстовые участки. Следует учитывать, что наибольшие разрушения происходят на заболоченных территориях, на обводненных пылеватых, на лессовых недоуплотнённых породах.
Вопрос№6. Объясните сущность процессов внешней динамики Земли (экзогенных процессов). Опишите процессы (табл.7) и возможные защитные мероприятия.
Таблица 7
Исходные данные к описанию процессов внешней динамики
Предпоследняя цифра шифра |
Процессы |
Последняя цифра шифра |
Процессы |
|
0 |
Выветривание |
2 |
Плывуны |
Ответы:
Экзогенные процессы - геологические процессы, обусловленные внешними по отношению к Земле источниками энергии (преимущественно солнечное излучение) в сочетании с силой тяжести. Экзогенные процессы протекают на поверхности и в приповерхностной зоне земной коры в форме механического и физико-химического её взаимодействия с гидросферой и атмосферой.
Геологические процессы на земной поверхности подразделяют на: процессы выветривания, деятельность атмосферных осадков, деятельность рек, деятельность моря, деятельность в водохранилищах, озерах, болотах, деятельность ледников, движение горных пород на склонах рельефа местности, суффозионные и карстовые процессы, плывуны, посадочные явления в лессовых породах.
1. Процесс выветривания.
Под процессом выветривания понимают разрушение и изменение состава горных пород, происходящие под воздействием различных агентов, действующих на поверхности земли, среди которых основную роль играют колебания температур, замерзание вод, кислот, щелочей, углекислоты, действие ветра, организмов.
Особенностью процесса выветривания является постепенное и постоянное разрушение верхних слоёв литосферы. В результате этого горные породы и материалы дробятся, изменяют свой химико-минеральный состав.
Воздействие на земную поверхность, на толщи скальных горных пород, процесса выветривания приводит к образованию коры выветривания, которая состоит из видоизменённых выветриванием горных пород и продуктов их разрушения.
По интенсивности воздействия тех или иных агентов выветривания и характеру изменения горных пород принято выделять три вида выветривания: физическое, химическое, биологическое.
Физическое выветривание выражено в механическом дроблении пород без существенного изменения их минерального состава. Породы дробятся в результате колебания температур, замерзания воды, механической силы ветра и ударов давления песчинок, переносимых ветром, кристаллизации солей в капиллярах, давления, которые возникают в процессе роста корней растений и т. д.
Химическое выветривание выражается в разрушении горных пород путём растворения и изменения их состава. Наиболее активными химическими реагентами в этом процессе является вода, кислород, углекислота и органические кислоты.
В породах кроме растворения протекают реакции обмена, замещении, окисления, гидратации и дегидратации. Простейшим видом химического выветривания является растворение в воде.
Биологическое выветривание проявляется в разрушении горных пород в процессе жизнедеятельности живых организмов и растений. Механические разрушения производят растения своей корневой системой, живые организмы, особенно из числа землероев. Растения, животные, микроорганизмы и низшие растения выделяют различные кислоты и соли, которые весьма активно взаимодействуют с горными породами, разрушая их.
Геологическая деятельность ветра. Выражается в разрушении земной поверхности (выдувание, или дефляция, обтачивание, или корразия), перенос продуктов разрушения и отложение (аккумуляция) этих продуктов виде скоплений различной формы.
Выдувание (дефляция) возникает в результате воздействия механической силы ветра. Наиболее ярко этот процесс проявляется в районах, сложенных рыхлыми или мягкими породами. От этих пород отрываются и уносятся частицы.
Корразия Движение ветра часто сопровождается переносом пыли, песка и даже гравия. Ударяясь о твердые породы, они перетирают, сверлят и обтачивают их поверхность. Появляются борозды, желоба, углубления.
Эоловые отложения перенос ветром частиц совершается во взвешенном состоянии (глинистые, пылеватые частицы) или путем перекатывания (песчаные частицы), в зависимости от скорости ветра и размера частиц. При меньшей скорости ветра и других благоприятных условиях происходит отложение переносимого материала (аккумуляция). Так образуется ветровые (эоловые) отложения
2. Плывуны. Плывунами называют рыхлые водонасыщенные породы, обычно пески, которые при вскрытии различными горными выработками разжижаются, приходят в движение и ведут себя подобно тяжелой вязкой жидкости. Основной причиной проявления у пород плывунных свойств является гидродинамическое давление поровой воды, которое создается в результате перепада (градиента) давления грунтовых вод при вскрытии котлована (траншеи и т. д.). Часто плывунные свойства проявляют пылеватые пески и супеси, содержащие в большом количестве очень мелкие (глинистые и коллоидные) частицы, которые начинают играть роль смазывающего вещества между крупными частицами грунта. Вследствие наличия глинистых и более мелких колоидных частиц эти грунты обладают гидрофильными свойствами и слабо отдают воду. Даже при небольшом гидравлическом градиенте они переходят в плывунное состояние и перемещаются с водой в выработки. Коэффициент фильтрации таких грунтов обычно менее 0,5 м3/сут.
При промерзании истинный плывун подвергается сильному пучению, слабо фильтрует воду. При высыхании приобретает связность. В образовании истинных плывунов большую роль играют микроорганизмы.
Вопрос №7. Приведите классификации подземных вод. Опишите разные фазовые состояния воды в породах, а также условия залегания и движения подземных вод (табл.8).
Таблица 8
Исходные данные к вопросу о состоянии и условиях залегания воды в горных породах
Предпоследняя цифра шифра |
Состояние воды |
Последняя цифра шифра |
Условие залегания |
|
0 |
Гравитационная |
2 |
Межпластовая напорная |
Ответ:
Воды, находящиеся в верхней части земной коры, носят название подземных вод.
Классификации подземных вод.
Классифицируют подземные воды: по характеру их использования и по условиям залегания в земной коре:
Хозяйственно-питьевые воды - подземные воды широко используют для хозяйственно-питьевых целей, т. к. признаны лучшим источником питьевого водоснабжения. Как правило, это воды интенсивного водообмена (глубина залегания обычно не более десятков метров). В последние годы для хозяйственно-питьевого водоснабжения начинают использовать также солоноватые и соленые подземные воды после их опреснения.
Технические воды - это воды, которые используют в различных отраслях промышленности и сельского хозяйства. Требования к воде определяется производственным предприятием.
Промышленные воды содержат в растворе полезные элементы (бром, йод и др.) в количестве, имеющем промышленно сырьевое значение. Обычно залегают в зоне весьма замедленного водообмена. Обладают высокой минерализацией (от 20 до 600 г/л), состав хлористо-натриевый, температура нередко достигает 60-80 0С.
Минеральными называют подземные воды, которые имеют повышенное содержание биологически активных микрокомпонентов, газов, радиоактивных элементов. Они выходят на поверхность земли или вскрываются буровыми скважинами.
Термальные подземные воды имеют температуру более 370С. Залегают повсеместно на глубинах от нескольких десятков метров (в горно-складчатых областях) до нескольких километров (на платформах)
Подземные воды классифицируют по условиям их залегания в земной коре. По степени насыщения водой горных пород верхняя часть земной коры делится на верхнюю и нижнюю.
Верхняя, зона аэрации, расположена между поверхностью земли и уровнем грунтовых вод. В этой зоне наблюдается непосредственное просачивание атмосферных осадков из поверхностных вод вглубь, в сторону зоны насыщения. Зона насыщения горных пород расположена ниже уровня грунтовых вод. В этой зоне все поры, трещины, каверны и другие пустоты заполнены гравитационной водой. Подземные воды в зоне насыщения циркулируют в виде верховодок, грунтовых, артезианских, трещинных и вод вечной мерзлоты.
Верховодки - это временные скопления подземных вод в зоне аэрации. Верховодки образуются над локальными водоупорами, например, линзы глин и суглинков в песке, прослойки более плотных пород. В периоды снеготаяния или дождей вода временно задерживается и образует сводообразные водоносные горизонты. Верховодки могут возникать и при отсутствии водоупоров, например, при низкой водопроницаемости породы, в результате чего, в верхней части толщи происходит задержка воды. В сухое время года воды в верхней части слоя, как правило, не бывает.
Грунтовые воды. Грунтовыми называют постоянные во времени и значительные по площади распространения горизонты подземных вод, залегающие на первом от поверхности водоупоре. Грунтовые воды в силу наличия свободной поверхности безнапорные. Иногда они могут проявить так называемый местный напор, связанный с залеганием линзы глины в уровне зеркала.
Межпластовые подземные воды. Эти воды располагаются в водоносных горизонтах между водоупорами. Они бывают напорные (артезианские) и ненапорные.
Межпластовые ненапорные воды встречаются сравнительно редко. Они связаны с горизонтально залегающими водоносными слоями, заполненные водой полностью или частично.
Напорные (артезианские) воды связаны с залеганием водоносных слоев на различных высотных отметках, что и создает напор подземных вод.
Подземные воды в трещиноватых и закарстованных породах.
Трещинные воды - это подземные воды, циркулирующие в трещиноватых горных породах. Перемещаются они по системе взаимосвязанных трещин разного происхождения: тектоническим разломам, трещинам отдельных магматических массивов, трещинам выветривания и образуют единую гидравлическую систему, напоминающую систему сообщающихся сосудов образуют единую гидравлическую систему.
Классификация по условиям залегания: грунтовые, межпластовые, жильные.
Трещинно-грунтовые воды развиты в верхней трещиноватой зоне кристаллических массивов (до глубины 80-100 м) питание за счет инфильтрации атмосферных осадков. Площади их питания совпадают с площадью распространении. Водоупором трещинно-грунтовых вод служат монолитные нетрещиноватые скальные породы. Водообильность трещинно-грунтовых вод определяется условиями их питания и степенью трещиноватости горных пород.
Межпластовые воды циркулируют в артезианских бассейнах, если водоносные слои их представлены трещиноватыми горными породами.
Трещинно-жильные воды развиты локально, исключительно в зонах тектонических нарушений с крупными трещинами. Это линейно вытянутые узкие водные потоки (жилы), уходящие в глубину на несколько сот метров, поэтому они часто имеют повышенную температуру. Характерен напорный режим. Трещинно-жильные воды, как правило, водообильны, часто разгружаются на поверхности земли, образую мощные родники. Трещинно-жильные воды получают питание за счет трещинно-грунтовых вод, разгрузки глубокозалегающих напорных водоносных горизонтов и других источников.
Закарстованные воды. Подземные воды, которые циркулируют по трещинам и пустотам карстового происхождения.
Степень и характер закарстованности горных пород определяют глубину развития, интенсивность движения, гидравлическое состояние, водообильность карстовых вод.
Подземные воды вечной мерзлоты Подземные воды в районах многолетней мерзлоты контактируют или непосредственно содержатся в толще многомерзлых пород. Подразделяются надмерзлотными, межмерзлотными и подмерзлотными водами.
Подобные документы
Обоснование роли инженерной геологии для строительства железных дорог и их эксплуатации. Анализ физико-механических свойств горных пород, необходимых для проектирования и строительства. Методы определения абсолютного и относительного возраста пород.
контрольная работа [1,8 M], добавлен 26.04.2010Значение инженерной геологии для строительства. Физико-механические свойства горных пород. Суть процессов внешней динамики Земли (экзогенных процессов). Классификация подземных вод, основной закон фильтрации. Методы инженерно-геологических исследований.
контрольная работа [1,5 M], добавлен 26.07.2010Основные этапы развития инженерной геологии как науки. Особенности определения абсолютного возраста горных пород. Ключевые методы борьбы с подвижными песками. Анализ строительства в районе вечной мерзлоты. Способы определения притока воды к водозаборам.
курсовая работа [1017,4 K], добавлен 10.09.2013Значение инженерной геологии для проектирования и строительства. Задачи, решаемые этой наукой. Происхождение, минералогический и химический составы, структура, текстура и условия залегания. Основные физико-механические показатели свойств горных пород.
контрольная работа [260,9 K], добавлен 14.07.2010Значение инженерной геологии для промышленного и гражданского строительства. Описание условий образования и строительные свойства грунтовых отложений (аллювиальных). Относительный и абсолютный возраст горных пород. Основной закон фильтрации подземных вод.
курсовая работа [1,4 M], добавлен 24.06.2011Понятие о геологическом времени. Дегеологическая и геологическая стадии развития Земли. Возраст осадочных горных пород. Периодизация истории Земли. Общие геохронологическая и стратиграфическая шкалы. Методы определения изотопного возраста горных пород.
реферат [26,1 K], добавлен 16.06.2013Исторический образ, обзор первобытной обработки камня. Залегания горных пород и их внешний вид. Структура, текстура горных пород Южного Урала. Способы и оборудование для механической обработки природного камня. Физико-механические свойства горных пород.
курсовая работа [66,9 K], добавлен 26.03.2011Геология – наука о химических и физических свойствах Земли и веществ, из которых она состоит. Краткая история геологических процессов, образование горных пород. Этапы развития геологии, роль полевых исследований. Геохронология, тектонические процессы.
презентация [24,2 M], добавлен 09.04.2012Понятие и задачи исторической геологии. Палеонтологические и непалеонтологические методы восстановления геологического прошлого. Определение относительного возраста магматических пород. Периодизация истории Земли. Понятие стратиграфических единиц.
реферат [23,6 K], добавлен 24.05.2010Проведение на электронных вычислительных машинах имитационных лабораторных испытаний горных пород и определение их механических свойств (пределов прочности, модуля упругости и коэффициента Пуассона). Теории определения прочности горных пород Кулона-Мора.
курсовая работа [3,8 M], добавлен 27.06.2014