Эвапотранспирационная миграция химических элементов в ландшафтах (на примере Урала)

Изучение аэрального потока продуктов эвапотранспирации, его роли в системе миграционных процессов. Оценка относительного вклада лесных ярусов в общий эвапотранспирационный поток. Изучение геохимии эвапотранспирации в ландшафтах таежной, степной зон Урала.

Рубрика География и экономическая география
Вид автореферат
Язык русский
Дата добавления 27.12.2017
Размер файла 561,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таблица 5. Отношение масс элементов, вовлекаемых в аэральный поток посредством эвапотранспирации, к массам элементов, поступающим с опадом (К э/о)

Элементы

К э/о

Элементы

К э/о

Элементы

К э/о

Элементы

К э/о

Главные

Главные

Рассеянные

Рассеянные

Ca

0,23

Si

0,03

Mn

0,22

Cd

97

K

0,08

Al

0,19

Cu

1,58

As

2,39

Mg

0,08

P

0,02

Zn

0,60

Se

22

S

2,69

B

0,90

Co

0,18

Na

6,67

Pb

2,70

Hg

13

Fe

0,68

Ni

1,34

Сопоставив ряды убывания масс элементов, вовлекаемых в биологический круговорот (характеризуемый через опад), и участвующих в эвапотранспирации (Мельчаков, 2005б, 2006), а также используя рассмотренные К э/о, сделали следующий вывод. В группе рассеянных халькофильных элементов (в меньшей степени - рассеянных литофильных элементов), вовлекаемых в эвапотранспирацию, резко, на 2,5 порядка, уменьшается разница величин массопереноса между элементами, присутствующими в относительно больших количествах и в малых по сравнению с биологическим круговоротом. Таким образом, в эвапотранспирации возрастает относительное значение последних элементов. Возможно, это свидетельствует о выработанном растениями в процессе эволюции механизме избавления от токсичных элементов путем транспирации.

Суммировав величины массопотоков всех элементов (см. табл. 1-2, рис. 2-3), получили следующие значения (в кг/км2 · год): атмосферные выпадения - 6 310, аэральный поток продуктов эвапотранспирации - 1 685, вынос с речным стоком - 5 039. Итоговое соотношение массопереносов составило -414 кг/км2 · год с учетом эвапотранспирации или +1271 кг/км2 · год - без учета эвапотранспирации. Сравнение двух последних результатов позволило сделать вывод: эвапотранспирация существенно ослабляет дисбаланс массопотоков (Мельчаков, 2005).

Как пример, можно привести соответствующие расчеты по Са (в кг/км2 ·год): атмосферные выпадения - 3 200, аэральный поток продуктов эвапотранспирации - 730, вынос с речным стоком - 1 540. Итоговое соотношение массопереносов составило +930 кг/км2 · год с учетом эвапотранспирации или +1 660 кг/км2 · год - без учета эвапотранспирации.

Следует уточнить, что в приведенных расчетах автор схематизировал систему миграционных потоков. Некоторая часть эвапотранспирационного массопотока возвращается на поверхность почвы изученных ландшафтов, другая часть - вовлекается в более протяженную миграцию. Для решения этого аспекта проблемы в перспективе требуется постановка специального эксперимента с мечеными атомами (Мельчаков, 2008).

Коэффициенты корреляции Пирсона (табл. 6) были рассчитаны по аналогии с примером, рассмотренным Н.В. Глотовым с соавторами (1982), а также сопоставлениями В.Д. Коржа (1999). Анализ коэффициентов свидетельствует о наличии доказанной положительной корреляционной связи относительно большинства рассмотренных вариантов. Минимальные значения (r) определены для потоков: атмосферные выпадения - вынос с речным стоком, а максимальные: эвапотранспирация - атмосферные выпадения. Эти два миграционных процесса пронизывают нижние слои тропосферы и количество факторов, осложняющих связь указанных процессов, меньше в сравнении с другими парами массопереносов. Тесно связаны также эвапотранспирация и биологический круговорот (опад), что объясняется важной для обоих процессов ролью живого вещества (Мельчаков, 2005б).

Таблица 6. Коэффициенты корреляции Пирсона (r) между изученными потоками в среднетаежных ландшафтах, в скобках - количество проб

Группа элементов

Сравниваемые объекты

Эвапотранспирация-биологический круговорот

Эвапотранспирация- атмосферные выпадения

Эвапотранспирация -вынос с речным стоком

Атмосферные выпадения-вынос с речным стоком

Биологический круговорот-атмосферные выпадения

Биологический круговорот-вынос с речным стоком

1. Главные

0,635 (9)

0,841 (9)

0,601 (9)

0,564 (9)*

0,878 (9)

0,717 (9)

Рассеянные:

2. Литофильные.

0,944 (15)

0,908 (34)

0,250 (34)*

0,046 (34)*

0,989 (15)

0,022 (15)*

3. Халькофильные.

0,946 (11)

0,919 (16)

0,646 (16)

0,792 (17)

0,767 (11)

0,331 (11)*

4. Сидерофильные.

0,972 (3)*

0,999 (9)

0,924 (9)

0,925 (10)

0,958 (3)*

0,871 (3)*

Примечания. Звездочкой отмечены значения (r) , которые меньше табличных критических значений коэффициента корреляции Пирсона для 5%-ного уровня значимости.

Южнотаежные среднегорные ландшафты Южного Урала. Ключевые отличия этих ладшафтов от североуральских определяются зональными причинами: сравниваемые ландшафты находятся около 60-го меридиана, а разница по широте составляет 5,5 0.

Установлены существенные различия как в приходной, так и расходной частях баланса от ландшафтов Северного Урала. Атмосферные выпадения выше в южноуральских ландшафтах в 13 раз, а вынос с речным стоком - в 2,6 раза. Итоговое соотношение массопотоков для суммы главных элементов = +65370 кг/км2 · год (округленно +65 т /км2 · год), рассеянных элементов (в кг/км2 ·год): литофильных -+1200, халькофильных -+270, сидерофильных -+11.

Полученные результаты можно интерпретировать с позиций буферных возможностей горно-таежных ландшафтов Урала. Установленное на Южном Урале возрастание в разы потоков элементов не вызывает нарушений нормального функционирования ландшафтов. Ранее в сфере воздействия никелевого производства была установлена высокая способность среднеуральских ландшафтов к противостоянию техногенному давлению. Ландшафты сохранили главные черты динамики биогеохимических циклов (Мельчаков, 1985б; Добровольский, Мельчаков, 1990).

Соотношение приходно-расходной частей биогеохимических циклов элементов в степных ландшафтах.

Сравнение миграционных потоков в ковыльной степи по массам показывает большую контрастность значений (рис. 5-6). В частности, в группе главных элементов отмечается больший диапазон модулей, чем в таежных ландшафтах Северного Урала. Тенденция доминирования атмосферных выпадений над другими потоками сохраняется.

Существенные отличия от таежных ландшафтов выявляются и при анализе рассеянных элементов.

Разница 2-х основных групп элементов в таежных и степных ландшафтах проявляется в числе элементов, для которых роль эвапотранспирации в ослаблении дисбаланса значительна (составляет 10 n % от итогового соотношения массопотоков, рассчитанного только с учетом атмосферных выпадений и выноса с речным стоком). В группе главных элементов в степных ландшафтах их число меньше, а в группе рассеянных элементов - больше, что дополнительно указывает на то, что в степях значение эвапотранспирации в массопотоке рассеянных элементов выше.

Итоговая оценка величин массопотоков следующая (в кг/км2 · год): атмосферные выпадения - 11 650, аэральный перенос продуктов эвапотранспирации - 510, вынос с речным стоком - 7 440 (рис. 7). Отсюда итоговое соотношение массопотоков составило +3 690 с учетом эвапотранспирации или +4 200 кг/км2 · год без учета эвапотранспирации. Очевидно, что эвапотранспирация меньше ослабляет дисбаланс по сравнению с таежными ландшафтами (Мельчаков, 2005).

Как пример, приводим соответствующие расчеты по Са (в кг/км2 · год): атмосферные выпадения - 2 900, аэральный поток продуктов эвапотранспирации - 27, вынос с речным стоком - 280. Отсюда итоговое соотношение массопереносов составило +2 593 кг/км2 · год с учетом эвапотранспирации или +2 620 кг/км2 · год - без учета эвапотранспирации.

Рассчитанные коэффициенты корреляции Пирсона (табл. 7) имеют некоторое сходство со значениями, полученными для среднетаежных ландшафтов. Главным их отличием являются более низкие значения коэффициентов в степных ландшафтах, что свидетельствует о меньшей взаимосвязанности процессов массопереноса. В наибольшей степени это касается группы главных элементов, определяющей движение основной массы вещества: корреляционная связь не доказана ни для одной пары массопереносов (Мельчаков, 2005).

Рис. 5. Массы главных элементов, мигрирующих в ковыльной степи:

1 - водорастворимые формы атмосферных выпадений, трансформированных растительностью;

2- эвапотранспирационный поток водорастворимых форм;

3 - вынос с речным стоком водорастворимых форм

Рис. 6. Массы рассеянных элементов, мигрирующих в ковыльной степи:

1 - водорастворимые формы атмосферных выпадений, трансформированных растительностью;

2 - валовые формы опада;

3- эвапотранспирационный поток водорастворимых форм;

4 - вынос с речным стоком водорастворимых форм

Рис. 7. Массопотоки суммы элементов в ковыльной степи, т/км2 ·год (пояснения по массопотокам см. на рис. 2)

Таблица 7. Коэффициенты корреляции Пирсона (r) между изученными массопереносами в ковыльной степи, в скобках - количество проб

Группа элементов

Сравниваемые объекты

Эвапотранспирация-биологический круговорот

Эвапотранспирация- атмосферные выпадения

Эвапотранспирация -вынос с речным стоком

Атмосферные выпадения-вынос с речным стоком

Биологический круговорот-атмосферные выпадения

Биологический круговорот-вынос с речным стоком

1. Главные

0,411(9)*

0,464 (9)*

0,145 (9)*

Рассеянные:

2. Литофильные.

0,590 (16)

0,680 (34)

0,258 (35)*

0,127 (34)*

0,978 (14)

0,084 (14)*

3. Халькофильные.

0,844 (11)

0,865 (17)

0,775 (17)

0,940 (16)

0,954 (11)

0,996 (11)

4. Сидерофильные.

0,994 (3)*

0,985 (7)

0,427 (7)*

0,595 (9)

0,955 (3)*

-0,120 (3)*

Примечание. Звездочкой отмечены значения (r), которые меньше табличных критических значений коэффициента корреляции Пирсона для 5%-ного уровня значимости.

Роль эвапотранспирационных процессов в массопереносе химических элементов с атмосферными осадками.

Вопрос о влиянии эвапотранспирации на химический состав атмосферных осадков в литературе остается нерешенным, хотя первые попытки по его изучению были сделаны еще в 70-е гг. ХХ в. (Ахмедсафин, Гребенюков, Иванов, 1978). Исследования, проведенные автором, позволяют решить данную проблему.

Было выполнено сопоставление состава конденсатов выделений растений среднетаежных ландшафтов в атмосферу и атмосферных осадков (внутримассового и фронтального происхождения) в теплое время года. Можно констатировать значительное варьирование концентраций элементов в изученных объектах. Определены следующие диапазоны (в мкг/л). В группе главных элементов:

S - 1000 Ч n, Na, K, Ca - 100 Ч n-1000 Ч n, Mg - 10 Ч n-1000 Ч n, Si, Fe - 10 Ч n-100 Ч n, Al, P - n-100 Ч n.

В группе рассеянных элементов:

Mn, B, Br, Sr, Ba - n-10 n, Ti, Cr, Rb, I - 0,1 n-n; для подавляющего большинства элементов - 0,001 Ч n-0,1 Ч n.

Установлено, что степень сходства химического состава двух сравниваемых объектов закономерно возрастает в рядах: фронтальные осадки вне контакта с растительностью - фронтальные трансформированные растительностью осадки, внутримассовые осадки вне контакта с растительностью - внутримассовые трансформированные растительностью осадки. Полученные результаты можно объяснить следующим. Фитогенные частицы выступают в роли ядер конденсации и, соответственно, влияние жизнедеятельности растений проявляется как в самом процессе осадкообразования, так и в химическом составе осадков. Дополнительно элементный состав жидких выпадений изменяется в процессе растворения дождевыми каплями продуктов выделений растений. В условиях эксперимента разделить эти трансформации невозможно.

Анализ коэффициентов корреляции между содержанием элементов в конденсатах и дождевой воде (r) доказал наличие положительной корреляционной связи; в подавляющем большинстве рассмотренных вариантов (31 из 40) корреляционную связь потоков можно считать доказанной.

Данная взаимосвязь отражает наличие в ландшафтах круговоротов вещества, причем при внутримассовой погоде они в большей мере замкнуты, чем при фронтальной погоде.

Также заключено, что элементный обмен между ассимилирующей поверхностью растений и атмосферой не только оказывает важное влияние на химический состав осадков, но и является одной из причин внутримассовых осадков (Мельчаков, Суриков, 2007).

В качестве гипотезы предложено объяснение летнего увеличения количества осадков в среднегорьях Урала по сравнению с предгорьями, наряду с известными причинами, наличием больших масс фитогенных аэрозолей (Мельчаков, Суриков, 2004). Последние выполняют роль ядер конденсации. Вероятно, это относится и к другим горным системам.

Выводы

1. Установлена положительная корреляционная связь массопотоков: эвапотранспирация и атмосферные выпадения - применительно к подавляющему большинству рассмотренных групп элементов. Отмеченные массопотоки являются наиболее тесно связанными: они пронизывают нижние слои тропосферы и количество факторов, осложняющих эту связь, меньше в сравнении с другими изученными потоками. Значения коэффициентов корреляции в среднетаежных ландшафтах Северного Урала выше, чем в степных ландшафтах Южного Урала.

2. Установлено, что аэральный поток продуктов эвапотранспирации ослабляет дисбаланс масс элементов, являясь своеобразным «разгрузочным механизмом» функционирования геосистем, так же как опад и сток. В среднетаежных ландшафтах Северного Урала итоговое соотношение приходно- расходной частей биогеохимических циклов элементов = -420 кг/км2 . год (с учетом эвапотранспирации) или +1290 кг/км2 · год (без ее учета). Аналогичное соотношение в степных ландшафтах Южного Урала =+3680 кг/км2 · год или +4200 кг/км2 · год (без учета эвапотранспирации). Следовательно, эвапотранспирация менее эффективно ослабляет дисбаланс по сравнению с таежными ландшафтами.

3. Доказана соразмерность и взаимосвязанность миграционных процессов: атмосферных выпадений, эвапотранспирации, опада и выноса с речным стоком. Эти характеристики являются важными показателями нормального функционирования ландшафтов и их устойчивости как к природным, так и техногенным дестабилизаторам.

4. Показано, что степень сопряженности миграционных процессов убывает в пространственном ряду: тайга - степь. Возможно, это обусловлено более весомой ролью живого вещества в организации взаимосвязанности массопереносов в гумидных, чем в семиаридных ландшафтах.

5. Определено, что в аэральном потоке продуктов эвапотранспирации возрастает относительное значение рассеянных элементов, массы которых относительно невелики, по сравнению с их относительной ролью в биологическом круговороте в узком смысле слова. Для растений образование летучих соединений, возможно, является дополнительным способом освобождения от токсичных соединений.

6. Обнаружена положительная корреляционная связь состава транспирационных выделений в атмосферу и дождевых осадков.

7. Констатирована ошибочность представления об атмосферных выпадениях на полянах как нетрансформированных растительностью.

8. Сравнительный анализ массопотоков северо - и южноуральских горно-таежных ландшафтов показал наличие значительных буферных возможностей последних.

9. Установленные закономерности должны учитываться при проведении комплексных мероприятий по охране и рациональному природопользованию.

Защищаемые положения и выводы.

1. Разработана методология изучения эвапотранспирационной миграции химических элементов в ландшафтах. На основании проведенных исследований раскрыты ее закономерности в ландшафтах Северного, Среднего и Южного Урала, которые позволяют объяснить направленность происходящих процессов.

2. Выявлены закономерности аэрального массопотока в системе «тропосфера - растительность - почва» применительно к природным условиям Урала.

- Впервые определены количественные параметры суммарных атмосферных выпадений большинства элементов на Урале. Установлено, что в таежных ландшафтах ежегодно поступает из атмосферы на 1 км2:

Са и K - 1000 Ч n кг; Mg, S, Na, Fе, Si и Мn - 100 Ч n кг; Al, P, Sr, Ba, Zn, Cu - 10 Ч n кг;

B, Pb, Ti, Cr, Ni и других элементов - n кг; V, Cd, As, Se и других элементов - 100 Ч n г. Представители группы редких земель и некоторые другие элементы поступают в таежные ландшафты в количестве, измеряемом 1 Ч n-10 Ч n г/км2 · год. Приведенные значения характеризуют поток атмосферных выпадений, усиленный взаимодействием с растительным компонентом.

- Обнаружены сезонные количественные отличия аэрального массопотока. Выпадения большинства элементов за теплый период года превосходят значения холодного периода в n раз - на порядок. Суммарное выпадение элементов в теплый период года составляет 92 % годового массопотока. Указанный тренд закономерен: зимой активность живого вещества значительно замедляется, соответственно ослабевает воздействие полога леса на атмосферные выпадения и уменьшаются масштабы аэрального потока продуктов эвапотранспирации. Сезонный тренд указывает на важную роль биоклиматических факторов в рассматриваемом массопотоке.

Вблизи источников загрязнения атмосферного воздуха, в отличие от исследуемого фонового района, сезонные тренды могут быть обусловлены явлениями чисто техногенного характера (флуктуациями выбросов поллютантов в атмосферу) или изменениями природных процессов, которые накладываются на существующую техногенную основу (например, меняется роза ветров).

- Установлены и проанализированы сезонные различия влияния древесных растений на состав атмосферных выпадений: в холодное время года данное влияние проявляется нестабильно. Трансформация атмосферных выпадений пологом леса в теплый период года усиливается.

3. Определены особенности геохимии эвапотранспирации в ландшафтах таежной и степной зон Урала.

- Впервые выявлены масштабы аэрального потока продуктов эвапотранспирации в системе «почва - растительность - тропосфера» применительно к природным условиям Урала. Установлено, что в таежных ландшафтах Урала ежегодно с 1 км2 мобилизуется в атмосферу:

Са, S, Na и K - 100 Ч n кг, Fе, Mg, Si и Al - 10 Ч n кг, P, Mn, B, Sr, Ba, Zn и Cu - n кг, Ti, Br, Cr, Pb, Se, Ni - 100 Ч n г, Li, Zr, Sc, V, Sb, Ag, Cd, Sn, As, Ga, Hg и Со - 10 Ч n г.

Многие рассеянные элементы переносятся в количестве, измеряемом

0,1- 1 Ч n г/км2 · год.

Изученный поток суммы анализируемых элементов в таежных ландшафтах составляет 27-33 % от таких значимых процессов, как атмосферные выпадения и вынос с речным стоком соответственно.

- Обнаружено, что в массопотоке, вызванном эвапотранспирацией, возрастает относительное значение тяжелых металлов и близких им элементов, массы которых невелики, по сравнению с участием их масс в биологическом круговороте. Возможно, это свидетельствует о выработанном растениями в процессе эволюции механизме избавления от токсичных элементов путем транспирации.

- Установлена связь состава конденсатов эвапотранспирационных выделений с местоположениями изученных участков. Констатировано увеличение концентраций элементов в конденсатах горно-таежного пояса по сравнению с подгольцовым, что объясняется биоклиматическими факторами. Как следствие, значения аэрального потока продуктов эвапотранспирации применительно к большинству элементов в горно-таежном поясе в несколько раз превышают соответствующие значения для подгольцового пояса (по сумме элементов в 2,7 раза).

- Определен относительный вклад лесных ярусов в аэральный поток продуктов эвапотранспирации. В горно-таежном поясе эвапотранспирация травяно-кустарничкового яруса составляет 92 %, древесного яруса - 8 % от общего массопотока. Соответствующие параметры подгольцового пояса принципиально иные: в нем эвапотранспирация травяно-кустарничкового яруса составляет 42 %, древесного яруса - 58 % от общего массопотока.

4. Выявлены зональные различия аэральной миграции химических элементов в пределах Урала.

- Атмосферный массопоток большинства элементов в степных ландшафтах больше в n раз, чем в таежных, соответственно суммарное значение выпадений элементов отличается в 1,9 раза.

- Поток масс элементов, вызванный эвапотранспирацией, в степных ландшафтах меньше в n раз, чем в таежных, соответственно суммарное значение транспорта элементов отличается в 3,4 раза.

5. Установлено, что аэральный поток продуктов эвапотранспирации является необходимой частью баланса мигрирующих масс элементов, являясь своеобразным «разгрузочным механизмом» функционирования геосистем. При этом поток вещества, вызванный эвапотранспирацией, вовлекается в следующий биогеохимический цикл.

- В среднетаежных ландшафтах Северного Урала величина аэрального потока продуктов эвапотранспирации применительно к сумме элементов имеет порядок 1,7 т/км2 · год.

- В степных ландшафтах Южного Урала этот же параметр оценивается величиной порядка 0,5 т/км2 · год.

Автор 57 публикаций по теме диссертации. Из них 3 монографии общим объемом 53,9 п.л. (авторский вклад 53,3 п.л.-95 %), 39 статей общим объемом 19,6 п.л. (авторский вклад 17,3 п.л.-88 %), в т.ч. 14 статей в центральных журналах (из Перечня, рекомендованного ВАК РФ) общим объемом 7,0 п.л. (авторский вклад 6,5 п.л. - 93 %), учебно-методические материалы объемом 5,5 п.л. (авторский вклад 5,5 п.л.-100 %).

Список работ, опубликованных по теме диссертации

Монографии

1. Мельчаков Ю.Л. Роль эвапотранспирации в системе миграционных потоков химических элементов: монография / Екатеринбург: Урал. гос. пед. ун-т, 2007. -326 с. 24,4 п.л.

2. Мельчаков Ю.Л. Атмосферная миграция химических элементов на Урале: монография / Екатеринбург: Урал. гос. пед. ун-т, 2005. - 420 с. 26,4 п.л.

3. Алещукин Л.В., Волков С.Н., Добровольский В.В. и др. Геохимия природных и техногенно измененных биогеосистем: коллективная монография под ред. проф. В.В. Добровольского - М.: Прометей, 2003. 228 с. - 14,25 п.л. (авт. вклад статьи: Мельчаков Ю.Л., Учватов В.П., Суриков В.Т., Поляков Е.В. Фитогенный атмосферный массообмен: количественная оценка потоков «растительность - атмосфера» // С. 112-161.- - 3,6 п.л. - 25%). Доля участия Мельчакова Ю.Л.- 3,0 п.л. - 83%.

Статьи в центральных журналах (из Перечня, рекомендованного ВАК РФ)

4. Мельчаков Ю.Л. Роль эвапотранспирации в системе миграционных потоков химических элементов (на примере Северного Урала) // Вестник МГУ. Сер. География. 2009. № 3. С. 26-33. - 0,8 п.л.

5. Мельчаков Ю.Л. Балансы элементов и роль эвапотранспирационного массопереноса в ландшафтах Северного и Южного Урала // Известия РГО. 2005б. Т. 137. Вып. 5. С. 69-79. - 0,9 п.л.

6. Мельчаков Ю.Л. Сравнительно-географические особенности массопереноса эвапотранспирационных выделений таежной и степной растительности Урала // Вестник МГУ. Сер. География. 2006. № 4. С. 55-61. - 0,8 п.л.

7. Мельчаков Ю.Л. Закономерности элементопереноса в системе «почва - атмосфера» (на примере Северного Урала) // Литосфера. 2008. № 2. С. 133-138. - 0,5 п.л.

8. Мельчаков Ю.Л., Суриков В.Т. Роль биогеохимических процессов в массопереносе химических элементов с атмосферными осадками (на примере Северного Урала) // География и природные ресурсы. 2007. № 1. С. 83-90. - 0,6 п.л. (авт. вклад - 75%).

9. Мельчаков Ю.Л. К проблеме эколого-геохимического значения эвапотранспирации // Экология. 2008. № 5. С. 390-393. - 0,3 п.л.

10. Мельчаков Ю.Л., Суриков В.Т. Сравнительная оценка интенсивности эвапотранспирационного массоэлементопереноса в таежных ландшафтах Северного и Среднего Урала // Экология. 2006. № 1. С. 74-76. - 0,4 п.л. (авт. вклад - 75%).

11. Mel'chakov Yu. L. On Ecological and Geochemical Significance of Evapotranspiration // Russian Journal of Ecology. 2008. V. 39. N 5. P. 371-374. - 0,3 п.л.

12. Mel'chakov Yu. L., Surikov V.T. Comparison of the Intensities of Evapotranspiration Mass Element Transfer in Taiga Landscapes of the Northern and Middle Urals // Russian Journal of Ecology. 2006. V. 37. N 1. P. 70-72. - 0,4 п.л. (авт. вклад - 75%).

13. Мельчаков Ю.Л., Учватов В.П., Квашнина А.Е. и др. Исследование геохимических потоков в фоновых ландшафтах Северного Урала // География и природные ресурсы. 2004. № 4. С. 74-78. - 0,6 п.л. (авт. вклад - 67%).

14. Мельчаков Ю.Л. Соотношение атмосферной и водной миграции с биологическим круговоротом тяжелых металлов в горно-лесном ландшафте // Научные доклады высшей школы. Биологические науки. 1989б. № 9. С. 28-32. - 0,6 п.л.

15. Мельчаков Ю.Л. Аэрозольное поступление тяжелых металлов в южнотаежные ландшафты Среднего Урала // Экология. 1985. № 2. С. 80-82.-0,2 п.л.

16. Мельчаков Ю.Л. Сезонная динамика водной миграции тяжелых металлов в условиях техногенного загрязнения // География и природные ресурсы, 1990б, № 2. С. 47-49. - 0,3 п.л.

17). Мельчаков Ю.Л. Загрязнение воздушного бассейна неприоритетными для данного типа техногенеза химическими элементами // География и природные ресурсы. 1992, № 1. С. 35-39. - 0,3 п.л.

Статьи в журналах и сборниках

18. Добровольский В.В., Мельчаков Ю.Л. Динамика массообмена металлов в ландшафтно-геохимических условиях Среднего Урала // Труды биогеохимической лаборатории АН СССР. М.: Наука, 1990. Т. ХХI. С. 89-99. - 0,9 п.л. (авт. вклад - 78%).

19. Мельчаков Ю.Л. Геоэкология эвапотранспирационных потоков химических элементов (на примере Урала). // География и современные проблемы естественнонаучного познания: Материалы Всероссийской научно-практической конференции. Екатеринбург, 2009. С. 107-111. - 0,3 п.л.

20. Mel'chakov Yu. L. Some regularities of аtmospheric biogeochemical cycles of chemical elements // Ecologica. 2009. N 56. P. 50-56. 0,4 п.л.

21. Мельчаков Ю.Л. Масштабы эвапотранспирационного элементопереноса в фоновых условиях и в зоне техногенного загрязнения // Экологическая геология: научно-практические, медицинские и экономико-правовые аспекты: Материалы Международной научной конференции. Воронеж, 2009. С. 38-41. - 0,3 п.л.

22. Mel'chakov Yu. L. The Regional Pollution by Mass Element Transfer in System «Soil - Plants - Atmosphere». // International Conference on Globalization and Environment. Belgrade, 2009. Р. 41-45. - 0,3 п.л.

23. Mel'chakov Yu. L. The Ecological and Geochemical Effect of Evapotranspiration in Taiga Landscapes of the Urals. // International Conference on Globalization and Environment. Belgrade, 2009. Р. 50-53. - 0,3 п.л.

24. Мельчаков Ю.Л., Квашнина А.Е., Возьмитель К.А., Суриков В.Т., Поляков Е.В. Количественная оценка атмосферной составляющей баланса вещества в горных ландшафтах Северного Урала // Тр. гос. заповедника «Денежкин Камень». Вып. 2. Екатеринбург: Академкнига, 2003. С. 94-101. - 0,8 п.л. (авт. вклад - 80%).

25. Мельчаков Ю.Л., Суриков В.Т., Поляков Е.В. Влияние химизма горных пород на фитогенную атмосферную миграцию элементов // Александр Гумбольдт и исследования Урала: Материалы российско-германской конференции 20-21 июня 2002 г., Екатеринбург, 2002 г. С. 143-150. - 0,5 п.л. (авт. вклад -60%).

26. Мельчаков Ю.Л., Суриков В.Т., Поляков Е.В. Побережнюк С.В. Временная изменчивость фитогенной миграции элементов в южнотаежных ландшафтах Среднего Урала // Александр Гумбольдт и исследования Урала: Материалы российско-германской конференции. Екатеринбург, 2002. С. 150-155. - 0,4 п.л. (авт. вклад -50%).

27. Мельчаков Ю.Л., Ремез В.П., Пушкарева Т.А. Шлейнов Б.Б. Провинциальные особенности распределения элементов в пределах Уральской горной страны // Урал в научных исследованиях на географо-биологическом факультете УрГПУ. Екатеринбург, 2001. С. 63-66. - 0,2 п.л. (авт. вклад -75%).

28. Mel'chakov Yu. L. The Research of Mass Element Transfer in System “Soil - Plants - Atmosphere” (the North and Middle Urals) // International Scientific Quality of Air Protection 2008, Belgrade, 2008. P. 127-130. - 0,3 п.л.

29. Мельчаков Ю.Л., Суриков В.Т. Визуальные наблюдения за воздушной средой Урала для определения источников природных и техногенных загрязнений // Исследовано в России. 2004. № 74. С. 812-821. - 0,6 п.л. (авт. вклад -67%).

30. Мельчаков Ю.Л., Суриков В.Т. Суриков В.Т., Поляков Е.В. Методические подходы к количественной характеристике движения масс элементов в системе «растительность - атмосфера» // Урал в научных исследованиях на географо-биологическом факультете УрГПУ. Екатеринбург, 2001б. С. 58-61. - 0,2 п.л. (авт. вклад -75%).

31. Добровольский В.В., Мельчаков Ю.Л. Атмосферные выпадения сульфат-иона, никеля и кобальта в ландшафтах Среднего Урала // Геохимические исследования в лесных и тундровых ландшафтах: межвузовский сборник научных трудов. М., 1986. С. 61-67. - 0,4 п.л. (авт. вклад -75%).

Учебно-методические материалы:

32. Мельчаков Ю.Л. Окружающая среда: контроль и рекомендации. Ч.1. / Екатеринбург: Урал. гос. пед. ун-т, 1999. - 58 с. - 5,5 п.л.

Размещено на Allbest.ru


Подобные документы

  • Оценка минерально-сырьевого потенциала Приполярного Урала. Экономическая оценка перспективных месторождений твердых полезных ископаемых, валовая ценность потенциальных горнопромышленных узлов. Перспективы развития горнорудной промышленности Урала.

    дипломная работа [259,2 K], добавлен 22.04.2010

  • Классификация и характеристика основных озер Южного Урала, разновидности их использования и перспективы развития. Экологические проблемы водных ресурсов Южного Урала, их причины и предложения по разрешению, регулирование хозяйственной деятельности.

    контрольная работа [40,5 K], добавлен 07.04.2010

  • Общая характеристика Урала как естественной горной стены, отделяющей Европу от Азии. Описание промышленности и сельского хозяйства Урала. Туристические ресурсы и достопримечательности региона. Нынешнее положение и пути развития Уральского региона.

    реферат [26,9 K], добавлен 23.10.2010

  • Условия формирования водных ресурсов Среднего Урала: геология и рельеф, климат, почвы и растительность. Водные ресурсы Урала: реки, озера, водохранилища, подземные воды. Влияние хозяйственной деятельности человека на водные ресурсы. Источники загрязнения.

    дипломная работа [278,8 K], добавлен 14.02.2011

  • Виды миграции населения. Внешняя миграция населения как фактор развития территории. Отечественный и зарубежный опыт оценки миграционных процессов. Особенности социально-экономического развития Челябинской области, характеристика миграционных процессов.

    дипломная работа [340,4 K], добавлен 24.06.2009

  • Оценка миграционных процессов в Российской Федерации. Характеристика факторов, влияющих на миграцию. Анализ плотности населения страны по субъектам. Описания самых крупных в мире миграционных коридоров. Исследование основных задач миграционной политики.

    презентация [1,3 M], добавлен 19.10.2014

  • Описание основных отраслей специализации Урала: сельского хозяйства, металлургической, электротехнической, химической, легкой и пищевой (мукомольная, мясная, швейная, текстильная) промышленности, транспортного машиностроения, ракетного производства.

    презентация [195,8 K], добавлен 27.04.2010

  • Исследование исторического пути формирования коренных народов Урала. Характеристика и оценка многонациональности Урала на рубеже 20 – 21 веков. Определение национального состава Свердловской области на современном этапе и организация школьной переписи.

    реферат [27,7 K], добавлен 01.05.2011

  • Понятие, особенности климата и рельефа Урала как географического региона в России и Казахстане, протянувшегося между Восточно-Европейской и Западно-Сибирской равнинами. Представители флоры и фауны, распространенные на данной территории, ее ресурсы.

    презентация [1,4 M], добавлен 26.01.2015

  • Промышленность дореволюционного Урала. Современная география отраслей хозяйственного комплекса. Внутрирайонное размещение машиностроительной и металлообрабатывающей промышленности. Территориальная организация и перспективы развития хозяйства Урала.

    реферат [31,2 K], добавлен 29.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.