Генетическое почвоведение

Стадии почвообразовательного процесса. Свойства, морфологические признаки и структура почвы. Ликвидация или минимизация лимитирующих почвенное плодородие факторов с помощью почвенных мелиораций и агротехнических приемов. Эрозия почвы и меры борьбы с ней.

Рубрика География и экономическая география
Вид курс лекций
Язык русский
Дата добавления 22.01.2016
Размер файла 363,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

S

0,09

0,085

Al

8,8

7,13

Mn

0,09

0,085

Fe

5,1

3,8

P

0,08

0,08

Ca

3,6

1,37

N

0,01

0,1

Na

2,64

0,63

Cu

0,01

0,002

K

2,6

1,36

Zn

0,005

0,005

Mg

2,1

0,6

Co

0,003

0,0008

Ti

0,6

0,46

B

0,0003

0,001

H

(0,15)

?

Mo

0,0003

0,0003

Свойства почвы

Поглотительная способность. Во всех почвах содержатся коллоидные частицы (< 0,0001 мм). Они обладают многими специфическими свойствами. Поэтому от их количества зависит плодородие почвы. Содержанием коллоидных частиц, прежде всего, определяется поглотительная способность почвы - способность поглощать из окружающей среды и удерживать растворимые и взмученные в воде твёрдые вещества, пары воды и газа. Коллоидные и близкие к ним частицы почвы, обладающие способностью поглощения, называют почвенными поглощающим комплексом (ППК).

Учение о поглотительной способности почв разработано русским учёным К. К. Гедройцем (1872-1932). Различают несколько видов поглощения: механическое, физическое (молекулярное), химическое, физико-химическое и биологическое.

Механическое поглощение - способность почвы задерживать при фильтрации частицы, находящиеся во взвешенном состоянии, превышающее по диаметру почвенные поры. Механически задерживаются также частицы почвы, попадающие в трещины, образующиеся на поверхности почвы. Чем больше в почве тонких фракций механического состава, тем выше механическое поглощение.

Физическое поглощение (или молекулярная адсорбция) основано на способности коллоидов почвы притягивать к поверхности и удерживать на ней молекулы вещества (воды, растворов, газов, например аммиака), не изменяя их свойств.

Химическое поглощение. Вещества, входящие в почвенный раствор и твёрдую фазу почвы, вступают в химическое взаимодействие с находящимися в почве солями с образованием слаборастворимых или нерастворимых в воде соединений.

Физико-химическое поглощение, или обменная адсорбция (обменная поглотительная способность). Она основана на способности почвенных коллоидов поглощать из почвенного раствора и удерживать на поверхности катионы в обмен на другие катионы в ППК.

Энергия поглощения разных катионов зависит от их валентности и атомной массы: чем выше валентность, а в пределах одной валентности чем выше атомная масса, тем выше и энергия поглощения. Исключением является водород (Н). В порядке возрастающей энергии поглощения катионы располагаются в следующей последовательности:

Na < NH < K < Mg < H < Ca < Al < Fe

Количество катионов, которое способна поглотить почва, называется ёмкостью катионного поглощения, или ёмкостью обмена и выражается в миллиграмм-эквивалентах (мг-экв.) на 100 г почвы. Величина ёмкости поглощения (Т) у разных почв неодинакова и зависит от наличия минеральных и органических коллоидов почвы. Так, у супесчаных почв она составляет всего 5-10 мг-экв., у суглинистых малогумусных - 15-20, а у суглинистых чернозёмов - 40-50 мг-экв. и выше.

Чем больше в ночве глинистых частиц и гумуса, тем больше емкость поглощения.

Очень большое значение для плодородия почв имеет и состав поглощенных оснований. В нем могут быть кальций, магний, водород, калий, натрии, аммоний, железо и алюминий. В агрономическом отношении это наиболее ценные катионы.

Одновалентные катионы (К+, _Ма+) диспергируют почвенные коллоиды, разрушают почвенные реакции - а с ними и структуру, при большом количестве вызывают щелочную реакцию. .

Поглощенный водород разрушает почвенные коллоиды и подкисляет почву. Подкисляющее действие может оказывать на почву II алюминий. Будучи вытесненным:.; из поглощенного состояния, он в почвенном растворе переходит в соединение АlСlз, которое !! результате взаимодействия с водой образует соляную кислоту.

В зависимости от наличия в поглощенном состоянии, с одной стороны, водорода (II) и алюминия (Аl), а с другой--двухвалентных катионов (Са и Mg) различают почвы, насыщенные. основаниями и не насыщенные ими. К первым относятся ночвы, в поглощающем комплексе которых ; находятся

только катионы кальция, магния, калия и отсутствует водород; ко вторым - почвы, в поглощающий комплекс которых наряду с другими катионами входят водород, алюминий. Насыщены основаниями черноземы, каштановые почвы, сероземы, а не насыщены дерново-подзолистые почвы, красноземы, болотные. Почвами с высокой насыщенностью натрием являются солонцы. Они бесструктурны, расплываются от дождя, а при высыхании сплываются в плотную массу.

Для характеристики агрохимических свойств почвы важное значение имеет сумма поглощенных оснований (S). При ее определении учитывают количество содержащихся в .поглощенном состоянии катионов, (в дерново-подзолистых почвах Са, Mg), за исключением водорода. Этo количество выражают также в миллиграмм-эквивалентах на 100 г почвы. У разных почв оно колеблется от 2 до 50 мг-экв. и выше. Например, на легких дерново-подзолистых почвах S может быть всего 2-5 мг-экв., на легкосуглиннстых-- 5-10, на тяжелых суглинках - 15-20, на лесостепных почвах и черноземах: от 20 до 50 мг-экв. Чем больше S, тем агрономически ценнее ночва.

С суммой поглощенных оснований связано вычисление степени насыщенности почвы основаниями (V). Она показывает, какую часть от емкости поглощения почвы занимают поглощенные основания, выражается в процентах от общей емкости поглощения, включающей содержание ионов водорода (Н), и вычисляется по формуле:

V= S *100% / S + Нг

Биологическое поглощение. Этот вид поглощения в почве осуществляется жизнедеятельностью растений и микроорганизмов. Одной из важных особенностей биологического поглощения является избирательная способность микроорганизмов и растений, проявляющаяся в том, что они берут из почвы преимущественно те вещества, которые им необходимы для построения своего тела, для жизни.

Реакция почвы. Формы кислотности

С насыщенностью почвы различными катионами непосредственно связана реакция почвенной среды.

Почвы, насыщенные Са, Mg (черноземы), имеют нейтральную или слабокислую реакцию, благоприятную для большинства сельскохозяйственных культур. Почвы, не насыщенные основаниями, характеризуются кислой реакцией. Таковы почвы дерново-подзолистые. Высокая кислотность их может быть вредной для многих сельскохозяйственных культур.

Кислотность почвы. В почвах, не насыщенных основаниями, различают две формы кислотности: актуальную и потенциальную.

Актуальная кислотность обусловлена ионом водорода, находящимся в почвенном растворе. Обычно она наблюдается при наличии в почве растворимых органических кислот, углекислого газа или таких соединений алюминия и железа, которые, взаимодействуя с водой, образуют кислоту.

Реакция почвенного раствора (водной вытяжки из почвы) выражается величиной рН, характеризующей в нем концентрацию водородных ионов. Сама величина рН представляет собой отрицательный логарифм концентрации водородных ионов. Чем ниже рН, тем выше кислотность почвы. рН сильнокислых почв 4,0- 4,5; нейтральных - около 7,0; сильнощелочных 8,0-9,0.

Потенциальную кислотность обнаруживают при обработке почвы растворами различных солей, вызывающими вытеснение ионов водорода и алюминия из поглощенного состояния.

Принято различать две формы потенциальной кислотности: обменную и гидролитическую. Обменная кислотность появляется при обработке почвы 1 М раствором нейтральной соли, например КСl. В этом случае из почвы вытесняются водородные ионы (Н+) из обменно-поглощенного состояния.

Обменную кислотность выражают, как и актуальную, знаком рН, но обязательно указывают «рН солевой вытяжки» (или рН в КСl). Величина рН солевой вытяжки для разных почв следующая: сильнокислые почвы - менее 4,5; среднекислые - 4,6--5,0 ; кислые - 5,1--5,5; слабокислые - 5,6-6,0; близкие к нейтральным 6,0-7,0; нейтральные - около 7,0; щелочные - более 7. Точнее выражать обменную кислотность почв в миллиграмм-эквивалентах (мг-экв.) водорода и алюминия (в сумме) на 100 г почвы.

Гидролитическая кислотность обнаруживается при обработке почвы гидролитически щелочной солью (солью сильного основания и слабой кислоты). Чаще всего для ее определения пользуются 1 М раствором уксуснокислого натрия (CH3COONa).

Величина этой формы кислотности характеризует способность почвы связывать основания из растворов гидролитически щелочных солей. Гидролитическую кислотность выражают в миллиграмм-эквивалентах на 100 г почвы. Гидролитическая кислотность больше обменной и включает в себя обменную и актуальную кислотность, а обменная, в свою очередь, включает в себя актуальную кислотность. Гидролитическая кислотность зависит от типа почвы, абсолютная величина ее обычно бывает от 2 до 8-10 мг-экв. на 100 г почвы, в органогенных почвах - в несколько раз больше.

Наиболее опасна для растений обменная кислотность. В практике определением рН почвенного раствора широко обосновывают применение известкования и установление дозы извести. Обычно известкуют почвы с рН менее 5,5 (на торфяно-болотных почвах - менее 5,0).

Снизить почвенную кислотность можно не только известкованием, но и другими способами, например длительным обильным унавоживанием - одним из приемов окультуривания почвы.

Щелочность почвы. Щелочная реакция почвенного раствора появляется при взаимодействии поглощенного натрия с почвенным раствором, в котором находится углекислота или Са(НСОз)2. Щелочность различают также актуальную и потенциальную. Первая обусловлена наличием в почвенном растворе гидролитически щелочной соли.

В зависимости от содержания обменного натрия (в % от суммы поглощенных оснований) различают: солонцы - более 20, солонцеватые почвы - 10--20, слабосолонцеватые почвы 5-10.

Почвы, в которых обменного натрия больше 10 %, нуждаются в гипсовании и других приемах улучшения.

Буферность почвы-- это способность почвы противостоять резкому изменению ее реакции. Буферность зависит от емкости поглощения, состава почвенных коллоидов и наличия в почвенном растворе буферных смесей, например бикарбонатов кальция. Буферность очень ценное свойство почвы.

Песчаные малогумусные почвы имеют очень небольшую буферность, в них легко смещается реакция, например, при внесесении кислых или щелочнных форм минеральных удобрений. Богатые перегноем суглинистые почвы с высокой степенью насыщенности основаниями обладают высокой буферностью: хорошо противостоят влиянию внешних факторов, изменяющих реакцию почвы.

Поглотительная способность почвы, насыщенность основаниями, кислотность, щелочность играют очень большую роль для агрономической оценки почв и устанавливаются при почвенных обследованиях. Соответствующие показатели (рН, S, Нобм, Нг. Т, У) приводятся в характеристиках почв и служат обоснованием для тех или иных приёмов их улучшения.

Структура почвы

Частицы почвы могут склеиваться между собой, образовывать структурные комочки -- агрегаты, не размываемые водой. Почва с большим количеством агрегатов называется структурной. Бесструктурными почвами называются такие, в которых отдельные механические элементы (песок, пыль) не связаны между собой. Свойство почвы образовывать структурные агрегаты называются структурностью.

В агрономическом отношении наиболее ценна мелкокомковатая и зернистая структура пахотного горизонта с размерами комочков от 1 до 5 мм. Очень важное качество почвенной структуры - ее водопрочность, т. е. неразмываемость агрегатов водой.

В структурной почве создается и поддерживается лучший воздушно-водный режим, а следовательно, и микробиологическая деятельность, и питательный режим. Структурную почву легче обрабатывать.

Однако нельзя переоценивать значение структуры почвы. Известно, например, что песчаные почвы бесструктурны, но при достаточном увлажнении и удобрении могут давать очень высокие урожаи.

Физические и физико-механические свойства. К физическим свойствам почвы относятся плотность, плотность твердой фазы почвы, скважность, а также водные, воздушные и тепловые свойства.

Плотность почвы - масса единицы объема (1 см куб) сухой почвы в ее естественном состоянии. Плотность пахотного слоя грубозернистой песчаной почвы 1,8; подзолистой суглинистой 1,2; типичного чернозема 1,0. Исходя из плотности почвы, вычисляют массу пахотного слоя на 1 га. Для подзолистых суглинков он будет 2,5--3 тыс. т (при глубине 20 см).

Величина плотности определяется плотностью твердой фазы почвы и зависит от ее зональных особенностей.

Плотность твердой фазы почвы - отношение массы твердой фазы (почвенных частиц) к массе того же объема воды при 4° С. Наибольшую плотность твердой фазы имеет минеральная почва, например песчаная с высоким содержанием кварца (2,65), у перегноя и торфа 1,6, поэтому почвы с большим количеством гумуса отличаются меньшей плотностью твердой фазы (так у мощного чернозема она 2,37).

Пористость, или скважность. Почва состоит из твердой фазы (почвенных комочков) и промежутков между ними, или пор. Общий объем пор в процентах по отношению ко всему объему почвы называется пористостью, или скважностью, почвы. Поры могут быть заняты водой или воздухом. Наиболее благоприятен в агрономическом отношении такой объем, при котором поры почвы заняты водой примерно наполовину.

Скважность различают капиллярную (объем промежутков капиллярного сечения), некапиллярную (промежутки более широкие, чем капилляры) и общую. Последняя в пахотном слое составляет около 50%.

Физико-механические свойства почвы: связность, пластичность, .липкость, набухание и усадка имеют значение при механической обработке, так как от них зависит удельное сопротивление почвы орудиям обработки.

Для агрономической характеристики состояния почвы применяется термин спелость почвы. Под спелостью почвы понимают ее пригодность для механической обработки. Она зависит от состояния влажности, связности, пластичности, липкости.

Спелая почва легко обрабатывается орудиями, не прилипает к ним, не мажется, не образует глыб, а крошится при обработке на мелкие комки.

Неблагоприятное сочетание перечисленных физических свойств почвы может привести к образованию почвенной корки, ухудшающей условия жизни растений.

В результате систематического уплотнения почвы плугом при вспашке на одну и ту же глубину в верхней части подпахотного слоя образуется плотная прослойка почвы, так называемая плужная подошва. Для предупреждения ее возникновения следует пахать поля на разную глубину и в разных направлениях.

Водные свойства и водный режим почв. Вода может находиться в почве в разных состояниях и в зависимости от этого имеет неодинаковое значение для питания растений. Различают следующие главные формы воды в почве.

Гравитационная вода занимает в почве крупные поры (некапиллярные), передвигается сверху вниз под собственно тяжестью. Это самая доступная для растений вода. Однако если она заполняет все поры, то наступает переувлажнение почвы. На песчаных почвах гравитационная вода легко уходит вглубь, в зону, недоступную для корней.

Капиллярная вода занимает капилляры почвы. По ним она продвигается от более влажного слоя к более сухому. По мере испарения воды с поверхности почвы такой восходящий ток ее может иссушить почвы. Капиллярная вода вполне доступна растениям.

Гигроскопическая вода находится в почве в виде молекул в поглощенном состоянии, удерживается поверхностью почвенных частиц, почти недоступна растениям, передвигается между частицами почвы в форме пара.

Названные формы воды не являются постоянными. Вода может из одной категории переходить в другую. При переувлажнении почвы все промежутки между ее частицами заняты водой. При подсыхании почвы расходуется в первую очередь свободная (некапиллярная) вода, а затем капиллярная. Если запасы капиллярной и некапиллярной воды исчерпаны, то растения уже почти не могут получать ее из почвы через корневую систему, так как в почве остается только вода, малодоступная растениям. Степень увлажнения почвы, при которой растения начинают завядать, от недостатка влаги, называется влажностью завядания (ВЗ). Влажность завядания равна обычно полуторной максимальной гигроскопичности; на песчаных почвах она ниже 1% на супесчаных 1-3, на суглинистых 4-10, а на глинистых 15 % и выше.

Количество воды, которую почва прочно удерживает, а растения не могут использовать, составляет мертвый запас воды.

В глинистых почвах, водоудерживающая способность которых очень велика, мертвый запас влаги составляет 10-15% массы почвы, а в песчаных почвах - меньше 1 %. Это значит, что при одинаковой влажности (допустим, 20%) глинистая и песчаная почвы имеют разное количество доступной растениям воды: глинистая 5-10%, песчаная 19%.

Воду, которая содержится в почве сверхвлажности завядания (некоторые считают сверх мертвого запаса), т.е. больше двойной максимальной гигроскопичности, называют продуктивной (или доступной) влагой. Процент продуктивной влаги в почве равен приблизительно влажности почвы, выраженной в процентах, за вычетом двойной максимальной гигроскопичности.

Однако более точно количество продуктивной влаги исчислять в весовых единицах Каждый миллиметр осадков соответствует 10 т воды на 1 га.

Запас продуктивной влаги (W) вычисляют с учетом мощности и плотности каждого слоя почвы по формуле:

W = 0,1 * П * h (B - BЗ),

где 0,1--коэффициент перевода в миллиметры водяного слоя; /7--плотность почвы (в r на 1 см куб); h -- мощность слоя почвы, для которого рассчитывается запас влаги (в см); В--влажность почвы и ВЗ--влажность завядания (в % от абсолютно сухой почвы).

Почва способна впитывать и удерживать воду, а затем отдавать ее растениям. Для получения высокого урожая необходимо, чтобы в почве всегда содержалось нужное растениям количество воды. Зерновые культуры расходуют на создание урожая 2--3 тыс. т воды на 1 га, а другие растения и больше.

В почву вода попадает, прежде всего, с осадками, а также из атмосферы в виде водяных паров. Наибольшее количество воды, которое может удержать (вместить) почва при заполнении всех пор, называется общей, или полной, влагоемкостью (ПВ), Она зависит от механического состава почвы, содержания в ней перегноя и от общей пористости. Например, глинистые почвы отличаются высокой влагоемкостью (60-80 г воды на 100 г почвы), а песчаные - низкой (15-25 г). Особенно велика она в торфяных почвах. При полном насыщении торфа масса ее в несколько раз превышает массу воздушно-сухого торфа. Наиболее благоприятный для растений водный режим создается в минеральных почвах при насыщении их водой на 60-80% полной влагоемкости.

Способность почвы пропускать через себя воду носит название водопроницаемости. При плохой водопроницаемости вода осадков стекает по поверхности почвы. В то же время при очень высокой водопроницаемости, какой, например, обладают песчаные почвы, осадки очень быстро проникают через почву и не используются растениями. Наиболее благоприятны условия для водопроницаемости в структурных почвах.

Водный режим почвы зависит, прежде всего, от количества выпадающих атмосферных осадков и от величины расхода влаги на испарение и транспирацию. Соотношение этих величин и определяет тип водного режима почвы. Он может быть промывным (отношение осадков к испарению больше единицы), переходным (это отношение около единицы) и непромывным (осадков меньше, чем величина испарения). Промывной тип преобладает в лесолуговой зоне, непромывной - в степной и пустынной зоне, а переходный -- в лесостепи. При близком расположении грунтовых вод возникает еще выпотной тип водного режима, а при высоком уровне грунтовых вод -- застойный тип, который не считается самостоятельным типом, а разновидностью промывного.

Воздушные и тепловые свойства почвы. В почве содержится воздух, состав которого отличается от атмосферного большим количеством углекислого газа, меньшим количеством кислорода. При недостатке воздуха в почве замедляется прорастание семян, ненормально развивается корневая система, подавляется микробиологическая деятельность.

Содержание воздуха в почве (ее воздухоемкость) зависит от скважности почвы и относительного количества пор, занятых водой.

Важно, чтобы непрерывно шел интенсивный обмен воздуха между почвой и атмосферой (аэрация), чтобы воздух, более богатый кислородом, поступал в почву, а бедный кислородом удалялся из нее.

Тепловой режим в значительной степени объясняет интенсивность механических, геохимических и биологических процессов в почве. С повышением температуры на 10° С скорость химической реакции возрастает в 2-3 раза. В разных районах Земли в этой связи скорости химических реакций могут отличаться в десятки раз. От температуры зависит сорбция и десорбция, растворимость газов, соотношение твердой и жидкой фаз в почве, пептизация и коагуляция коллоидов.

Многие минералы отличаются значительными коэффициентами объемного расширения, например, у полевых шпатов вдвое меньше, чем у кварца. При периодическом нагревании и охлаждении в породах образуются трещины, а капиллярное давление в тонких трещинах и замерзающая вода в более крупных способствуют механическому разрушению минералов и пород. Нагревание увеличивает биохимическую деятельность бактерий, по крайней мере, до температуры 40° С.

Тепловым режимом почвы называется совокупность явлений теплообмена в системе приземный слой воздуха - почва - почвообразующая порода. Тепловой режим определяет в первую очередь солнечная радиация, точнее соотношение поглощенной радиации и теплового излучения Земли. Сравнительно небольшую роль играют экзо- и эндотермические реакции в почве, а также внутренняя энергия нашей планеты. Интенсивность альбедо зависит от окраски почвы, характера ее поверхности, теплоемкости. Темные почвы, богатые органическим веществом и глинистыми минералами, энергично поглощают солнечное излучение. Светлые, особенно песчаные малогумусные почвы имеют альбедо 40-45 %, или почти вдвое меньше.

Под теплоемкостью понимают количество теплоты, необходимое для нагревания на 1° С 1 г почвы (массовая теплоемкость) или 1 см3 почвы (объемная теплоемкость). Теплоемкость жидкой фазы - около 1, твердой - 0,1-0,5, газовой фазы - 0,0003. Из этих величин следует, что теплоемкость почвы увеличивается с увеличением влажности почвы, то есть для нагревания влажной почвы требуется больше тепла, чем для нагревания сухой.

Излучение теплоты также зависит от состава и влажности почвы, строения поверхности. Поступающее количество энергии (радиационный баланс) тратится на испарение, нагревание почвы, отдачу тепла в атмосферу. В среднем за год тепловой баланс почвы равен нулю.

Тепловодность - способность почвы проводить теплоту, она определяет глубину прогревания и охлаждения почв. Этот показатель у воды в 20 с лишним раз выше, чем у воздуха, поэтому влажные почвы прогреваются на большую глубину, хотя и медленнее, чем сухие. Биологически активное прогревание соответствует температуре выше 10° С. Колебания суточных температур распространяются обычно до глубины 1 м. Сезонные колебания захватывают значительно большую толщину почвы.

Промерзание почвы зависит от ряда причин: географического положения, климатических особенностей, температуры замерзания почвенного раствора, мощности снежного покрова и времени его выпадения, наличия древесной растительности. Растительность задерживает солнечную радиацию, поэтому летом температура почвы может быть ниже, чем воздуха. Пониженную теплопроводность имеет лесная подстилка. Но зимой температуры почвы под лесом выше, чем на соседнем поле.

Питательный режим почвы

Почва - источник всех питательных веществ, поступающих в растения через корневую систему. К необходимым для растений элементам питания относятся: азот, фосфор, калий, кальций, магний, сера, железо. Важную роль в жизни растений играют микроэлементы бор, марганец, цинк, кобальт, молибден, внесение которых в почву (при их недостатке) может повысить урожай и его качество.

Азот. Источником его в почве служит, прежде всего, органическое вещество, в котором заключено 90% азота почвы. Содержание этого элемента в гумусе различных почв измеряется несколькими тоннами на гектар. Запасы гумуса без поступления органических веществ ежегодно уменьшаются в подзолистых почвах на 6-7 ц, в чернозёмах около 1 т с 1 га. Поэтому система удобрения почвы и севооборота должна строиться таким образом, чтобы запасы гумуса в почве не истощались.

Наибольшее значение для пополнения доступного растениям почвенного азота имеют процессы аммонификации, при которой азот органического вещества превращается в аммиак, - и нитрификации, при которой аммиак переходит в азотистую, а затем в азотную кислоту и ее соли. Развитию этих процессов способствуют оптимальная температура (20-30° С) и влажность почвы (60-70% полной влагоемкости), аэрация почвы, благоприятная реакция среды.

Превращение органических соединений в доступные минеральные формы азота проходит несколько последовательных стадий. Белки и гумусовые вещества под действием ферментов превращаются сначала в аминокислоты и амиды. Микроорганизмы-аммонификаторы переводят эти соединения в аммиак, аммонийные соли и поглощенный аммоний, уже доступные растениям. Однако в дальнейшем аммиак под влиянием нитрифицирующих бактерий превращается в нитриты, а затем в нитраты, связанные с кальцием, магнием, калием и другими катионами.

При благоприятных условиях нитрификации, например в паровом поле на черноземах, может накапливаться от 30 до 50 мг и более нитратного азота на 1 кг почвы, что соответствует 90-150 кг на 1 га и больше. Накопленный в почве азот нитратов легкоподвижен. При выпадении большого количества осадков он может опускаться в глубокие горизонты и даже вымываться в грунтовые воды, а также переходить в элементарный азот и улетучиваться в воздух. В засушливых условиях, например в Западной Сибири, нитраты долго (несколько лет) сохраняются в почве. Поэтому процесс разложения органического вещества и образования подвижных форм азота можно регулировать в интересах лучшей обеспеченности этим элементом растений.

Другим источником азота в почве служит азот воздуха. Его запасы действительно неисчерпаемы. Однако пути поступления азота воздуха в почву ограничены. Небольшое количество этого элемента (около 4 кг на 1 га) попадает ежегодно с осадками. Накапливают азот в почве и свободноживущие азотфиксаторы (бактерии, некоторые грибы и водоросли). Однако даже при неблагоприятных условиях они могут дать его немного (5-10 кг на 1 га в год).

Количество азота в почве необходимо пополнять внесением органических и минеральных (азотных) удобрений, а также мобилизацией атмосферного азота путем посева бобовых растений, главным образом многолетних (клевера, люцерны), или таких однолетних бобовых, которые запахиваются в почву (люпин). Известно, что клевер и люцерна усваивают 150-200 кг азота на 1 га. Примерно одна треть его остается в почве, а остальное количество возвращается в нее в виде навоза.

Степень обеспеченности растений азотом почвы нельзя определить по валовому содержанию гумуса или азота. Наиболее точно о возможной реакции на внесение азотных удобрений на той или иной почве можно судить только на основании полевых опытов.

Фосфор. Хотя содержание его в земной коре не превышает 0,1%, значение этого элемента в жизни почвы и растений огромно. Растения аккумулируют фосфор в перегнойном слое почвы, но в то же время и отчуждают с урожаями, особенно с товарной частью его. Фосфор находится в почвах в органических и минеральных соединениях. В черноземах примерно половина, а в дерново-подзолистых почвах одна треть его связана с органическим веществом.

Этот фосфор становится доступным растениям лишь после минерализации органического вещества.

Минеральные соединения фосфора представлены очень многими формами, преимущественно труднорастворимыми и слабодоступными растениям фосфатами алюминия, железа и трехкальциевыми фосфатами Са3(РО4)2. Легкодоступных соединений фосфора, таких, как растворимые соли кальция [Ca(H2PO4)2]], магния [Mg(H2P04)2], калия (КН2PO4), аммония [(NH4)2HP04 и NH4H2P04] в почве мало. Наблюдается большой разрыв между валовым содержанием фосфора в почве и его количеством, доступным для растений. Например, в дерново-подзолистых суглинистых почвах или в серых лесных общее содержание фосфора (P205) в пахотном слое составляет 0,04-0,12 %, или 1,2-3,6 т на 1 га, а количество доступных растениям форм фосфора в неудобренной фосфатами почве не превышает 0,1-0,2 т на 1 га.

О потребности почв в фосфорных удобрениях судят по содержанию доступного растениям фосфора, определяемого теми или другими химическими методами. Все методы рассчитаны на вытеснение фосфора растворителями различной силы и концентрации. В Беларуси для определения нуждаемости почв в фосфорных удобрениях применяют метод Кирсанова, основанный на вытеснении фосфора 0,2 н. соляной кислотой. Низким считается содержание менее 100 мг/кг почвы, средним - 100-200 мг/кг, повышенным - 200-300 мг/кг, высоким - более 300 мг/кг.

С учетом обеспеченности почв подвижным фосфором и устанавливают дозы фосфорных удобрений.

Калий. Все почвы, за исключением торфяных и рыхлопесчаных, характеризуются высоким валовым содержанием калия (К2О) -- 1,2--2,5%, или 35-75 т на 1 га пахотного слоя. Преобладающая часть калия связана с глинистыми частицами почвы. Поэтому существует прямая связь между механическим составом почв и содержанием в них калия. Чем больше в почве мелкодисперсных частиц, тем больше в ней калия. В пределах одного почвенного типа в зависимости от механического состава почвы количество калия изменяется следующим образом: песчаные и супесчаные почвы - 1,2%, легкосуглинистые - 1,8; среднесуглинистые -- 2,2 %.

Калий находится в почвах преимущественно в форме недоступных или малодоступных растениям минералов, таких, как ортоклаз, мусковит, биотит, нефелин. Из минералов, особенно трех последних, он может постепенно, но очень медленно переходить в растворимое состояние под влиянием химического и биологического выветривания, например под влиянием выделяемой корнями растений углекислоты. Если при низких урожаях процесс высвобождения калия из труднодоступных минеральных соединений может обеспечить потребность растений, то при высоких урожаях и большом выносе этого элемента из почвы доступного калия в ней оказывается недостаточно для питания растений. Основной формой доступного растениям калия в почве служит обменный калий, адсорбированный на поверхности почвенных коллоидов. Содержание его в дерново-подзолистых почвах колеблется от 40 до 250 и более мг К20 на кг почвы, в черноземах и сероземах - до 500 мг.

В почве происходит и обратный процесс -- фиксация, или закрепление, калия. Из обменной формы он может переходить в необменную. Фиксации подвержен и калий вносимых удобрений.

Для определения доступного калия принят также метод Кирсанова (фосфор и калий определяют в одной вытяжке 0,2 н. НС1).

Однако содержание в почве обменного калия не служит достаточным показателем обеспеченности растений доступным калием, так как, помимо обменного калия, растения используют часть необменного калия.

Магний. Некоторые почвы особенно дерново-подзолистые, песчаные и супесчаные, содержат мало магния. Если общее количество его в суглинистых почвах 1-2%, то в песчаных всего 0,05-0,1% MgO. Основная часть магния, находящегося в почвах, входит в силикаты и трудно доступна растениям. Водорастворимый и обменный магний составляет не более 10% общего его запаса, а в легких почвах - 0,5-2,5 мг на 100 г почвы. Между тем магний вымывается из почвы осадками, используется растениями (зерновые выносят 10--15 кг Mg0 на 1 га, а картофель, клевер, сахарная свекла - в 3--5 раз больше). В почвах Беларуси локально имевшийся дефицит магния в настоящее время устранен внесением доломитовой муки при известковании кислых почв.

Сера. В дерново-подзолистых почвах серы около 0,01-0.1%, в черноземах 0,2-0,5, в каштановых 0,2-0,5%. Значительная часть серы входит в состав органического вещества. Она поглощается растениями, а' также вымывается из почвы. Вынос серы с 1 га составляет 15-25 кг. Если запасы ее не восполняются внесением органических и некоторых серосодержащих минеральных удобрений, то начинает проявляться недостаток серы, особенно на легких почвах.

Микроэлементы. Недостаток их в почве сказывается на состоянии и развитии растений, на урожайности, а также на здоровье и продуктивности животных, если они не получают нужных микроэлементов в кормах, в частности на пастбищах.

К числу элементов, недостаток которых в почвах проявляется чаще, относятся: бор, медь, марганец, молибден, цинк, кобальт и йод.

Плодородие почв

Плодородие является неотъемлемым свойством почвы. От него зависит жизнь растений и животных. Под плодородием в современной научной литературе принято понимать способность почвы обеспечивать рост и воспроизводство растений всеми необходимыми им условиями.

Растения для своей жизни нуждаются в воде, элементах питания, свете, тепле, кислороде, углекислом газе. Все это (кроме света) в той или иной мере дает почва.

К. Маркс в «Капитале» различал три категории плодородия почвы: естественное (природное), искусственное (эффективное) и экономическое. Естественное плодородие определяется свойствами природных почв, формирующихся в процессе их эволюции под влиянием природных факторов почвообразования. Естественным плодородием обладают целинные почвы.

Эффективное плодородие свойственно почвам сельскохозяйственного использования и проявляется в виде способности поддерживать некоторый уровень урожая культурных растений. Эффективное плодородие - та часть потенциального плодородия, которая реализовывается в виде урожая растений при данных погодных и агротехнических условиях.

Экономическое плодородие связано с разной оценкой конкретных земельных участков в зависимости от их расположения и удобства использования. Экономическое плодородие - экономическая оценка почвы в связи с ее потенциальным плодородием и экономическими характеристиками земельного участка.

Потенциальное плодородие - суммарное плодородие почвы, определяемое ее свойствами, как естественными, так и измененными человеком.

Относительное плодородие - плодородие почвы по отношению к определенной группе или виду растений. Плодородная для одних культур почва может быть неплодородна для других.

Воспроизводство плодородия - совокупность природных почвенных процессов и целенаправленных антропогенных воздействий для поддержания эффективного плодородия почв на уровне, приближающемся к потенциальному плодородию.

Рост и продуктивность растений зависят от плодородия почвы, но и плодородие зависит от количества поступающего органического вещества и направленности биологического круговорота. В этой связи на Земле растительные и почвенные зоны находятся в естественной связи. В природных биогеоценозах устанавливается динамическое равновесие между почвой и растительностью, почве любого плодородия находится свой вид растительности, по отношению к которому она наиболее плодородна. Болотные или лесные растения не могут расти на черноземе, например.

Плодородие почвы формируется в процессе образования самой почвы и определяется всей совокупностью свойств почвы. При этом не следует забывать, что плодородие формируется в процессе образования самой почвы и формируется всей совокупностью свойств почвы, а не только верхним ее слоем, где находится большая часть гумуса, корней, питательных веществ.

Важнейшими свойствами почв, определяющими ряд соподчиненных свойств и, в конечном счете, плодородие, являются гранулометрический состав, структурность, водно-физические свойства, тепловые свойства, содержание органического вещества, поглотительная способность почв, биологическая активность почв.

Гранулометрический состав почвы определяет тепловой, воздушный, водный и пищевой режимы. Легкие почвы прогреваются раньше тяжелых, и их называют «теплыми почвами». Они имеют хорошую водо- и воздухопроницаемость. Благодаря высокой аэрации органическое вещество в таких почвах быстро минерализуется, а гумификация ослаблена. Из-за малой влагоемкости влага не накапливается, а элементы питания активно вымываются. Их поглотительная способность и буферность низка.

Тяжелые почвы более «холодные», слабопроницаемы, значительная часть их влаги недоступна растениям. При сезонном переувлажнении возможен дефицит воздуха и развивается оглеение.

Экологическое значение гранулометрического состава почв в первую очередь в том, что с ним связано богатство или бедность почв. Обычно чем легче гранулометрический состав, тем меньше гумуса и питательных элементов. С увеличением содержания ила эти параметры растут, но плодородие снижается с какого-то момента из-за ухудшения физических свойств. Негативное действие избытка глинистых частиц может компенсировать структурность почвы. Для большинства почв (подзолистых, дерново-подзолистых, желтоземных) оптимальным является среднесуглинистый либо (для серых лесных, черноземов, каштановых, сероземов) тяжелосуглинистый состав почв. Для почв Беларуси в большинстве случаев максимальные урожаи обеспечивают легкосуглинистые почвы. Для картофеля, арахиса, маниока, дыни, тыквы и черешни оптимальны еще более легкие почвы

Структурность определяет плотность почвы, ее физические свойства и связанные с ними тепловой, водный, воздушный и пищевой режим, что в конечном счете сказывается на величине урожая. В бесструктурной почве обычно наблюдается дефицит либо воды, либо воздуха. В структурных почв вода удерживается в капиллярах, а воздух - в межагрегатных пустотах, обеспечивая постоянный газообмен с атмосферой, удаляя углекислый газ. Структурность почв обеспечивает одновременное наличие в почве и аэробных, и анаэробных микроорганизмов. Для плодородия почвы очень важны размеры структурных агрегатов, при величине агрегатов менее 0,5 мм резко падает порозность аэрации, имеется явный недостаток кислорода. Уже при величине агрегатов 1-2 мм порозность аэрации увеличивается до оптимальных 30 %, а содержание нитратов, например, увеличивается в 4 раза.

Тепловые свойства почв, то есть их способность поглощать и отражать лучистую энергию солнца, проводить и удерживать тепло, также во многом определяют рост и развитие растений. Тепловой режим почвы зависит от цвета почвы, водно-воздушных свойств, теплоемкости заполняющей ее воды или воздуха.

Органическое вещество почв содержит основную массу азота, 80 % серы, 60 % фосфора, много других элементов питания. Эти элементы не вымываются, но постепенно могут использоваться растениями. Органическое вещество - источник энергии для микроорганизмов, мобилизующих элементы питания для растений из растительных остатков и минеральной части почвы. С количеством и качественным составом гумуса связано образование водопрочной структуры и формирование благоприятных водно-физических и технологических свойств почв. Органические коллоиды вносят существенный вклад в создание поглотительной способности почв.

Поглотительная способность почв обуславливает ряд жизненно важных для растений свойств почвы - пищевой режим, химические и физические свойства. Благодаря ей элементы питания удерживаются почвой и меньше вымываются осадками, оставаясь доступными для растений. От емкости и состава обменных катионов зависит реакция почв, дисперсность, способность к агрегированию, водопрочность. Поглощенные водород, алюминий, железо разрушительно действуют на структуру почв и поглощающий комплекс в целом, а «кальций» называют стражем плодородия.

Биологическая активность почвы определяется численностью, составом и активностью почвенной фауны, микроорганизмов, ферментов. Они непосредственно участвуют в трансформации недоступных растениям элементов питания, участвуют в образовании гумуса, биологически удерживают элементы питания. В биомассе отмирающих микроорганизмов, а их количество может достигать 6 т/га, содержится около 12 5 азота, 3 % фосфора, 2,2 % калия. Биологическая активность определяет фиксацию атмосферного азота и образование углекислоты для процессов фотосинтеза.

Те или иные свойства почв могут иметь положительную или отрицательную роль в формировании почвенного плодородия. В агрономии и агрохимии известен закон минимума, согласно которому урожай растений определяется тем фактором, который находится в минимуме в данный момент. «Бочка» Либиха в настоящее время не считается вещью абсолютно бесспорной, но такая закономерность в почве, несомненно, есть.

В почвоведении основная практическая задача - ликвидация или минимизация лимитирующих почвенное плодородие факторов с помощью коренных почвенных мелиораций и агротехнологических приемов. Основными приемами являются:

Известкование

Гипсование, кислотование

Промывка и дренаж вод (избыток солей)

Пескование, оструктуривание и глубокое рыхление (глинистость)

Оструктуривание, рыхление, травосеяние (высокая плотность)

Тепловые мелиорации

Орошение, агротехнические приемы накопления воды

Минеральные и органические удобрения

Осушительный дренаж

Дренаж, щелевание, оструктуривание (недостаток аэрации)

Планировка поверхности (микрорельеф)

Террасирование, полосно-контурная обработка (уклон)

В отношении требований к плодородию почвы естественных фитоценозов и агроценозов существенно отличаются. В естественной среде растительный покров представлен растениями разных видов, которые отличаются по биологической стойкости и требовательности к потреблению элементов питания и воды как в количественном аспекте, так и в плане периодичности потребления в течение вегетации. Ярусность растительности позволяет полнее использовать свет и тепло. В целом природный фитоценоз - устойчивое растительное сообщество, приспособленное к климатическим и иным условиям местности и к почве.

Агроценоз обычно представлен популяцией одного вида. Этот вид растений потребляет много воды и пищи, причем периоды максимального потребления резко совпадают. Человек постоянно стремился создавать оптимальные условия для наиболее нужных ему популяций растений, подбирал и видоизменял сорта в расчете на максимальную продуктивность, в значительной мере за счет утраты устойчивости к неблагоприятным условиям среды. Культурные растения хуже естественных способны извлекать питательные элементы из труднодоступных соединений, их продуктивность подвержена капризам погоды, они без помощи человека не способны справиться с сорняками.

Свойства большинства почв не соответствуют тем высоким требованиям, которые предъявляют современные культурные растения. Почти все культурные растения нуждаются в почве с умеренной плотностью и такой аэрацией, чтобы был хороший газообмен и не было чрезмерной минерализации органического вещества. При плотности сложения почвы выше 1,45-1,60 г/см3 продуктивность многих растений резко снижается. При высоком уровне урожая отдельные виды культурных растений могут потреблять до 500 кг/га азота и кальция, 350 кг/га калия, 120 кг/га фосфора. Суммарное отчуждение элементов питания составляет в среднем для разных почв 300-600 кг/га. Огромную роль играет и наличие микроорганизмов, высокая активность которых крайне важна для высокой продуктивности. В пахотных почвах обычно численность и активность бактерий и других микроорганизмов значительно выше, чем в целинной. Культурные растения предъявляют высокие требования к содержанию и составу гумуса почвы. Гумус в пахотных почвах активно минерализуется, и для поддержания баланса гумуса даже на среднем для Беларуси уровне 2,0-2,5 % необходимо по разным данным вносить от 8 до 12 т/га навоза ежегодно.

Культурные растения предъявляют повышенные требования и к наличию воды, в них не отработана система экономного водопотребления и влагоудержания, высокая транспирация. Плодородная почва должна обладать высокой влагоемкостью, то есть быть структурной и иметь доастаточное количество коллоидных частиц.

Большинство культурных растений хорошо растет лишь в определенном диапазоне кислотности среды, они крайне негативно относятся к сильнокислой или щелочной реакции среды. Важную роль играет и буферность, так как угнетение растений может быть и после кратковременного подкисления в результате применения физиологически кислых удобрений, например. Плодородные почвы обычно имеют высокую емкость поглощения, насыщенную преимущественно кальцием.

Культурные растения произрастают лишь в определенном тепловом режиме, в гораздо более узком интервале, чем естественная растительность, отдельные представители которых могут переносить и очень высокие, и очень низкие температуры. С тепловым режимом связаны сроки сева и тем самым урожаи культур.

В целом плодородная почва должна обладать мощным, оструктуренным, биологически активным, богатым гумусом слоем с большими запасами элементов питания, благоприятным вводно-воздушным, тепловым и пищевым режимом. Преобразование почв в соответствии с требованиями культурных растений называется окультуриванием, а степень соответствия почв требованиям культурных растений - окультуренностью. По мнению ряда авторов, в плодородных почвах идет своеобразный, отличный от природного культурный почвообразовательный процесс.

Плодородие почвы растет вместе с уровнем развития науки и носит относительный характер, оно не может быть выражено какой-то отдельной величиной. Параметры свойств почв разной степени окультуренности одновременно являются мерой уровня плодородия почвы на данной ступени развития науки и техники.

После вовлечения целинной почвы в сельскохозяйственную культуру ее плодородие меняется в зависимости от степени окультуривания почвы, оно может иметь направление улучшения и деградации. Основными факторами воздействия на почву являются: обработка почвы, удобрения и сами культурные растения. Все они действуют на почву двояко, зачастую негативно. Механическая обработка разрушает структуру, способствует минерализации гумуса, с урожаями выносятся элементы питания. Длительное применение кислых минеральных удобрений может существенно подкислить почву и она начнет деградировать. Почва при длительной монокультуре, особенно люцерны, льна, сахарной свеклы, начинает страдать от почвоутомления, поэтому непременным приемом использования плодородных почв должно быть чередование культур.

При культурном земледелии все негативные последствия предусмотрены: возмещается вынос элементов, оструктуривается почва, проводится известкование и т.п. Особенно важное значение имеют гуматы кальция, то есть оптимизация состава обменных катионов и внесение навоза - важнейшие факторы окультуривания.

Почва - основное и незаменимое средство производства, обеспечивающее существование человечества. Вопросы плодородия почв всегда имели социально-экономическое значение, его нельзя рассматривать без контекста социально-экономических отношений. При правильном использовании почва постоянно улучшается, хотя в мире популярна точка зрения, высказанная еще в 1766 году французом А. Тюрго, о наличии закона убывающего плодородия почвы.

Классификация почв

Понятие о классификации почв. Под классификацией почв понимают отнесение их к различным систематическим единицам. Она необходима для изучения и разработки приемов улучшения почв. Научную классификацию почв впервые предложил В. В. Докучаев. Эта классификация основана на генезисе происхождении) почв. В различных классификациях, кроме генетических, учитывают агропроизводственные и экологические признаки.

Почвы подразделяются на типы, подтипы, роды, виды и разновидности. Некоторые почвоведы в качестве последнего подразделения выделяют еще разряды.

Под типом понимают почвы, сформировавшиеся в одинаковых природных условиях, т. е. имеющие сходство почвообразовательного процесса, обладающие общими свойствами. Основными типами почв являются: дерново-подзолистые, торфяно-болотные, черноземы, каштановые, сероземы, красноземы, дерновые, пойменные, бурые лесные, серые лесные, латеритные, красно-бурые, коричневые, и т.д.

Подтип объединяет различные почвы в пределах одного типа, несколько отличающиеся по почвообразованию, внешнему виду и свойствам. Например, среди серых лесных почв выделяются светло-серые, серые, темно-серые; в черноземах - черноземы оподзоленные, выщелоченные, типичные, обыкновенные, южные.

Род почв отражает особенности свойств в пределах подтипа, связанные главным образом с химизмом почвообразующих пород или грунтовых вод, например, черноземы солонцеватые, осолоделые.

Вид почвы отражает степень выраженности почвообразовательного процесса, например слабоподзолистые, среднеподзолистые, сильноподзолистые почвы.

Разновидность почвы отражает ее гранулометрический состав - песчаная, супесчаная, суглинистая и т. д.

Для обозначения разрядов почв используют признаки почвообразующей породы, например, на легких лессовидных суглинках.

Полное название почвы складывается, начиная с типа, и заканчивается разрядом. Например, чернозем (тип) обыкновенный (подтип) солонцеватый (род) тучный среднемощный (вид) тяжелосуглинистый (разновидность) на лессовидном тяжелом суглинке (разряд). Для более краткого названия почвы используют тип, подтип, вид и разновидность.

Почвы образовались на земной поверхности в определенной географической последовательности в соответствии с природно-климатическими особенностями. Основными климатическими факторами почвообразования служат температура и влага, которые, в свою очередь, определяли и тип почвообразующей растительности.

Почвенно-географическое районирование

Почвенно-географическое районирование -- разделение территории на почвенно-географические районы, однородные по структуре почвенного покрова, сочетанию факторов почвообразования и характеру возможного сельскохозяйственного использования. Его основой является установление географических закономерностей распространения почв, вытекающих из распределения природных условий на земной поверхности.

Почвенно-географическое районирование является основой учения В.В. Докучаева о широтно-горизонтальной и вертикальной зональности почв, общие закономерности которого он сформулировал в 1899г. : «Раз все почвообразователи располагаются на поверхности в виде поясов или зон, вытянутых более или менее параллельно широтам, то и почвы наши - черноземы, подзолы и др. - должны располагаться на земной поверхности зонально, в строжайшей зависимости от климата, растительности и др.».

Составленная им на этой основе первая схема почвенных зон в масштабе 1:50 000 000 всего Северного полушария демонстрировалась в 1900 г. на Всемирной выставке в Париже. На ней были выделены пять мировых зон: 1) бореальная (арктическая); 2) лесная; 3) черноземных степей; 4) аэральная с подразделением на каменистые, песчаные, лессовые и солончаковые пустыни; 5) латеритная. В лесной зоне были показаны аллювиальные равнины. Все почвенные зоны имели широтное направление.


Подобные документы

  • Факторы почвообразования; исследование физической структуры, механического и химического состава разреза. Местоположение и природные условия участка. Строение и морфологические свойства почвы; комплексная оценка: содержание гумуса, СО2, реакция раствора.

    курсовая работа [408,5 K], добавлен 15.05.2015

  • История изучения черноземов в России и его значение для развития почвоведения. Положения монографии "Русский чернозем" В.В. Докучаева, методы исследования почв и управления их плодородием. Биоклиматические особенности зональных и региональных областей.

    презентация [1,8 M], добавлен 05.02.2012

  • Общие условия почвообразования в пустыне. Морфологические особенности автоморфных почв пустынь. Генетические особенности серо-бурых почв, их минеральный состав и химический анализ. Солончаки — характерное гидроморфное почвенное образование пустынь.

    презентация [4,7 M], добавлен 05.02.2012

  • Характеристика чернозема, его структура, типы, свойства. Описание областей распространения плодородных равнин в мире, содержащих в составе почвы чернозем. Причины и условия образования чернозема согласно В.В. Докучаеву, ценность для сельского хозяйства.

    реферат [13,0 K], добавлен 17.11.2010

  • Почва как один из основных источников продуктов питания. Понятие плодородия почвы: обеспечение нормального роста и развития естественных и культурных растений. Условия, необходимые для нормального развития растений, основные элементы питания.

    презентация [4,4 M], добавлен 17.04.2012

  • Физические и механические свойства почвы, представляющей собой совершенно особое природное образование, обладающей только ей присущим строением, составом, свойствами. Расчет содержания физического песка и физической глины. Диапазон активной влаги в почве.

    курсовая работа [82,1 K], добавлен 07.01.2017

  • Разнообразие материнских пород сухих и полупустынных степей. Отличительные особенности: незначительная густота стояния растений и ярко выраженная комплексность. Агрономическая оценка каштановых и бурых почв, мероприятия, повышающие их плодородие.

    презентация [2,7 M], добавлен 08.11.2011

  • Анализ эрозии, которая ведет к смыву и размыву почвы и служит причиной развития оврагов. Определение класса капитальности сооружения и объёма поверхностного стока. Фильтрационный расчёт водозадерживающего вала. Особенности крепления ковша за рисбермой.

    реферат [333,5 K], добавлен 13.01.2012

  • Особенности факторов формирования сельского хозяйства в Новгородской и Саратовской областях, почвы и климат, состав населения, структура сельскохозяйственных угодий. Сравнительный анализ урожайности культур и поголовья крупного рогатого скота регионов.

    курсовая работа [148,9 K], добавлен 10.12.2012

  • Физико-географическое положение и границы Республики Башкортостан. Многообразие природных факторов, включающих геологическое строение, геоморфологические, климатические и гидрологические условия, почвы и типы растительности. Реки и животный мир Башкирии.

    реферат [73,6 K], добавлен 26.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.