Необратимые изменения океанов

Непостоянство постоянных течений. Схема циркуляции вод океана. Тропические ураганы, теории возникновения, схема строения, штормовая катушка. Смерчи и вихри. Каньоны под морем, области распространения, процесс образования гайота. Световые эффекты в океане.

Рубрика География и экономическая география
Вид курсовая работа
Язык русский
Дата добавления 25.08.2010
Размер файла 548,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В том же штате на ферме хозяйка доила корову. Внезапно налетевшим смерчем коровник и корова были унесены в воздух, хозяйка же осталась сидеть на стуле, рядом с ней стояло ведро, полное молока.

Во всех этих случаях расстояние между вихрем в стенках воронки и неподвижным воздухом было ничтожным -- несколько десятков сантиметров. По-видимому, причиной возникновения резкой границы вихря может быть его необычайно большая скорость.

К сожалению, пока невозможно непосредственно измерить скорость ветра в смерчах, так как ни один прибор не выдерживает огромных ускорений. Однако инженеры, специалисты по сопротивлению материалов, довольно точно высчитали эту скорость, основываясь на характере разрушений и аварий.

Так, смерч 2 апреля 1957 года в городе Далласе (штат Техас), пересекая железную дорогу, опрокинул несколько тяжелых груженых вагонов. По их массе и форме специалисты определили, что скорость ветра достигала 70 -- 80 метров в секунду, а порывами -- до 100 метров в секунду. Немного дальше была разрушена огромная прочная подставка для объявлений: скорость ветра достигала 130 метров в секунду. Некоторые специалисты называют цифру скорости ветра в смерче 170 -- 200 метров в секунду, а иногда даже 350 -- 360 метров в секунду, то есть она больше скорости звука!

Такие определения сделаны на основании ряда поразительных фактов, а именно: повреждения стен домов, стекол и даже куриных яиц. Во время некоторых смерчей мелкая галька пробивала стекла и кирпичные стены домов, не повреждая их вокруг пробоины, то есть так же, как при прохождении винтовочной пули.

Подъем и перенос тяжелых предметов показывает, что окружные скорости в воронке быстро и значительно изменяются. Нижняя часть воронки вращается много быстрее, чем верхняя. Она способна поднять тяжелые и большие предметы, но высота подъема не превышает немногих десятков метров. Выше вращение становится медленнее, и большие предметы выбрасываются из воронки, падают на землю. В облако поднимаются только предметы, масса которых не превышает нескольких килограммов.

Формы воронок смерчей необыкновенно разнообразны и быстро изменяются у одного и того же смерча. Характерными особенностями смерча в отличие от других атмосферных образований являются устойчивая плотная поверхность, значительная длина и небольшой диаметр, а также более или менее вертикальное положение.

В зависимости от соотношения длины и ширины выделяют две группы плотных смерчей: змееобразные (или бичеподобные) и воронкообразные (или колонноподоб-ные).

Змееобразные смерчи образуются сравнительно редко. Кроме длинного извивающегося тела, напоминающего бич или змею, они отличаются наиболее близким к горизонтальному положением в пространстве и сильно изгибаются. Как правило, такие бичеподобные формы смерч принимает в конце своего существования.

Воронкообразные смерчи наиболее типичны и многочисленны. Их очертания и размеры чрезвычайно изменчивы; даже один и тот же смерч непрерывно изменяет форму. Такие смерчи и представляют собой классический вид воронки, свешивающейся из материнского облака.

Наибольшие разрушения вызывают широкие и низкие расплывчатые смерчи. Они захватывают большую территорию, чем плотные смерчи, и приносят больше ущерба.

Уже упоминавшийся смерч Трех штатов представлял собой именно такой вид смерча, его ширина колебалась от 800 до 1000 метров, а длина пути оказалась 350 километров. Он двигался три с половиной часа и произвел полное разрушение на площади в 164 квадратные мили. Форма смерча была своеобразна: он все время имел вид неправильного бешено вращающегося вихря, временами была видна воронка, но она очень скоро скрылась в облаке, наполненном пылью и обломками.

Дополнительные вихри возникают у основания воронки и высоко не поднимаются, но иногда, вращаясь вокруг воронки, они достигают облака. Более редко дополнительные вихри спускаются из облака.

Когда воронка касается земли или идет по ней, у ее подножия почти всегда образуются облака или столб пыли либо водяных брызг. У водяных смерчей он состоит из воды. Эта вода поднимается, а потом падает, образуя каскад. В образовании каскада большую роль играют дополнительные вихри: благодаря им ширина каскада увеличивается во много раз и зачастую превосходит высоту вихря.

Иногда дополнительные вихри способствуют появлению у водяных смерчей, кроме основной воронки с резко ограниченной стенкой, второй -- внешней -- стенки, менее ярко выраженной. Она располагается вблизи основной воронки и служит как бы ее футляром, куда смерч «вкладывается», подобно шпаге в ножны. Футляр смерча также обладает интенсивным вращением и принимает участие в разрушениях, производимых основной воронкой.

Причины образования смерчей до сих пор окончательно не выяснены, но условия, при которых они возникают, достаточно хорошо известны. Смерч можно ожидать, когда:

в нижних слоях атмосферы находится теплый влажный воздух и преобладают южные ветры;

в верхних слоях атмосферы располагается холодный сухой воздух и дуют сильные ветры различных направлений, преимущественно западные и юго-западные, при этом происходит подъем приземного воздуха.

Как и многие природные явления, смерчи проходят три стадии развития. В начальной стадии, характеризуемой появлением из материнского облака начальной воронки, висящей над землей, смерч формируется за счет потенциальной энергии, накапливаемой при термической конвекции во время подъема воздуха. Эта энергия переходит в кинетическую энергию вначале вертикального, а затем вращательного движения. В дальнейшем окружная скорость смерча возрастает, и он приобретает свой классический вид.

Вращательная составляющая скорости еще больше растет вследствие поступления энергии всех видов из приземного слоя. Из-за все возрастающего притока воздуха начинает меняться характер вращения: область максимальных значений вертикальной составляющей скорости вмещается вниз к приземному слою. Начинается вторая стадия существования вихря -- стадия его полного развития. Смерч полностью оформляется и непрерывно движется по поверхности земли или моря.

Третья стадия -- разрушение вихря -- характеризуется ослаблением окружной скорости, сужением воронки, ее отрывом от поверхности земли. Воронка начинает светлеть, принимает бичеподобную форму и разрывается. Верхняя часть поднимается в облако, нижняя падает на землю.

Время существования каждой стадии и всего смерча различно и составляет, как правило, несколько минут. В очень редких случаях смерч существует несколько часов. Скорость продвижения смерчей также различна. Иногда облако движется очень медленно, почти стоит на месте, иногда несется с большой скоростью. Метеорологи определяют среднюю скорость передвижения смерчей в 40 -- 60 километров в час, но иногда она доходит до 200 километров в час.

При своем движении смерч проходит путь, равный в среднем 20 -- 30 километрам. Однако нередки случаи прохождения смерчами расстояния в 100 -- 120 километров. Смерчи-гиганты могут проходить путь до 300 -- 500 километров, но это исключительные явления.

Своеобразной особенностью смерчей является их «пры-гание». Пройдя некоторое расстояние по земле, они поднимаются и несутся по воздуху, не производя разрушений, затем снова опускаются -- снова разрушения, далее опять поднимаются, снова опускаются, и так повторяется несколько раз.

Полоса разрушений зависит от ширины смерча. Змееобразные смерчи имеют наименьшую ширину -- несколько метров. Преобладающие воронкообразные смерчи шире -- до 100 метров. Наибольшей шириной характеризуются размытые смерчи: она составляет несколько сотен метров, достигая иногда 1000 метров.

На земном шаре смерчи широко распространены и в некоторых областях представляют собой обычное, многократно повторяющееся явление. Наиболее благоприятны для образования смерчевых облаков обширные равнины, над которыми встречаются холодные и теплые воздушные течения.

На таких равнинах расположены центральные штаты США. По статистике за 35 лет (с 1916 по 1950 год) здесь было зарегистрировано более 5000 смерчей. От них погибли примерно 8000 человек, убытки составили полмиллиарда долларов. В отдельные годы число смерчей здесь превышало 900.

Нередко смерчи образуются над европейской территорией СССР, Западной Европой, Китаем, Вьетнамом, Индией и в других местах. Однако слежение за ними здесь не столь тщательное, как в США, поэтому привести точную цифру трудно.

Еще более затруднительно оценить число смерчей над океаном: они могут возникать и исчезать в стороне от основных судоходных трасс, вне зоны визуальной или радиолокационной наблюдаемости. Поэтому описания морских смерчей редки, хотя последние встречаются и на Балтике, и в заливе Святого Лаврентия, и на Черном море и в Мексиканском заливе. Они распространяются в Атлантическом, Индийском, Тихом океанах, от Японии до берегов Австралии.

Морские водяные смерчи обычно возникают группами из одного материнского облака. Чаще всего они образуются и достигают наибольшей силы у грозовых кучево-дож-девых облаков, но нередко связаны и с облачностью другого типа. Иногда они сопровождают тропические циклоны. Ливни и молнии, наблюдающиеся одновременно со смерчами, непосредственно с ними не связаны, но образуются из одного и того же облака. Как и над сушей, водяные смерчи часто сопровождаются громкими звуковыми явлениями: страшным ревом, грохотом, шипением.

Сила ветра весьма различна, но чаще всего неболь шая -- более слабая, чем у наземных смерчей. Проходи над судами, они обливают их водой, сдирают чехлы и крышки трюмов, уносят легкие предметы. Когда они разрушительны (что бывает редко), смерчи переворачивают или разламывают суда, особенно небольшие.

Часто водяные смерчи стоят на месте или медленно передвигаются на небольшие расстояния. Нередко они движутся со скоростью 40 -- 60 километров в час. Длительность существования водяных смерчей небольшая, обычно 15 -- 20 минут, изредка до часа и более.

Водяные смерчи по свойствам близки к наземным смерчам. Приведенные различия: меньшие размеры, меньшая длительность существования, меньшая сила у водяных смерчей -- несущественны и полностью укладываются в пределы обычной изменчивости смерчей.

Надо заметить, что и среди водяных смерчей наблюдались гиганты. Так, разрушительный смерч в заливе Массачусетс имел высоту свыше 1000 метров, диаметр у облака 250, у воды 70 метров, диаметр каскада более 200 метров и его высоту до 150 метров.

Максимальная ширина, наблюдавшаяся у водяных смерчей, составляла примерно 1500 метров. По-видимому, это были низкие, очень широкие расплывчатые смерчи. Подобные широкие воронки над морем редки, подавляющее большинство их -- плотные, резко ограниченные, узкие и высокие.

Такие смерчи видны с достаточно большого расстояния, хорошо обнаруживаются на экране радиолокатора. Увидев приближение этого природного образования, судоводители должны принять меры к тому, чтобы избежать с ним встречи.

БЕСПОКОЙНЫЕ ГЛУБИНЫ

Весенним днем 1937 г. несколько рыболовов, удивших с причала в Редон-до (Калифорния), внезапно почувствовали, что грузила их удочек начали резко уходить на глубину. На поверхность воды поднялись облака взмученного ила, за несколько минут глубина дна на месте ужения увеличилась на десять метров!...

О.К. ЛЕОНТЬЕВ, Г.И. САФЬЯНОВ. КАНЬОНЫ ПОД МОРЕМ

В 1886 году для обеспечения устойчивой связи между метрополией и Анголой, бывшей в то время португальской колонией в Африке, был проложен подводный кабель. Однако телеграфисты, обеспечивавшие работу кабеля, буквально прокляли его: напротив устья реки Конго он рвался ежегодно. А какова сложность ремонта кабеля, проложенного на глубинах более 1000 метров, нетрудно себе представить. Поэтому трассу кабеля неоднократно переносили то ближе к берегу на глубины до 100 метров, то дальше от берега на глубины более 1200 м, а результат каждый раз был тот же. Причиной обрыва кабеля было то, что он проходил в районе побережья, где имелись так называемые подводные каньоны и предполагались мутьевые потоки.

Рис. 36. Подводная окраина материка

Исследования морских глубин, которые были интенсивно начаты лишь с середины прошлого века, позволили установить основные закономерности рельефа океанского дна. Оказалось, что к берегам материков обычно прилегает полоса мелководья -- материковая отмель, или, как ее иначе называют, шельф. Материковая отмель заканчивается резким перегибом профиля дна -- бровкой шельфа. Ниже бровки идет сравнительно узкая зона морского дна с быстрым нарастанием глубин -- материковый склон. В океанах он заканчивается на глубине примерно 3000 метров, в глубоких морях -- на немного меньших глубинах. Ниже расположено ложе океана или абиссальная равнина дна глубокого моря.

Рис. 37. Области распространения подводных каньонов (1), наблюдавшихся мутьевых потоков (2) и предположительно мутьевых течений (3)

На многих участках материковый склон прорезают глубокие ложбины, начинающиеся у бровки шельфа и заканчивающиеся у подножия склона (рис. 36). Глубина вреза этих ложбин может достигать 1 -- 2 километров, длина -- нескольких сотен километров. Нередко они имеют V-образный поперечный профиль и в целом внешне напоминают крупные каньоны суши или ущелья горных рек. Эти ложбины и получили название подводных каньонов. Вершины подводных каньонов часто бывают разветвленными, подобно системе оврагов на суше; их ветви, а в некоторых случаях и главный ствол каньона могут врезаться в поверхность шельфа.

В настоящее время освоение береговой зоны протекает очень бурно: сооружаются морские порты, которые нужно обезопасить и от морского волнения, и от вдольбере-говых наносов. Строятся сложные сооружения для защиты берегов от размыва волнами, сооружаются водозаборные устройства. Вторжение подводных каньонов в пределы береговой зоны сильно осложняет решение этих задач. В открытом океане подводные каньоны имеют навигационное значение, и не только для подводного плавания.

Однако на дне морей и океанов, кроме подводных каньонов, есть другие долинообразные формы рельефа: это широкодонные желобообразные долины, мелководные прерывистые углубления, ложбины, являющиеся продолжением дельт рек, и т. п.

Скалистые извилистые долины V-образного профиля с многочисленными притоками, пересекающими материковый склон, которые соответствуют определению «каньона», являются лишь одной из составных частей всех подводных образований, хотя и самой впечатляющей. При разнообразии форм поперечного сечения каньоны имеют большую крутизну склонов, нередко составляющую 0,6 -- 1,2, то есть подобную крутизне горных ущелий. Склоны каньонов могут иметь уклон с противоположным знаком, то есть быть с нависающими стенками. Поперечный профиль такого каньона имеет вид нижней части песочных часов. Например, хорошо обследованный водолазами один из отрогов каньона Скриппса (вблизи полуострова Калифорния) при общей глубине 40 метров имеет в нижней части ширину до 15 метров, а выше -- 9 метров.

Уклоны дна каньонов достигают больших значений. Например, каньон Сюр-Партингтон (вблизи полуострова Калифорния) на протяжении 49 миль углубляется с 90 до 500 метров, то есть его уклон составляет 34 метра на километр. Еще больший уклон -- до 100 метров на километр -- имеет соседний с ним каньон Скриппса; на протяжении 1,5 мили его глубина увеличивается с 20 до 300 метров.

Длина каньонов колеблется от нескольких километров до сотен километров. Например, протяженность подводного каньона Конго составляет более 800 километров.

Подводные каньоны распространены очень широко (рис. 37). Их известно сейчас несколько тысяч в различных районах Мирового океана. Подводных каньонов много там, где четко выражен материковый склон, однако на очень крутых прямолинейных склонах каньонов может и не быть. На пологих материковых склонах их мало или совсем нет. Сравнительно мало каньонов у берегов пустынь; обычно их нет, если вдоль края шельфа тянутся острова или подводные рифы.

Каньоны обнаруживаются на материковых склонах древних платформ (Северо-Американской или Индостан-ской) и в областях с молодыми горными хребтами, например, в Черном и Средиземном морях. Подводные каньоны встречаются у берегов, где земная кора погружается (а такое, к примеру, происходит в вершинах Аравийского и Бенгальского заливов), и у берегов с признаками поднятия земной коры (побережье Атлантического океана у полуострова Калифорния). Вершины каньонов чаще расположены на бровке шельфа, но нередко проникают и в его пределы. А там, где шельф узок, например, у побережья Калифорнийского залива или у Кавказских берегов Черного моря, каньоны внедряются и в пределы береговой зоны.

Подводный каньон Конго проникает своим верховьем в эстуарий одноименной реки. У берегов Черного моря есть каньоны, в которые можно проникнуть с берега в акваланге: они подступают к береговой линии почти вплотную.

Чаще всего каньоны располагаются группами. К примеру, у берегов острова Великобритания в юго-западной части их насчитывается в среднем до 20 на 100 миль протяжения склона. Обилие подводных каньонов на материковом склоне у Атлантического побережья США придает кромке шельфа при ее изображении на карте своеобразное «бахромчатое» очертание.

При всем разнообразии условий распространения подводных каньонов в их присутствии на материковом склоне есть некоторые закономерности. Как правило, каньоны встречаются в тех местах, где в береговую зону поступает (или поступало в далеком прошлом) большое количество обломочного материала с материков. Каждый каньон по естественным морфологическим признакам можно подразделить на три части.

Верхняя часть каньона формируется в условиях поступления большого количества обломочного материала. Она является как бы временным накопителем этого материала и начальным пунктом его движения вниз.

Средняя часть каньона наиболее глубоко врезается в поверхность материкового склона и характеризуется наибольшей шириной и средними значениями уклонов. Эта часть каньона преимущественно транзитная: обломочный материал здесь скатывается вниз практически без задержки. При его движении стенки каньона как бы полируются и обрабатываются.

Нижняя часть каньона является аккумулятором обломочного материала. Здесь наблюдаются самые малые уклоны продольного профиля: каньон формирует свою глубоководную дельту. Однако и здесь в условиях осаждения обломочного материала каньон может представлять собой глубокий ров, обвалованный огромными естественными дамбами. Так, каньон Конго с глубины 3300 метров окаймлен своеобразными прирусловыми валами, и на глубине 4000 метров его дно лежит на 130 метров ниже этих валов.

Самыми грандиозными формами рельефа дна, связанными с каньонами, являются глубоководные конусы выноса обломочного материала, которые располагаются на глубинах, соответствующих подошве материкового склона. Объем материалов в таком конусе огромен; он зависит от «возраста» каньона и в отдельных случаях достигает десятков и сотен кубических километров. Наибольший же конус выноса обломочного материала располагается у каньона Суоти-оф-но-Граунд в Бенгальском заливе. Установлено, что его длина достигает 3000 километров, ширина 1000 километров, а толщина слоя осадков доходит до 13 километров (!). Он образовался примерно за 8,8 миллиона лет, и его объем составляет более 10 миллионов кубических километров. По сути дела это Гималаи, уничтоженные эрозией и превращенные в осадки океанического дна.

Конусы выноса обычно имеют асимметричную форму. Каналы, продолжающие каньон, располагаются вдоль левого края конуса, правый «прирусловой» вынос выше левого, да и основная масса языка конуса расположена направо от основного русла каньона. Эти выводы относятся к северному полушарию, и такое асимметричное расположение форм рельефа объясняется влиянием сил Кориолиса на частицы воды и твердого материала при их совместном движении.

Происхождение подводных каньонов до сих пор вызывает споры среди ученых. Есть предположение, что каньоны -- это речные долины, выработанные в дочетвертич-ный период, еще в то время, когда территория, ныне лежащая под водой, находилась выше уровня моря. Основанием для этого предположения служит тот факт, что многие каньоны являются прямым продолжением современных русл рек, например Гудзона, Роны, Конго.

Другие ученые считают, что в происхождении каньонов решающую роль играют тектонические явления. При землетрясениях на краю материкового склона могут возникать трещины, которые в дальнейшем служат руслами течений ледниковых потоков.

Но все ученые сходятся в одном: каково бы ни было происхождение каньонов, в их развитии и трансформации огромное значение играют мутьевые потоки.

Эти потоки представляют собой смесь воды и взвешенных или полувзвешенных твердых частиц и возникают при определенных условиях. Если концентрация взвесей в обычной морской воде составляет несколько десятых долей грамма в кубическом метре, то в мутьевом потоке она достигает 150 и даже 200 килограммов в кубическом метре. Из-за высокой плотности массы, составляющей мутьевой поток, он обладает большими скоростями и может проходить значительные расстояния.

К сожалению, непосредственные измерения скорости мутьевых потоков очень редки, однако по характеру подводных образований и частым разрывам подводных кабелей можно определить ее значение.

К примеру, при оценке обстоятельств обрыва кабелей у Большой Ньюфаундлендской банки (после землетрясения 1952 года) было установлено, что обрывы по крайней мере пяти кабелей на глубинах от 4000 до 5100 метров были вызваны мутьевым потоком.

Скорость потока в его верховьях достигала 19 -- 23 метров в секунду, в средней части составила 10,2 и постепенно уменьшилась до 2,2 метра в секунду в районе последнего поврежденного кабеля, наиболее удаленного от эпицентра землетрясения. Уклон подводного склона вблизи последнего кабеля был равен лишь 1 : 1500 (1 метр на 1,5 километра). От подножия материкового склона мутьевой поток прошел расстояние более 550 километров почти за 12 часов, то есть даже осредненная скорость его движения по этому отрезку пути составила более 12,5 метра в секунду.

После землетрясения 14 сентября 1953 года на архипелаге Фиджи мутьевым потоком, спустившимся по доли-нообразному понижению, был поврежден кабель на протяжении 110 километров. Он был захоронен на этом отрезке или перемещен на расстояние до 3,7 километра. Силу потока характеризует такой факт: один из проводов, найденных после обрыва, оказался очищенным от изоляции в результате полировки песком.

Но возникновение мутьевого потока с высокими скоростями не обязательно связано с землетрясениями. Известны разрушения подводных кабелей в устье реки Магдалена, впадающей в Карибское море (Колумбия), и в других районах, когда начало мутьевым потокам давали подводные оползни, возникавшие в результате оседания приустьевых баров, стенок каньонов или береговых обрывов.

Упомянутые разрушения телефонного кабеля в каньоне Конго в большинстве случаев совпадали по времени с максимальными значениями твердого стока реки Конго.

Обрывы кабелей чаще всего происходят вдоль оси подводных каньонов, то есть там, где мутьевые потоки сконцентрированы и имеют наибольшую скорость. Несомненно, что такие потоки сильно влияют на формирование каньонов: шлифовку бровки, вынос материалов, углубление русла.

Однако мутьевые потоки могут образовываться не только в подводных каньонах. На обширных просторах абиссальных глубин Мирового океана существуют все предпосылки для их появления (см. рис. 37). Таких предпосылок немного: достаточно наличия на дне слоя ила толщиной несколько метров и небольшого уклона дна (до 0,01). При этих условиях даже незначительное внешнее воздействие: толчок воды или дна от землетрясения, обвала, оползня, поступление некоторой критической массы материала с речным стоком (как в случаях в каньоне Конго) -- и вода, насыщенная осадочным материалом, начинает скользить по более плотному грунту, разрушая кабели, обрывая якорные цепи, сдвигая донные сооружения. Если турбулентность потока достаточна для поддержания осадочного материала во взвешенном состоянии, мутьевые потоки могут распространяться на большие расстояния -- до тысячи километров. В конце концов осадочный материал откладывается на обширных абиссальных равнинах.

Мутьевые потоки многообразны; они могут представлять собой и едва заметное движение взвеси в придонном слое, и грозное катастрофическое явление природы. Но мутьевыми потоками отнюдь не исчерпываются проявления динамических условий на океанском дне.

Ввиду того что осадки на дне перенасыщены водой, здесь очень часто возникают подводные оползни. Местами локализации оползней служат крутые участки морского дна, устьевые бары, склоны каньонов. Размеры оползней на дне гораздо более обширны, чем размеры самых больших оползней на суше.

Так, оползень на взморье в районе реки Магдалены 30 августа 1935 года уничтожил волнолом в устье реки на протяжении 480 метров, а в предустьевом взморье способствовал образованию канала глубиной 10 метров. В ту же ночь в 24 километрах от устья на глубине 1400 метров был разорван подводный телеграфный кабель. Оползень перекрыл площадь более 10 миллионов километров.

Грандиозный оползень возник 1 сентября 1923 года в заливе Сагами близ Токио. Чтобы представить его размеры, достаточно указать, что перемещенного этим оползнем материала хватило бы для заполнения всего мелководья Мексиканского залива до изобаты 100 метров. Вызванный оползнем мутьевой поток устремился в подводный каньон, опускающийся в Японский желоб, в результате чего глубина дна каньона увеличилась в среднем почти на 100 метров.

Наиболее часто оползни возникают на участках обильного накопления осадков, то есть в устьях рек или в тех районах, которые служат ловушками при вдольберего-вом перемещении наносов волнами и течениями. Соответственно и мутьевые потоки, нередко вызываемые оползнями, связаны с этими районами.

Устойчивость осадков на подводном склоне зависит прежде всего от степени их сопротивления сдвигу, а оно

возрастает по мере углубления в толщу осадков. Чем древнее осадок, тем более он уплотнен, тем больше силы сцепления между частицами грунта. Существенное уменьшение устойчивости осадков вызывают землетрясения. Всякое землетрясение под водой порождает в самой воде и в придонном слое грунтов продольные упругие волны, подобные звуковым. Контакт таких волн с корпусом судна производит впечатление удара, вызывая тревогу у моряков.

Вибрация придонного слоя грунта при землетрясении сопровождается разжижением осадков, потерей грунтом несущей способности и как следствие массовым сползанием грунта. Сползание грунта, мутьевые потоки, кроме перемещения придонных масс осадков, вызывают вихревое движение воды на своих границах, которое в некоторых случаях может достигнуть поверхности и отразиться на динамике поверхностных вод.

На динамику вод существенно влияют и подводные каньоны. Экспериментальные измерения скорости течений показали, что в каньонах она обычно выше, чем на материковом склоне, а направления течений имеют реверсивный характер, то есть временами течения движутся вниз, а временами -- вверх по каньону. Как правило, течения, направленные вниз, более сильные (были измерены скорости более 50 сантиметров в секунду), однако течения, направленные вверх, имеют большую повторяемость. Благодаря этому каньоны способствуют интенсивному обмену вод между глубоководными районами и шельфом, создают зоны выноса питательных веществ из глубинных слоев.

Вторгаясь в пределы береговой зоны, подводные каньоны создают аномально большие глубины, не характерные для соседних участков подводного берегового склона. А это прежде всего проявляется в изменениях скорости распределения и высоты волн.

Еще издавна рыбаки замечали, что во время шторма волнение спокойнее над вершиной каньона. Желая переждать шторм на своих небольших судах, они нередко отстаивались на якоре именно здесь, над прибрежной частью подводных каньонов.

Причина ослабления волн над каньоном состоит в том, что волны на большей глубине более длинные, их скорость больше, чем на соседних участках «вне каньона». В этих районах волны уже начинают испытывать тормозящее действие дна, возрастают и опрокидываются, а над каньоном процесс еще подобен процессу волнения в открытом море.

Во время второй мировой войны, готовясь к десантным операциям, союзники были вынуждены изучать трансформацию штормовых волн в зависимости от рельефа дна. В результате этих исследований выяснилось, что в прибрежной части -- вершине каньона -- высота волны составляет 40% средней, тогда как между каньонами на таком же расстоянии от берега высота волн достигает 140 -- 150% средней.

Рис. 38. Погруженные острова Тихого океана: 1 -- гайоты; 2 -- погруженные атоллы

Вершины каньонов сильно влияют на характеристики упоминавшихся ранее вдольбереговых и разрывных течений. Как известно, разрывные течения развивают скорость несколько метров в секунду. Такие течения, прорвавшись на внешнюю сторону бурунов, устремляются к началу подводного каньона, поскольку здесь меньше высота волн, а сам рельеф дна облегчает сток воды. Подводные каньоны как бы втягивают в себя разрывное течение. Вместе с течением втягиваются в каньон и массы влекомых течением наносов, а это в свою очередь влияет на развитие каньона.

Влияние подводных каньонов на навигацию проявляется не только в изменении волнения или поверхностных течений. Их положение служит довольно точным ориентиром. В условиях плохой погоды и непрохождения радиоволн показания эхолота могут служить отправной точкой для определения места судна. При прохождении двух каньонов по взаимному расположению измеренных глубин можно определить и место, и скорость судна.

Такими же естественными подводными ориентирами могут служить не только отрицательные формы рельефа дна океана -- каньоны, но и положительные -- гайоты и погруженные атоллы (рис. 38).

Гайоты представляют собой отдельно стоящие подводные горы, имеющие форму усеченного конуса с плоской вершиной. Глубина океана в районе гайота составляет 2000 -- 3000, а иногда и 4000 метров, а расстояние от вершины гайота до поверхности моря -- несколько десятков метров. Так, глубина моря над известной горой Ампер в Атлантическом океане напротив Гибралтарского пролива составляет 40 м при средней глубине в этом районе примерно 4000 метров.

Рис. 39. Процесс образования гайота: 1 подводный вулкан; 2 -- вулканический остров; 3 -- остров с плоским верхом; 4 атолл; 5 -- гайот

Гайоты, как и все другие подводные горы, имеют вулканическое происхождение. Когда-то гайоты представляли собой обычные вулканы, возвышавшиеся над уровнем моря. После того как они потухли, вершины вулканов были срезаны в результате разрушительного действия волн. Еще позднее плосковерхие потухшие вулканы оказались погребенными под слоем воды, «утонули» в океане то ли вследствие подъема уровня воды (из-за увеличения объема вод в океане), то ли в результате прогибания дна океана. В тропических районах Тихого океана образовавшиеся гайоты дали основу для роста на них атоллов (рис. 39). Многие такие атоллы до сих пор возвышаются над поверхностью океана в виде коралловых островов, другие же под действием продолжающегося прогибания дна опустились под поверхность и образовали погруженные атоллы. Эти атоллы, так же как и гайоты, с одной стороны, являются препятствием для плавания, с другой, наоборот, служат подводными ориентирами и позволяют мореплавателям точнее определить свое место в просторах океана.

БОЛЬШИЕ ВОЛНЫ В БУХТЕ

Иной раз, когда стены и крыши уже падали в пыли и пламени, посреди крика и тишины, когда все казалось уже навсегда успокоенным в смерти, выходила из Моря, как последний ужас, Великая Волна, гигантская рука моря, которая, грозно надвигаясь, подымалась вверх, как башня мести, смывая жизнь во всю ширину своего пути.

П. НЕРУДА. СКИТАЯСЬ ПО ВАЛЬПАРАИСО...

Вынесенная в название главы фраза является буквальным переводом японского слова «цунами» и обозначает уникальное природное явление, которое известно всем, кто хоть немного соприкасается с морем, и многим, кто никогда даже не видел океанских просторов. Словосочетание «большие волны в бухте» дает представление о том, в чем выражается это природное явление в заливах.

Термин «цунами», давно ставший международным понятием, обозначает несколько следующих друг за другом длинных океанских волн, порождаемых резкими смещениями значительных участков дна океана. Цунами, как и землетрясения, -- страшное бедствие, вызывающее огромные разрушения, опустошения и гибель людей. Поэтому не вызывает удивления, что сведения о цунами сохранились с 479 года до нашей эры. За весь прошедший с тех пор период продолжительностью почти 2500 лет было отмечено примерно 400 катастрофических цунами. Из этого числа более 86% приходится на акваторию Тихого океана, около 7% -- на Атлантику.

Из приведенных данных следует, что основной район, где зарождаются цунами, -- это сейсмический пояс разломов Тихого океана, к которому относится до 80% всех землетрясений, регистрируемых на земном шаре. Недаром эту зону Тихого океана называют «Огненным кольцом».

В пределах этого пояса участки земной коры, находящиеся под дном океана, опускаются, а края континентов поднимаются. Зона контакта поднимающихся и опускающихся участков земной коры довольно узкая, и это приводит к огромным напряжениям в коре. Когда породы не выдерживают напряжений, происходит разрыв земной коры, что и вызывает землетрясение. Продолжительность периода, в течение которого происходит разрыв, весьма мала, поэтому мощность землетрясения достигает огромного значения. Разрывы земной коры -- землетрясения -- вызывают сбросы, взбросы, сдвиги на дне, приводящие к опусканию или поднятию значительных площадей дна океана. В таких условиях в воде происходят практически мгновенные изменения объема и давления.

В момент опускания дна и возникновения провала вода устремляется к центру образовавшейся впадины, заполняет ее, затем под действием инерционных сил переполняет, формируя невысокий, но громадный по объему холм воды на поверхности океана. Под действием собственной тяжести эта выпуклость начинает совершать колебательные движения относительно среднего уровня океана -- образуется цунами.

При резком поднятии дна вначале образуется выпуклость, которая под действием сил тяжести приходит в колебательное движение, и таким образом возникает цунами.

Цунами могут также образовываться при извержении подводных вулканов. По извержению вулкана Кракатау 27 августа 1883 года, которое непосредственно наблюдали многие очевидцы, можно утверждать, что в отдельных случаях высота волн достигает 40 метров. В этом случае механизм формирования волн был иной. Так, силой, вызвавшей цунами, был подводный взрыв. При этом с поперечными волнами, которые и представляют собой цунами, могут возникать продольные волны сжатия, контакт которых с днищем судна выражается в виде достаточно резких ударов, подобных тем, которые судно испытывает при посадке на мель. Свидетельством воздействия продольных волн служат многочисленные записи в вахтенных журналах об ударах о грунт в таких районах океана, где глубины достигают нескольких тысяч метров.

Существует также предположение о том, что цунами могут возникать вследствие воздействия огромных оползней, вытесняющих большие массы воды. Эта гипотеза не получила широкого распространения.

Но так или иначе, образовавшиеся на больших глубинах цунами представляют собой поперечную длинную волну (длиной 100 -- 300 километров) ничтожно малой высоты (не более 2 метров), распространяющуюся со скоростью v = VgH (где H глубина океана в метрах, g -- ускорение свободного падения в метрах на секунду в квадрате). Эта скорость даже не может быть измерена, поскольку никакие суда, под килем которых эта волна проходит, не реагируют на нее. При средней глубине океана 4 километра скорость распространения цунами составляет около 0,2 километра в секунду (приближенно 700 километров в час), их период равен 15 -- 60 минутам.

Во время движения волн от эпицентра к побережьям их высота под действием сил трения уменьшается приблизительно обратно пропорционально пройденному расстоянию, а длина увеличивается. Но при выходе на мелководье эти волны резко увеличиваются по высоте, уменьшается их длина, гребни начинают разрушаться и по существу формируются огромные волны перемещения, к которым собственно и относится название «цунами». В некоторых случаях высота волн достигает 30 -- 40 метров.

Наступлению цунами на берег обычно предшествуют понижение уровня моря и приход сравнительно небольших волн. Затем может быть вторичное понижение уровня, и после этого приходит цунами. За первой волной, как правило, приходит еще несколько волн большей величины с интервалами от 15 минут до 1 -- 2 часов. Обычно максимальной бывает третья или четвертая волна.

Волны проникают в глубь суши в зависимости от ее рельефа иногда на 10 -- 15 километров и, обладая большой скоростью, вызывают огромные разрушения и колоссальные человеческие жертвы.

Уже упомянутое цунами, сопровождавшее взрыв вулкана Кракатау, по-видимому, было самым разрушительным за последние десятилетия. Волны полностью затопили берега Явы и Суматры, граничащие с проливом, вода поднялась на 25 -- 30 метров, смыла многие наземные пункты. Утонули более 36000 человек. На берег было выброшено множество судов, среди них крейсер «Бероу», занесенный волной на 1,8 мили в глубь материка и осевший на высоте около 10 метров над уровнем моря. Образовавшиеся волны проникли в Индийский океан, обогнули мыс Доброй Надежды и были зарегистрированы в Северной Атлантике.

Другие цунами, хоть и менее мощные, производили колоссальные разрушения в отдельных районах земного шара.

Более всего от цунами страдают берега Камчатки, Японии, Курильские и Гавайские острова. Цунами наблюдались также и в Черном море: за последние 60 лет здесь зарегистрировано 5 землетрясений, сопровождавшихся цунами. Правда, величина их у берега составляла всего лишь несколько сантиметров, но все же...

А жизнь народов побережья Тихого океана тесно связана с морем. Одни из них ведут активную внешнюю торговлю и располагают большим торговым флотом, крупными портовыми сооружениями. Другие -- народы преимущественно островных государств, а также стран с береговой линией большой протяженности -- занимаются каботажными перевозками, используя множество мелких судов и небольших портов. Такие страны, как, например, Япония, обладают большим числом портов, судостроительных верфей, электростанций, нефтеочистных сооружений и других важных промышленных объектов. Зависимость этого региона, экономических интересов многих стран от цунами заставила скоординировать научные усилия тихоокеанских государств на изучении этого грозного природного явления.

В 1965 году в Гонолулу (США) был создан Тихоокеанский международный центр по предупреждению цунами. Двадцать два государства, в том числе Советский Союз, вошли в состав Международной координационной группы. На территории некоторых государств этого региона размещены станции, принадлежащие Тихоокеанскому международному центру, а на некоторых островах действуют службы наблюдений за приливами. Существующая Международная система по предупреждению цунами включает в себя 24 сейсмические станции, 53 станции наблюдений за приливами и 52 пункта оповещения, находящиеся в ведении различных государств-участников. В ее задачи входят регистрация и определение наиболее сильных землетрясений в районе Тихого океана, выяснение возможности образования цунами, представление заблаговременной и достоверной информации и оповещение населения региона, с тем чтобы свести до минимума возможные отрицательные последствия цунами.

Созданию Международной системы по предупреждению цунами предшествовало проведение крупных научных исследований природы цунами, продолжающихся до сих пор. Прежде всего были определены основные районы очагов цунами. Ими оказались глубоководные впадины Курило-Камчатского, Перуанского и Чилийского желобов, разломов Тонга и Нова-Кантон и др.

Рис. 40. График зависимости интенсивности цунами от интенсивности землетоясения

Рис. 41. Последовательное (через 1 час) положение фронта волны Чилийского цунами 22 мая 1960 года

Затем были сделаны попытки связать появление цунами с интенсивностью землетрясений. Выяснилось, что только 1 % подводных землетрясений вызывает цунами. Цунами образуются, если очаг землетрясения находится на сравнительно небольшой глубине (до 40 километров) от поверхности дна. Реже наблюдаются цунами при глубине очага землетрясения от 50 до 80 километров и практически не наблюдаются при глубине, большей 80 километров, несмотря на большую силу землетрясения.

Сила цунами прямо пропорциональна силе землетрясений. Интенсивность землетрясений оценивается в маг-нитудах от 0 до 8,5; по аналогии с землетрясениями и интенсивность цунами оценивается в магнитудах от 0 до 4 (только в целых числах). Оказалось, что цунами вызывают землетрясения с магни-тудой, большей 6,5 (рис. 40). Размеры цунами сильно зависят от площади, охваченной землетрясением, то есть от зоны зарождения цунами.

Некоторые цунами возникают в результате деформаций дна, имеющих протяженность в сотни километров. Эпицентр землетрясения не всегда находится в зоне зарождения цунами, иногда он может располагаться и в стороне от него.

Большое значение в познании природы цунами и их воздействия на берега имеют результаты изучения путей движения цунами. Сразу после своего образования цунами бегут по просторам океана как свободные длинные гравитационные волны приблизительно концентрической формы. Они покрывают огромные расстояния.

Скорость волны определяется глубиной океана и потому на всем ее пути является переменной. Одни части волнового фронта опережают другие, фронт теряет кольцеобразную форму, изгибается, иногда даже ломается. Волны начинают пересекать друг друга. Наконец, от берегов и островов происходит отражение волн. Отраженные волны накладываются на прямые -- интерферируют. Словом, возникает очень сложная картина (рис.41).

Цунами, приходящее на побережье, является продуктом собственной трансформации. Воздействие такой волны на береговые объекты, степень ее разрушительных свойств зависят от формы волны, точнее, от обрушения или необрушения ее переднего склона. С одной стороны, обрушивающаяся волна при прочих равных условиях более опасна как для населения прибрежных районов, так и для сооружений. С другой стороны, вследствие перехода части энергии обрушивающейся волны в турбулентное движение воды такая волна проходит меньшее расстояние, чем необрушивающаяся, следовательно, размер затопляемой зоны будет меньше, чем в случае спокойного подтопления берега.

Оказалось, что в подавляющем большинстве случаев (более 75%) накат цунами на берег происходит без обрушения переднего склона. Это характерно прежде всего для цунами высотой до 10 метров, которых большинство. Доля обрушивающихся цунами растет с увеличением высоты волн. Число таких цунами составляет примерно четверть, и потому обрушение волн необходимо принимать во внимание при расчете зданий и портовых сооружений в зоне затопления.

Воздействие цунами сильно зависит от формы береговой линии, наличия или отсутствия бухт, заливов, ширины входа в бухту и ее длины. В частности, была получена зависимость высоты волны от ширины бухты при входе и в вершине. Оказалось, что при ширине бухты при входе, большей в 6 -- 8 раз, чем в вершине, высота цунами возрастает в 2 -- 2,5 раза. Наоборот, при расширении бухты к вершине высота волны уменьшается.

Влияние формы берега на цунами очень существенно. Прямолинейное очертание берега, значительный уклон дна при достаточной высоте берега вызывают только повышение уровня. При невысоком береге происходит кратковременное затопление побережья. Значительный рост цунами наблюдается в бухтах, имеющих сужающиеся берега и равномерно уменьшающиеся по направлению к берегу глубины, а также в проливах с достаточной длиной, суживающимися от входа берегами и уменьшающимися глубинами.

Так, во время цунами 1 апреля 1946 года был разрушен порт Хило (остров Гавайи), который был близко расположен к эпицентру и к тому же обладал изрезанной узкими проливами береговой линией, как бы созданной для того, чтобы «притягивать» цунами. Капитан судна, находившегося невдалеке от порта в открытом море, с изумлением видел, как город гибнет под ударами тех самых волн, которые проходили под его судном, не причиняя ему вреда. Другое судно «Бригэм Виктори» в это время разгружало в порту лес. В столкновении с цунами оно было сильно повреждено, но не затонуло, между тем как причал и все портовые сооружения были разрушены. В то утро в Хило погибли 173 человека, а убытки исчислялись в 25 миллионов долларов.

Широкие бухты с узким входом вызывают существенное уменьшение высот волн. При входе длинных волн в залив в нем возбуждаются собственные колебания. В случае совпадения периода этих собственных колебаний бассейна с периодом входящих цунами возникает явление резонанса, что приводит к появлению волн особенно большой высоты.

Для борьбы с различными стихийными бедствиями человечество выработало два надежных способа: пассивный (прогноз или предупреждение о явлении) и активный (строительство защитных сооружений). В частности, для защиты населенных пунктов от цунами могут возводиться всевозможные сооружения: волноломы, дамбы, стенки, искусственные отмели. В Японии используются насаждения лесных полос и кустарников вдоль берега. Однако все эти меры пригодны для защиты от слабых и средних цунами высотой до 6 -- 7 метров. При сильных цунами они становятся неэффективными.

Основная мера защиты от цунами -- это его прогноз и предупреждение. Предсказание цунами в первую очередь зависит от того, как будет предсказано землетрясение. В настоящее время землетрясения не предсказываются, поэтому задача прогноза цунами в прямом смысле этого слова пока также неразрешима. Общие сведения о циклах сейсмичности тех или иных районов могут дать только ожидаемую картину в многолетнем плане, то есть в такой-то ряд лет, например в 1985 -- 1987 годы наиболее вероятно ожидать сильные подводные землетрясения. Но задачу прогноза цунами такое предсказание, конечно же, не решает.

Сейчас под прогнозом цунами подразумевается расчет времени, необходимого для подхода волны от эпицентра уже свершившегося в океане землетрясения до заданного пункта побережья. Основой для такого прогноза служит разность по времени Д t (в секундах) между приходом сейсмической волны от эпицентра землетрясения, которая идет со скоростью ис (в километрах в секунду), и приходом волны цунами, которая имеет скорость распространения vn = VgH,

Дt = [(vt - vu) vcvu]x

В этой формуле х -- расстояние в километрах от эпицентра землетрясения до данного пункта. Принимая среднюю скорость распространения упругих сейсмических волн с равной 10 километрам в секунду, а скорость длинной волны в открытом океане v равной 0,2 километра в секунду, получим Дt = 5х.

На сейсмических станциях, получив сигнал о происшедшем землетрясении, в первую очередь определяют интенсивность и эпицентр. Для этого собственные данные сопоставляют с данными других сейсмических станций (которые приходят по радио или телеграфом) и по полученным азимутам достаточно точно определяют положение центра землетрясения.

Дело в том, что определенная интенсивность землетрясения не является единственной предпосылкой того, что возникнет цунами, а данные сейсмических станций не позволяют определить глубины залегания его очага. Поэтому расположение эпицентра является дополнительным фактором, увеличивающим возможность правильного предсказания факта цунами, поскольку известны наиболее опасные районы океана, где землетрясения чаще всего вызывают это явление.

Так, у берегов Японии землетрясения, сопровождаемые цунами, появляются чаще тогда, когда их эпицентры расположены к востоку от Сангарского пролива и к югу от острова Сикоку. Для дальневосточных районов Советского Союза, наиболее подверженных воздействию цунами, -- Камчатки и Курильских островов наиболее опасными являются цунами, возникающие в районах Ку-рило-Камчатской впадины.

Сейсмическая станция, оценив интенсивность землетрясения и потенциальную опасность района, где оно произошло, передает сообщение о возможном образовании цунами и наиболее вероятном времени его появления у того или иного пункта.

Большую помощь в выявлении цунами дают наблюдения за уровнем океана вдоль пути прохождения волны: на океанских островах и вдоль побережья. Сведения о волне цунами, непосредственно измеренной мареографами, немедленно передают в центр оповещения, что позволяет уточнить величину явления и время его подхода к различным пунктам. Такая система работает практически безошибочно.

Но она может функционировать только тогда, когда очаг землетрясения находится достаточно далеко и на пути движения волны есть острова и пункты, оборудованные мареографами.

Например, для Тихоокеанского побережья США и Гавайских островов наиболее опасными с точки зрения возникновения цунами являются землетрясения у берегов Южной Америки. Обратившись к рис. 41, устанавливаем, что время добегания волны цунами в этом случае составляет несколько часов (до десяти). За это время ответственные службы не только успевают уточнить величину волны, но и послать навстречу ей самолет, который сбрасывает буи -- измерители уровня воды и с их помощью уточняет время прихода волны с точностью до минут.

По-иному обстоит дело на советских берегах Дальнего Востока. Наиболее опасный цунамигенный район Курило-Камчатского желоба отстоит всего на 100 -- 150 километров от побережья. Волна цунами добегает здесь до берега всего за 20 -- 30 минут после землетрясения, и на ее пути нет ни одного пункта, где можно установить измерители уровня.

Система оповещения о цунами основана здесь лишь на анализе сейсмических данных группы станций. Для быстрого определения эпицентра землетрясения создана специальная установка (размещенная в Петропавловске-Камчатском, Ключах, Курильске, Южно-Сахалинске).

Однако без непосредственного измерения самих цунами система, основанная на анализе сигналов о землетрясениях, может давать ошибки. Так, с 1956 года этой системой было дано приблизительно 20 оповещений. Из них полностью подтвердилась примерно четверть оповещений, примерно столько же не подтвердилось. Кроме того, пять цунами не были предсказаны.

С одной стороны, непредсказуемые цунами наносят большой ущерб хозяйству, а главное -- уносят человеческие жизни. С другой стороны, не оправдавшиеся прогнозы, ложные тревоги подрывают доверие населения к системе предупреждения, и население может бездействовать в случае действительной опасности. Поэтому перед учеными была поставлена задача создать такую службу оповещения о цунами, которая имеет 100-процентную гарантию надежности и позволяет дать оповещение о явлении через 3 -- 7 минут после его возникновения. Был разработан и сейчас реализуется проект Единой автоматизированной системы оповещения о цунами (ЕАС «Цунами»). По этому проекту к 1990 году должен быть создан комплекс, включающий в себя:


Подобные документы

  • Течения Мирового океана. Механизм возникновения системы течений Гольфстрим. Схема циркуляции и движение течения. Скорость и температура течения, их изменение. Влияние системы на географическую оболочку. Возможное развитие изменений в системе течений.

    курсовая работа [1,4 M], добавлен 05.03.2012

  • Роль Мирового океана в жизни Земли. Влияние океана на климат, почву, растительный и животный мир суши. Характерные свойства воды — соленость и температура. Процесс образования льда. Особенности энергии волн, приливно-отливных движений воды, течений.

    презентация [2,5 M], добавлен 25.11.2014

  • Общие закономерности циркуляции течений Гольфстрима, причины возникновения и распространения. Влияние Гольфстрима на климат, значение его для жизни и хозяйственной деятельности человека, возможные позитивные и негативные последствия их воздействия.

    курсовая работа [2,3 M], добавлен 15.09.2014

  • Процесс образования осадочных пород в мировом океане. Роль климата, рельефа, морских животных и растительных организмов в формировании осадков. Характер жизнедеятельности организмов и их распределение в водах Мирового океана. Развитие биосферы Земли.

    контрольная работа [632,9 K], добавлен 07.02.2011

  • Ресурсы Атлантического океана. Распространение донных осадков в Тихом океане. Полезные ископаемые и растительный мир в Тихом океане. Физико-географические особенности Северного Ледовитого океана. Акватория Индийского океана. Почвы, климат, фауна Арктики.

    реферат [63,0 K], добавлен 12.12.2010

  • Географическое положение Индийского океана. История его исследований. Описание строения рельефа дна, климатических зон, системы течений, полезных ископаемых, растительного и животного мира океана. Важнейшие транспортные пути. Развитие морского промысла.

    презентация [6,1 M], добавлен 03.12.2010

  • Знакомство с основными особенностями географического распределения давления. Общая характеристика типов атмосферной циркуляции во внетропических широтах. Причини возникновения воздушных течений. Рассмотрение составляющих общей циркуляции атмосферы.

    курсовая работа [3,6 M], добавлен 04.02.2014

  • Краткая характеристика минеральных ресурсов океанов планеты. Причины возникновения экологических проблем. Усилия мирового сообщества по предотвращению вредного воздействия на воды Мирового океана. Энергия приливов и отливов. Ледники Антарктики и Арктики.

    курсовая работа [1,8 M], добавлен 31.03.2014

  • Ориентировочное время и источники образования Тихого океана. Ложе, срединно-океанические хребты и переходные зоны. Климат и гидрологические условия, особенности животного и растительного мира океана, влияние на них разных течений. Явление Эль-Ниньо.

    реферат [29,0 K], добавлен 14.04.2010

  • Расположение океанов и суши позднего протерозоя, среднего ордовика, в конце девона, позднего карбона, поздней перми, ранней юры и голоцена. Варианты границ и рельеф дна Южного океана. Полезные ископаемые Антарктики. История открытия и исследования океана.

    курсовая работа [8,2 M], добавлен 14.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.