Анализ, моделирование и прогнозирование производства нетканых материалов в Кыргызской Республике за период 2008-2017 гг.
Коррелограмма – инструмент для анализа временных рядов. Методика параметризации тренд-сезонной статистической модели. Производство нетканых материалов - одна из наиболее значимых отраслей промышленности для экономической системы Кыргызской Республики.
Рубрика | Экономико-математическое моделирование |
Предмет | Экономико-математическое моделирование |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Ким А.М. |
Дата добавления | 25.12.2020 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Построение графика временного ряда. Тренд - устойчивое систематическое изменение процесса в течение продолжительного времени. Динамика продаж бензина на АЗС. Выявление сезонной составляющей и тренда. Коррелограмма, построенная в программе Statistica.
курсовая работа [1,2 M], добавлен 15.11.2013Структурные компоненты детерминированной составляющей. Основная цель статистического анализа временных рядов. Экстраполяционное прогнозирование экономических процессов. Выявление аномальных наблюдений, а также построение моделей временных рядов.
курсовая работа [126,0 K], добавлен 11.03.2014Временные ряды и их характеристики. Факторы, влияющие на значения временного ряда. Тренд и сезонные составляющие. Декомпозиция временных рядов. Метод экспоненциального сглаживания. Построение регрессионной модели. Числовые характеристики переменных.
контрольная работа [1,6 M], добавлен 18.06.2012Анализ временных рядов с помощью статистического пакета "Minitab". Механизм изменения уровней ряда. Trend Analysis – анализ линии тренда с аппроксимирующими кривыми (линейная, квадратическая, экспоненциальная, логистическая). Декомпозиция временного ряда.
методичка [1,2 M], добавлен 21.01.2011Создание комбинированных моделей и методов как современный способ прогнозирования. Модель на основе ARIMA для описания стационарных и нестационарных временных рядов при решении задач кластеризации. Модели авторегрессии AR и применение коррелограмм.
презентация [460,1 K], добавлен 01.05.2015Основные элементы эконометрического анализа временных рядов. Задачи анализа и их первоначальная обработка. Решение задач кратко- и среднесрочного прогноза значений временного ряда. Методы нахождения параметров уравнения тренда. Метод наименьших квадратов.
контрольная работа [37,6 K], добавлен 03.06.2009Анализ и выявление значимых факторов, влияющих на объект. Построение эконометрической модели затрат предприятия для обоснований принимаемых решений. Исследование трендов временных рядов. Оценка главных параметров качества эконометрической модели.
курсовая работа [821,1 K], добавлен 21.11.2013Классические подходы к анализу финансовых рынков, алгоритмы машинного обучения. Модель ансамблей классификационных деревьев для прогнозирования динамики финансовых временных рядов. Выбор алгоритма для анализа данных. Практическая реализация модели.
дипломная работа [1,5 M], добавлен 21.09.2016Трендовые экономические процессы и их анализ: итерационные методы фильтрации, метод Четверикова, Шискина—Эйзенпресса. Ряд Фурье и его использование для прогнозирования динамики с сезонными колебаниями. Аддитивная и мультипликативная модели сезонности.
курсовая работа [1,2 M], добавлен 14.07.2012Теория и анализ временных рядов. Построение линии тренда и прогнозирование развития случайного процесса на основе временного ряда. Сглаживание временного ряда, задача выделения тренда, определение вида тенденции. Выделение тригонометрической составляющей.
курсовая работа [722,6 K], добавлен 09.07.2019