Factors of successful protection from pressure on business

Concept and economic essence of property rights. Justification and development of the business protection model against possible damage to business activities caused by the influence various external and internal market factors and economic conditions.

Рубрика Экономико-математическое моделирование
Вид дипломная работа
Язык английский
Дата добавления 11.08.2020
Размер файла 5,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

car::vif(logit_1)

## GVIF Df GVIF^(1/(2*Df))
## macro_okved_code_group 2.557973 8 1.060458
## spark_stock_ticket 1.414953 1 1.189518
## category_by_size_missing 2.121544 3 1.133553
## administrative_position 2.036637 1 1.427108
## administrative_connections 1.568957 1 1.252580
## in_political_party 1.805759 1 1.343785
## in_association_or_sro 1.247275 1 1.116815
## case_publications 1.327666 1 1.152244
## criminal_prosecution 2.745054 1 1.656821
## capture 1.789498 1 1.337721
## corruption 1.241003 1 1.114003
## barriers 2.342071 1 1.530383
## have_court_case 2.395586 1 1.547768
## is_guilty 2.315013 1 1.521517
## cop_stage 1.478668 2 1.102726
## to_ombudsman 1.447562 1 1.203147

anova(logit_1, test="Chisq")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: target_light_clear
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 323 448.85
## macro_okved_code_group 8 16.7573 315 432.09 0.03274 *
## spark_stock_ticket 1 0.1476 314 431.95 0.70081
## category_by_size_missing 3 9.7226 311 422.22 0.02108 *
## administrative_position 1 2.5703 310 419.65 0.10889
## administrative_connections 1 1.4585 309 418.19 0.22717
## in_political_party 1 0.7229 308 417.47 0.39519
## in_association_or_sro 1 4.6740 307 412.80 0.03062 *
## case_publications 1 4.9270 306 407.87 0.02644 *
## criminal_prosecution 1 0.0211 305 407.85 0.88452
## capture 1 5.7522 304 402.10 0.01647 *
## corruption 1 0.1625 303 401.93 0.68683
## barriers 1 0.1503 302 401.78 0.69827
## have_court_case 1 0.9809 301 400.80 0.32199
## is_guilty 1 0.1772 300 400.63 0.67381
## cop_stage 2 7.0978 298 393.53 0.02876 *
## to_ombudsman 1 2.5657 297 390.96 0.10920
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And hand removal of features:

light_clear_vars <-c(
c(
# "federal_districts",
# "largest_fed_districts",
#"macro_okved_code",
"macro_okved_code_group",
# "spark_web_site",
"spark_stock_ticket",
"administrative_position",
"administrative_connections",
#"in_political_party",
"in_association_or_sro",
"case_publications",
#"criminal_prosecution",
"capture", "corruption", "barriers",
#"have_court_case",
#"is_guilty",
#"max_bac_stage",
"cop_stage",
"to_ombudsman",
#"age_till_application_date",

#missing data
#"category_by_size_missing",
"category_by_size_melse",
#"category_by_size_2_cat",
#"auth_capital_group",

"target_light_clear" )
)


light_clear_data <-dataset[light_clear_vars]
light_clear_data <-light_clear_data[!is.na(light_clear_data$target_light_clear),]
light_clear_data <-light_clear_data[!is.na(light_clear_data$category_by_size_melse),]

light_clear_data$macro_okved_code_group <-factor(light_clear_data$macro_okved_code_group)
light_clear_data$cop_stage <-factor(light_clear_data$cop_stage)
logit_1<-glm(target_light_clear~., family = binomial,data = light_clear_data)
summary(logit_1)

##
## Call:
## glm(formula = target_light_clear ~ ., family = binomial, data = light_clear_data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.912 -1.078 0.455 1.025 1.885
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 1.08786 0.57154 1.903
## macro_okved_code_groupFinancial_insurance -0.42433 0.69318 -0.612
## macro_okved_code_groupmanufacturing 0.53058 0.43358 1.224
## macro_okved_code_groupother_categories 0.70314 0.45339 1.551
## macro_okved_code_groupreal_estate 1.66517 0.54751 3.041
## macro_okved_code_grouprural 0.96884 0.61205 1.583
## macro_okved_code_groupScience 1.58326 0.53004 2.987
## macro_okved_code_groupTrading 0.46256 0.43139 1.072
## macro_okved_code_groupTransportation 0.35589 0.64183 0.554
## spark_stock_ticket -1.20365 0.72018 -1.671
## administrative_position 0.89808 0.44792 2.005
## administrative_connections -0.44952 0.31667 -1.420
## in_association_or_sro 0.58687 0.28070 2.091
## case_publications -0.73970 0.38566 -1.918
## capture -0.81110 0.29780 -2.724
## corruption 0.21337 0.46218 0.462
## barriers -0.08009 0.41428 -0.193
## cop_stageInformation_collection -0.05519 0.38442 -0.144
## cop_stageResolution -0.86601 0.32208 -2.689
## to_ombudsman 0.65540 0.40944 1.601
## category_by_size_melseMicro -0.79328 0.28470 -2.786
## Pr(>|z|)
## (Intercept) 0.05699 .
## macro_okved_code_groupFinancial_insurance 0.54043
## macro_okved_code_groupmanufacturing 0.22106
## macro_okved_code_groupother_categories 0.12094
## macro_okved_code_groupreal_estate 0.00236 **
## macro_okved_code_grouprural 0.11344
## macro_okved_code_groupScience 0.00282 **
## macro_okved_code_groupTrading 0.28360
## macro_okved_code_groupTransportation 0.57924
## spark_stock_ticket 0.09466 .
## administrative_position 0.04497 *
## administrative_connections 0.15575
## in_association_or_sro 0.03655 *
## case_publications 0.05511 .
## capture 0.00646 **
## corruption 0.64432
## barriers 0.84671
## cop_stageInformation_collection 0.88583
## cop_stageResolution 0.00717 **
## to_ombudsman 0.10944
## category_by_size_melseMicro 0.00533 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 448.85 on 323 degrees of freedom
## Residual deviance: 393.46 on 303 degrees of freedom
## AIC: 435.46
##
## Number of Fisher Scoring iterations: 4

car::vif(logit_1)

## GVIF Df GVIF^(1/(2*Df))
## macro_okved_code_group 1.853034 8 1.039304
## spark_stock_ticket 1.156994 1 1.075636
## administrative_position 1.415450 1 1.189727
## administrative_connections 1.544208 1 1.242662
## in_association_or_sro 1.222597 1 1.105711
## case_publications 1.299073 1 1.139769
## capture 1.233162 1 1.110478
## corruption 1.077379 1 1.037969
## barriers 1.289705 1 1.135652
## cop_stage 1.379900 2 1.083832
## to_ombudsman 1.384966 1 1.176846
## category_by_size_melse 1.254458 1 1.120026

anova(logit_1, test="Chisq")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: target_light_clear
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 323 448.85
## macro_okved_code_group 8 16.7573 315 432.09 0.032738 *
## spark_stock_ticket 1 0.1476 314 431.95 0.700807
## administrative_position 1 4.3378 313 427.61 0.037275 *
## administrative_connections 1 1.1043 312 426.50 0.293329
## in_association_or_sro 1 6.0639 311 420.44 0.013797 *
## case_publications 1 4.6309 310 415.81 0.031401 *
## capture 1 3.5487 309 412.26 0.059594 .
## corruption 1 0.4253 308 411.83 0.514315
## barriers 1 0.0047 307 411.83 0.945223
## cop_stage 2 8.1451 305 403.69 0.017034 *
## to_ombudsman 1 2.2527 304 401.43 0.133381
## category_by_size_melse 1 7.9714 303 393.46 0.004752 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By AIC maximization

light_clear_vars <-c(
c(
# "spark_web_site",
"spark_stock_ticket",
#"category_by_size_missing",
"category_by_size_melse",
#"category_by_size_2_cat",
#"administrative_position",
"administrative_connections",
"in_political_party",
"in_association_or_sro",
"case_publications",
"criminal_prosecution",
"capture",
"corruption",
"barriers",
"have_court_case",
"is_guilty",
#"reviewed_by_bac",
#"supported_by_bac_public_council",
#"max_bac_stage",
"cop_stage",
# "reaction_not_passed_by_applicant",
# "reaction_consultation",
# "reaction_target_letters_control",
# "reaction_not_passed_by_bac",
"to_ombudsman",
"macro_okved_code_group",
"target_light_clear")
)

light_clear_data <-dataset[light_clear_vars]
light_clear_data <-light_clear_data[!is.na(light_clear_data$target_light_clear),]
light_clear_data <-light_clear_data[!is.na(light_clear_data$category_by_size_melse),]

light_clear_data$macro_okved_code_group <-factor(light_clear_data$macro_okved_code_group)
light_clear_data$category_by_size <-factor(light_clear_data$category_by_size)
light_clear_data$cop_stage <-factor(light_clear_data$cop_stage)


logit_1<-glm(target_light_clear~., family = binomial,data = light_clear_data)
summary(logit_1)

##
## Call:
## glm(formula = target_light_clear ~ ., family = binomial, data = light_clear_data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.9522 -1.0958 0.5036 1.0075 1.9987
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error z value
## (Intercept) 1.22600 0.71851 1.706
## spark_stock_ticket -1.08050 0.70714 -1.528
## category_by_size_melseMicro -0.88720 0.28619 -3.100
## administrative_connections -0.20977 0.29382 -0.714
## in_political_party 0.21547 0.39022 0.552
## in_association_or_sro 0.54852 0.27785 1.974
## case_publications -0.75929 0.38918 -1.951
## criminal_prosecution -0.11450 0.43443 -0.264
## capture -0.89510 0.35595 -2.515
## corruption 0.22136 0.49373 0.448
## barriers -0.18604 0.54835 -0.339
## have_court_case 0.44432 0.36743 1.209
## is_guilty -0.26840 0.37600 -0.714
## cop_stageInformation_collection -0.08523 0.39262 -0.217
## cop_stageResolution -0.85803 0.32460 -2.643
## to_ombudsman 0.65342 0.41341 1.581
## macro_okved_code_groupFinancial_insurance -0.44827 0.68757 -0.652
## macro_okved_code_groupmanufacturing 0.43664 0.44073 0.991
## macro_okved_code_groupother_categories 0.57604 0.45207 1.274
## macro_okved_code_groupreal_estate 1.60905 0.55049 2.923
## macro_okved_code_grouprural 0.88682 0.61787 1.435
## macro_okved_code_groupScience 1.52577 0.53037 2.877
## macro_okved_code_groupTrading 0.44702 0.43759 1.022
## macro_okved_code_groupTransportation 0.28016 0.64599 0.434
## category_by_sizeMicro NA NA NA
## Pr(>|z|)
## (Intercept) 0.08795 .
## spark_stock_ticket 0.12651
## category_by_size_melseMicro 0.00193 **
## administrative_connections 0.47527
## in_political_party 0.58082
## in_association_or_sro 0.04836 *
## case_publications 0.05106 .
## criminal_prosecution 0.79212
## capture 0.01191 *
## corruption 0.65390
## barriers 0.73441
## have_court_case 0.22655
## is_guilty 0.47534
## cop_stageInformation_collection 0.82815
## cop_stageResolution 0.00821 **
## to_ombudsman 0.11398
## macro_okved_code_groupFinancial_insurance 0.51442
## macro_okved_code_groupmanufacturing 0.32182
## macro_okved_code_groupother_categories 0.20258
## macro_okved_code_groupreal_estate 0.00347 **
## macro_okved_code_grouprural 0.15120
## macro_okved_code_groupScience 0.00402 **
## macro_okved_code_groupTrading 0.30700
## macro_okved_code_groupTransportation 0.66452
## category_by_sizeMicro NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 448.85 on 323 degrees of freedom
## Residual deviance: 395.71 on 300 degrees of freedom
## AIC: 443.71
##
## Number of Fisher Scoring iterations: 4

logit_2<-stepAIC(logit_1)

## Start: AIC=443.71
## target_light_clear ~ spark_stock_ticket + category_by_size_melse +
## administrative_connections + in_political_party + in_association_or_sro +
## case_publications + criminal_prosecution + capture + corruption +
## barriers + have_court_case + is_guilty + cop_stage + to_ombudsman +
## macro_okved_code_group + category_by_size
##
##
## Step: AIC=443.71
## target_light_clear ~ spark_stock_ticket + category_by_size_melse +
## administrative_connections + in_political_party + in_association_or_sro +
## case_publications + criminal_prosecution + capture + corruption +
## barriers + have_court_case + is_guilty + cop_stage + to_ombudsman +
## macro_okved_code_group
##
## Df Deviance AIC
## - criminal_prosecution 1 395.78 441.78
## - barriers 1 395.83 441.83
## - corruption 1 395.91 441.91
## - in_political_party 1 396.02 442.02
## - administrative_connections 1 396.22 442.22
## - is_guilty 1 396.22 442.22
## - have_court_case 1 397.19 443.19
## <none> 395.71 443.71
## - spark_stock_ticket 1 398.07 444.07
## - to_ombudsman 1 398.26 444.26
## - case_publications 1 399.61 445.61
## - in_association_or_sro 1 399.65 445.65
## - macro_okved_code_group 8 414.10 446.10
## - capture 1 402.32 448.32
## - cop_stage 2 405.06 449.06
## - category_by_size_melse 1 405.67 451.67
##
## Step: AIC=441.78
## target_light_clear ~ spark_stock_ticket + category_by_size_melse +
## administrative_connections + in_political_party + in_association_or_sro +
## case_publications + capture + corruption + barriers + have_court_case +
## is_guilty + cop_stage + to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## - barriers 1 395.83 439.83
## - in_political_party 1 396.08 440.08
## - corruption 1 396.11 440.11
## - administrative_connections 1 396.29 440.29
## - is_guilty 1 396.31 440.31
## - have_court_case 1 397.30 441.30
## <none> 395.78 441.78
## - spark_stock_ticket 1 398.13 442.13
## - to_ombudsman 1 398.59 442.59
## - in_association_or_sro 1 399.68 443.68
## - case_publications 1 399.86 443.86
## - macro_okved_code_group 8 415.02 445.02
## - cop_stage 2 405.11 447.11
## - capture 1 404.01 448.01
## - category_by_size_melse 1 405.75 449.75
##
## Step: AIC=439.83
## target_light_clear ~ spark_stock_ticket + category_by_size_melse +
## administrative_connections + in_political_party + in_association_or_sro +
## case_publications + capture + corruption + have_court_case +
## is_guilty + cop_stage + to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## - in_political_party 1 396.15 438.15
## - corruption 1 396.18 438.18
## - administrative_connections 1 396.36 438.36
## - is_guilty 1 396.39 438.39
## - have_court_case 1 397.43 439.43
## <none> 395.83 439.83
## - spark_stock_ticket 1 398.15 440.15
## - to_ombudsman 1 398.69 440.69
## - in_association_or_sro 1 399.77 441.77
## - case_publications 1 399.86 441.86
## - macro_okved_code_group 8 415.02 443.02
## - cop_stage 2 405.16 445.16
## - capture 1 404.16 446.16
## - category_by_size_melse 1 405.78 447.78
##
## Step: AIC=438.15
## target_light_clear ~ spark_stock_ticket + category_by_size_melse +
## administrative_connections + in_association_or_sro + case_publications +
## capture + corruption + have_court_case + is_guilty + cop_stage +
## to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## - administrative_connections 1 396.47 436.47
## - corruption 1 396.54 436.54
## - is_guilty 1 396.68 436.68
## - have_court_case 1 397.70 437.70
## <none> 396.15 438.15
## - spark_stock_ticket 1 398.46 438.46
## - to_ombudsman 1 399.12 439.12
## - in_association_or_sro 1 400.08 440.08
## - case_publications 1 400.09 440.09
## - macro_okved_code_group 8 415.47 441.47
## - cop_stage 2 405.28 443.28
## - capture 1 404.47 444.47
## - category_by_size_melse 1 406.72 446.72
##
## Step: AIC=436.47
## target_light_clear ~ spark_stock_ticket + category_by_size_melse +
## in_association_or_sro + case_publications + capture + corruption +
## have_court_case + is_guilty + cop_stage + to_ombudsman +
## macro_okved_code_group
##
## Df Deviance AIC
## - corruption 1 396.81 434.81
## - is_guilty 1 396.94 434.94
## - have_court_case 1 397.95 435.95
## <none> 396.47 436.47
## - spark_stock_ticket 1 398.65 436.65
## - to_ombudsman 1 399.24 437.24
## - in_association_or_sro 1 400.20 438.20
## - case_publications 1 401.32 439.32
## - macro_okved_code_group 8 415.98 439.98
## - cop_stage 2 405.35 441.35
## - capture 1 404.55 442.55
## - category_by_size_melse 1 406.81 444.81
##
## Step: AIC=434.81
## target_light_clear ~ spark_stock_ticket + category_by_size_melse +
## in_association_or_sro + case_publications + capture + have_court_case +
## is_guilty + cop_stage + to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## - is_guilty 1 397.25 433.25
## - have_court_case 1 398.19 434.19
## <none> 396.81 434.81
## - spark_stock_ticket 1 398.87 434.87
## - to_ombudsman 1 399.70 435.70
## - in_association_or_sro 1 400.47 436.47
## - case_publications 1 402.13 438.13
## - macro_okved_code_group 8 416.33 438.33
## - cop_stage 2 405.74 439.74
## - capture 1 404.67 440.67
## - category_by_size_melse 1 407.34 443.34
##
## Step: AIC=433.25
## target_light_clear ~ spark_stock_ticket + category_by_size_melse +
## in_association_or_sro + case_publications + capture + have_court_case +
## cop_stage + to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## - have_court_case 1 398.26 432.26
## <none> 397.25 433.25
## - spark_stock_ticket 1 399.46 433.46
## - to_ombudsman 1 400.11 434.11
## - in_association_or_sro 1 400.85 434.85
## - case_publications 1 402.38 436.38
## - macro_okved_code_group 8 417.12 437.12
## - cop_stage 2 406.14 438.14
## - capture 1 405.50 439.50
## - category_by_size_melse 1 407.58 441.58
##
## Step: AIC=432.26
## target_light_clear ~ spark_stock_ticket + category_by_size_melse +
## in_association_or_sro + case_publications + capture + cop_stage +
## to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## <none> 398.26 432.26
## - spark_stock_ticket 1 400.43 432.43
## - to_ombudsman 1 400.94 432.94
## - in_association_or_sro 1 401.79 433.79
## - case_publications 1 403.31 435.31
## - macro_okved_code_group 8 418.05 436.05
## - cop_stage 2 407.30 437.30
## - capture 1 406.25 438.25
## - category_by_size_melse 1 408.07 440.07

summary(logit_2)

##
## Call:
## glm(formula = target_light_clear ~ spark_stock_ticket + category_by_size_melse +
## in_association_or_sro + case_publications + capture + cop_stage +
## to_ombudsman + macro_okved_code_group, family = binomial,
## data = light_clear_data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.895 -1.079 0.516 1.039 1.906
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 1.19219 0.54942 2.170
## spark_stock_ticket -1.03508 0.70717 -1.464
## category_by_size_melseMicro -0.86030 0.27934 -3.080
## in_association_or_sro 0.51215 0.27397 1.869
## case_publications -0.81046 0.36657 -2.211
## capture -0.79577 0.28593 -2.783
## cop_stageInformation_collection -0.03539 0.37857 -0.093
## cop_stageResolution -0.81405 0.31659 -2.571
## to_ombudsman 0.61921 0.38153 1.623
## macro_okved_code_groupFinancial_insurance -0.39772 0.67519 -0.589
## macro_okved_code_groupmanufacturing 0.44885 0.42521 1.056
## macro_okved_code_groupother_categories 0.56455 0.44288 1.275
## macro_okved_code_groupreal_estate 1.65214 0.54465 3.033
## macro_okved_code_grouprural 0.97348 0.61176 1.591
## macro_okved_code_groupScience 1.53430 0.52313 2.933
## macro_okved_code_groupTrading 0.41920 0.42661 0.983
## macro_okved_code_groupTransportation 0.27912 0.63916 0.437
## Pr(>|z|)
## (Intercept) 0.03001 *
## spark_stock_ticket 0.14328
## category_by_size_melseMicro 0.00207 **
## in_association_or_sro 0.06157 .
## case_publications 0.02704 *
## capture 0.00538 **
## cop_stageInformation_collection 0.92553
## cop_stageResolution 0.01013 *
## to_ombudsman 0.10459
## macro_okved_code_groupFinancial_insurance 0.55583
## macro_okved_code_groupmanufacturing 0.29116
## macro_okved_code_groupother_categories 0.20240
## macro_okved_code_groupreal_estate 0.00242 **
## macro_okved_code_grouprural 0.11154
## macro_okved_code_groupScience 0.00336 **
## macro_okved_code_groupTrading 0.32579
## macro_okved_code_groupTransportation 0.66233
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 448.85 on 323 degrees of freedom
## Residual deviance: 398.26 on 307 degrees of freedom
## AIC: 432.26
##
## Number of Fisher Scoring iterations: 4

exp(logit_2$coefficients)

## (Intercept)
## 3.2942900
## spark_stock_ticket
## 0.3551982
## category_by_size_melseMicro
## 0.4230331
## in_association_or_sro
## 1.6688717
## case_publications
## 0.4446514
## capture
## 0.4512358
## cop_stageInformation_collection
## 0.9652325
## cop_stageResolution
## 0.4430602
## to_ombudsman
## 1.8574687
## macro_okved_code_groupFinancial_insurance
## 0.6718499
## macro_okved_code_groupmanufacturing
## 1.5665129
## macro_okved_code_groupother_categories
## 1.7586538
## macro_okved_code_groupreal_estate
## 5.2181086
## macro_okved_code_grouprural
## 2.6471417
## macro_okved_code_groupScience
## 4.6380801
## macro_okved_code_groupTrading
## 1.5207508
## macro_okved_code_groupTransportation
## 1.3219715

car::vif(logit_2)

## GVIF Df GVIF^(1/(2*Df))
## spark_stock_ticket 1.129585 1 1.062819
## category_by_size_melse 1.226221 1 1.107349
## in_association_or_sro 1.183847 1 1.088048
## case_publications 1.182098 1 1.087243
## capture 1.145953 1 1.070492
## cop_stage 1.342656 2 1.076443
## to_ombudsman 1.220107 1 1.104585
## macro_okved_code_group 1.651925 8 1.031869

anova(logit_2, test="Chisq")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: target_light_clear
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 323 448.85
## spark_stock_ticket 1 0.1690 322 448.68 0.680998
## category_by_size_melse 1 7.0519 321 441.63 0.007918 **
## in_association_or_sro 1 3.3556 320 438.27 0.066979 .
## case_publications 1 4.2246 319 434.05 0.039842 *
## capture 1 5.1490 318 428.90 0.023259 *
## cop_stage 2 5.9033 316 423.00 0.052252 .
## to_ombudsman 1 4.9497 315 418.05 0.026095 *
## macro_okved_code_group 8 19.7868 307 398.26 0.011173 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

TARGET 3 - TARGET LIGHT EXTENDED Baseline

light_extended_vars <-c(
c(
#"federal_districts",
#"largest_fed_districts",
#"macro_okved_code",
"macro_okved_code_group",
#"spark_web_site",
"spark_stock_ticket",
"category_by_size_missing",
#"category_by_size_melse",
# "category_by_size_2_cat",
"administrative_position",
"administrative_connections",
"in_political_party",
"in_association_or_sro",
"case_publications",
"criminal_prosecution",
"capture", "corruption", "barriers",
"have_court_case",
"is_guilty",
"reviewed_by_bac",
#"supported_by_bac_public_council",
# "max_bac_stage",
"cop_stage",
#"reaction_not_passed_by_applicant",
#"reaction_consultation",
#"reaction_target_letters_control",
#"reaction_not_passed_by_bac",
"to_ombudsman",
"target_light_extended")
)

light_extended_data <-dataset[light_extended_vars]
light_extended_data =light_extended_data[!is.na(light_extended_data$target_light_extended),]
light_extended_data =light_extended_data[!is.na(light_extended_data$category_by_size_missing),]

light_extended_data$macro_okved_code_group <-factor(light_extended_data$macro_okved_code_group)
light_extended_data$category_by_size_missing <-factor(light_extended_data$category_by_size_missing)
light_extended_data$cop_stage <-factor(light_extended_data$cop_stage)

logit_1<-glm(target_light_extended~., family = binomial,data = light_extended_data)
summary(logit_1)

##
## Call:
## glm(formula = target_light_extended ~ ., family = binomial, data = light_extended_data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0204 -1.0737 0.5114 0.9313 1.9580
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 1.57462 0.85906 1.833
## macro_okved_code_groupFinancial_insurance -0.76958 0.71166 -1.081
## macro_okved_code_groupmanufacturing 0.41639 0.43846 0.950
## macro_okved_code_groupother_categories 0.53999 0.44913 1.202
## macro_okved_code_groupreal_estate 1.77777 0.53030 3.352
## macro_okved_code_grouprural 0.81475 0.59453 1.370
## macro_okved_code_groupScience 1.44886 0.51960 2.788
## macro_okved_code_groupTrading 0.40197 0.42315 0.950
## macro_okved_code_groupTransportation 0.19112 0.64108 0.298
## spark_stock_ticket -1.36013 0.79645 -1.708
## category_by_size_missingMedium 0.06309 0.66335 0.095
## category_by_size_missingMicro -1.01687 0.51089 -1.990
## category_by_size_missingSmall -0.12544 0.55397 -0.226
## administrative_position 0.81112 0.51771 1.567
## administrative_connections -0.26735 0.30032 -0.890
## in_political_party -0.15237 0.43370 -0.351
## in_association_or_sro 0.65803 0.27460 2.396
## case_publications -1.03627 0.35410 -2.926
## criminal_prosecution -0.10433 0.43183 -0.242
## capture -0.80989 0.34829 -2.325
## corruption 0.20013 0.48506 0.413
## barriers -0.14932 0.53783 -0.278
## have_court_case 0.51118 0.36328 1.407
## is_guilty -0.24348 0.36998 -0.658
## reviewed_by_bac -0.05802 0.53693 -0.108
## cop_stageInformation_collection -0.07223 0.54355 -0.133
## cop_stageResolution -0.78140 0.49569 -1.576
## to_ombudsman 0.64249 0.40398 1.590
## Pr(>|z|)
## (Intercept) 0.066810 .
## macro_okved_code_groupFinancial_insurance 0.279526
## macro_okved_code_groupmanufacturing 0.342284
## macro_okved_code_groupother_categories 0.229244
## macro_okved_code_groupreal_estate 0.000801 ***
## macro_okved_code_grouprural 0.170558
## macro_okved_code_groupScience 0.005297 **
## macro_okved_code_groupTrading 0.342137
## macro_okved_code_groupTransportation 0.765606
## spark_stock_ticket 0.087685 .
## category_by_size_missingMedium 0.924231
## category_by_size_missingMicro 0.046547 *
## category_by_size_missingSmall 0.820865
## administrative_position 0.117172
## administrative_connections 0.373353
## in_political_party 0.725340
## in_association_or_sro 0.016561 *
## case_publications 0.003428 **
## criminal_prosecution 0.809098
## capture 0.020056 *
## corruption 0.679905
## barriers 0.781301
## have_court_case 0.159389
## is_guilty 0.510478
## reviewed_by_bac 0.913956
## cop_stageInformation_collection 0.894278
## cop_stageResolution 0.114932
## to_ombudsman 0.111745
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 488.55 on 355 degrees of freedom
## Residual deviance: 419.08 on 328 degrees of freedom
## AIC: 475.08
##
## Number of Fisher Scoring iterations: 4

car::vif(logit_1)

## GVIF Df GVIF^(1/(2*Df))
## macro_okved_code_group 2.537750 8 1.059932
## spark_stock_ticket 1.406349 1 1.185896
## category_by_size_missing 2.058000 3 1.127823
## administrative_position 1.887402 1 1.373827
## administrative_connections 1.492303 1 1.221599
## in_political_party 1.684771 1 1.297987
## in_association_or_sro 1.234705 1 1.111173
## case_publications 1.236103 1 1.111802
## criminal_prosecution 2.808749 1 1.675932
## capture 1.805700 1 1.343763
## corruption 1.212152 1 1.100978
## barriers 2.311503 1 1.520363
## have_court_case 2.372303 1 1.540228
## is_guilty 2.316439 1 1.521985
## reviewed_by_bac 3.414270 1 1.847774
## cop_stage 3.742819 2 1.390912
## to_ombudsman 1.445193 1 1.202162


Подобные документы

  • Характеристика программной среды Business Studio 3.6. Демонстрационная база на примере покупки и доставки офисной мебели. Содержание, временная и логическая очередность операций бизнес-процесса компании "Аккорд" г. Ростов-на-Дону; области моделирования.

    курсовая работа [1,3 M], добавлен 01.06.2014

  • Процесс интеграции технических и программных средств во все аспекты деятельности предприятия. Группа контроллинга и ее задачи. Операционно-ориентированный расчет себестоимости продукта (услуги). Определение времени выполнения и стоимости процесса.

    реферат [547,5 K], добавлен 14.09.2010

  • Модель оценки долгосрочных активов (Capital Asset Pricing Model, САРМ). Оценка доходности и риска на основе исторических данных. Выбор оптимального портфеля из рискованных активов. Риск и неопределенность денежных потоков. Расчет бета-коэффициента.

    презентация [104,1 K], добавлен 30.07.2013

  • Mathematical model of the grinding grating bending process under the action of a meat product load parabolically decreasing along the radius. Determination of the deflection of a knife blade under the action of a parabolic load of the food medium.

    статья [1,3 M], добавлен 20.10.2022

  • Definition and stages of business cycles, their causes and the characteristic of kinds. Types and a continuity of business cycles. Kondratyev's wave. A role of cycles in stabilization of a policy of the state. Great depression as an economic crisis.

    реферат [130,5 K], добавлен 20.03.2011

  • Mission, aims and potential of company. Analysis of the opportunities and threats of international business. Description of the factors that characterize the business opportunities in Finland. The business plan of the penetration to market of Finland.

    курсовая работа [128,3 K], добавлен 04.06.2013

  • Business plans are an important test of clarity of thinking and clarity of the business. Reasons for writing a business plan. Market trends and the market niche for product. Business concept, market analysis. Company organization, financial plan.

    реферат [59,4 K], добавлен 15.09.2012

  • Support of business entities on the part of specialized agencies of the state on world markets. Interconnection of economic diplomacy of Ukraine in international cooperation with influence on the results of foreign economic activity of the country.

    статья [30,1 K], добавлен 19.09.2017

  • Impact of globalization on the way organizations conduct their businesses overseas, in the light of increased outsourcing. The strategies adopted by General Electric. Offshore Outsourcing Business Models. Factors for affect the success of the outsourcing.

    реферат [32,3 K], добавлен 13.10.2011

  • Technical and economic characteristics of medical institutions. Development of an automation project. Justification of the methods of calculating cost-effectiveness. General information about health and organization safety. Providing electrical safety.

    дипломная работа [3,7 M], добавлен 14.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.