Основные задачи и этапы кластерного анализа

Кластерный анализ как многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и упорядочивающая их в однородные группы. Однородность и полнота - требования, предъявляемые к данным кластерного анализа.

Рубрика Экономико-математическое моделирование
Вид статья
Язык русский
Дата добавления 25.07.2018
Размер файла 37,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Цели сегментации рынка в маркетинговой деятельности. Сущность кластерного анализа, основные этапы его выполнения. Выбор способа измерения расстояния или меры сходства. Иерархические, неиерархические методы кластеризации. Оценка надежности и достоверности.

    доклад [214,7 K], добавлен 02.11.2009

  • Построение типологических регрессий по отдельным группам наблюдений. Пространственные данные и временная информация. Сферы применения кластерного анализа. Понятие однородности объектов, свойства матрицы расстояний. Проведение типологической регрессии.

    презентация [322,6 K], добавлен 26.10.2013

  • Выполнение кластерного анализа предприятий с помощью программы Statgraphics Plus. Построение линейного уравнения регрессии. Расчет коэффициентов эластичности по регрессионным моделям. Оценка статистической значимости уравнения и коэффициента детерминации.

    задача [1,7 M], добавлен 16.03.2014

  • Характеристика строительной отрасли Краснодарского края. Прогноз развития жилищного строительства. Современные методы и инструментальные средства кластерного анализа. Многомерные статистические методы диагностики экономического состояния предприятия.

    дипломная работа [2,4 M], добавлен 20.07.2015

  • Завдання та етапи кластерного аналізу, вимоги до інформації. Приклад класифікації економічних об'єктів за допомогою алгоритму кластерного аналізу, методи перевірки стійкості кластеризації, інтерпретація результатів аналізу та побудування дендрограми.

    реферат [311,2 K], добавлен 15.07.2011

  • Теоретические основы прикладного регрессионного анализа. Проверка предпосылок и предположений регрессионного анализа. Обнаружение выбросов в выборке. Рекомендации по устранению мультиколлинеарности. Пример практического применения регрессионного анализа.

    курсовая работа [1,2 M], добавлен 04.02.2011

  • Статистический анализ по выборке. Проведение регрессионного анализа исходных данных и выбор аналитической формы записи производственной функции. Выполнение экономического анализа в выбранной регрессионной модели на основе коэффициентов эластичности.

    курсовая работа [2,2 M], добавлен 22.07.2015

  • Основные показатели финансового состояния предприятия. Кризис на предприятии, его причины, виды и последствия. Современные методы и инструментальные средства кластерного анализа, особенности их использования для финансово-экономической оценки предприятия.

    дипломная работа [1,4 M], добавлен 09.10.2013

  • Основная терминология, понятие и методы факторного анализа. Основные этапы проведения факторного анализа и методика Чеботарева. Практическая значимость факторного анализа для управления предприятием. Метода Лагранжа в решении задач факторного анализа.

    контрольная работа [72,9 K], добавлен 26.11.2008

  • Методология анализа сложных объектов, изучения и познания процессов. Основные принципы системного подхода к анализу проблем и основные понятия о системах. Декомпозиция, анализ подпроблем и их решение, выявление альтернатив и выбор оптимальных решений.

    контрольная работа [47,5 K], добавлен 04.08.2010

  • Дисперсионный анализ - исследование причин отклонений фактических затрат от нормативных. Схемы организации исходных данных с двумя и более факторами. Формулы расчета межгрупповой и внутригрупповой дисперсии. Задачи двухфакторного дисперсионного анализа.

    курсовая работа [1,0 M], добавлен 16.01.2013

  • Разработка и принятие правильного решения как задачи работы управленческого персонала организации. Деревья решений - один из методов автоматического анализа данных, преимущества их использования и область применения. Построение деревьев классификации.

    контрольная работа [91,6 K], добавлен 08.09.2011

  • Общее понятие, основные цели и задачи дисперсионного анализа. Компоненты изменчивости и методы их определения. Однофакторный дисперсионный анализ, его графическое изображение и области применения. Перечень формул вычисления для двухфакторного анализа.

    презентация [576,2 K], добавлен 22.03.2015

  • Мета кластерного аналізу: поняття, алгоритм, завдання. Головні особливості процедури Мак-Кіна. Графік середніх значень за трьома кластерами. Метод К-методів, переваги та недоліки використання. Поняття про сіткові алгоритми кластеризації (grid-based).

    реферат [238,3 K], добавлен 27.05.2013

  • Многомерный статистический анализ. Математические методы построения оптимальных планов сбора, систематизации и обработки данных. Геометрическая структура многомерных наблюдений. Проверка значимости уравнения регрессии. Кластерный и факторный анализ.

    курсовая работа [2,6 M], добавлен 10.03.2011

  • Факторный анализ. Задачи факторного анализа. Методы факторного анализа. Детерминированный факторный анализ. Модели детерминированного факторного анализа. Способы оценки влияния факторов детерминированном факторном анализе. Стохастический анализ.

    курсовая работа [150,0 K], добавлен 03.05.2007

  • Задачи и этапы проведения корреляционного анализа, экономическая интерпретация его результатов. Критерии качественной и количественной однородности исходных данных: среднеквадратическое отклонение и коэффициент вариации. Показатели оценки уравнения связи.

    контрольная работа [76,9 K], добавлен 12.11.2013

  • Основные задачи оценки экономических явлений и процессов. Проведение детерминированного факторного анализа и приемы математического моделирования факторной системы. Суть метода последовательного элиминирования факторов. Оперативный контроль затрат.

    шпаргалка [1,1 M], добавлен 08.12.2010

  • Общие принципы системного анализа. Основные этапы построения эконометрических моделей и использования их для прогнозирования. Экстраполяция трендов и ее использование в анализе. Правила составления информации подсистем. Модель "спрос-предложение".

    реферат [190,5 K], добавлен 24.01.2011

  • Изучение методов моделирования и анализа панельных данных. Построение ABC-XYZ классификации среди данных широкой номенклатуры по товарным запасам торгового предприятия. Виды исходных данных и построение на их основе модели регрессии по панельным данным.

    курсовая работа [363,2 K], добавлен 23.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.