Применение моделей кривых роста при построении бизнес-прогнозов
Расчет прогнозного значения среднегодовой численности промышленно-производственного персонала с помощью моделей кривых роста. Определение коэффициентов линейной и параболической моделей. Рассмотрение и проверка гипотезы об отсутствии автокорреляции.
| Рубрика | Экономико-математическое моделирование |
| Предмет | Экономико-математическое моделирование |
| Вид | курсовая работа |
| Язык | русский |
| Прислал(а) | Alesandra Ilchenko |
| Дата добавления | 01.08.2017 |
| Размер файла | 386,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Применение моделей кривых роста в бизнес-прогнозировании. Методы выбора кривых роста. Доверительные интервалы прогноза для линейного тренда, и полученные с использованием уравнения экспоненты. Дисперсия отклонений фактических наблюдений от расчетных.
курсовая работа [958,1 K], добавлен 13.09.2015Построение анализа случайной компоненты для проверки адекватности выбранных моделей реальному процессу (в частности, адекватности полученной кривой роста). Оценка параметров модели в условиях автокорреляции и определение критерия автокорреляции.
контрольная работа [44,0 K], добавлен 13.08.2010Принципы и методы построения линейных, нелинейных моделей спроса, применение эконометрических моделей на практике. Эконометрическое моделирование спроса на автомобили в РФ, проверка значимости коэффициентов, автокорреляции, наличия гетероскедастичности.
дипломная работа [3,9 M], добавлен 30.01.2016Сущность просроченной задолженности. Задачи, принятие необходимых мер работы с проблемной задолженностью. Аналитическое выравнивание по модулям кривых роста. Проверка адекватности и точности моделей. Прогнозирование объема просроченной задолженности.
курсовая работа [412,0 K], добавлен 05.05.2016Построение поля корреляции с формулировкой гипотезы о форме связи. Построение моделей парной регрессии. Оценка тесноты связи с помощью коэффициента (индекса) корреляции. Расчет прогнозного значения результата и доверительного интервала прогноза.
контрольная работа [157,9 K], добавлен 06.08.2010Основные методы прогнозирования. Критерии качества прогнозных моделей. Разработка прогнозной модели. Классификация прогнозных моделей. Математическая прогнозная модель. Разработка аналитических моделей. Основные ограничения длины прогнозного периода.
презентация [1,2 M], добавлен 09.07.2015Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.
задача [142,0 K], добавлен 20.03.2010Проверка гипотезы на наличие тенденции. Обоснование периода упреждения прогноза. Выбор оптимальной прогнозной модели по коэффициенту детерминации. Получение точечного и интервального прогноза. Расчет параметров линейной и экспоненциальной моделей.
реферат [567,8 K], добавлен 30.09.2014Определение коэффициентов линейной регрессии. Проверка гипотезы о присутствии гомоскедастичности, наличии автокорреляции. Оценка статистической значимости эмпирических коэффициентов регрессии и детерминации. Прогнозирование объемов производства консервов.
контрольная работа [440,1 K], добавлен 15.04.2014Построение поля корреляции и формулировка гипотезы о линейной форме связи. Расчет уравнений различных регрессий. Расчет коэффициентов эластичности, корреляции, детерминации и F-критерия Фишера. Расчет прогнозного значения результата и его ошибки.
контрольная работа [681,9 K], добавлен 03.08.2010


