Моделирование систем управления с помощью функциональных схем и системных графов
Операторы преобразования переменных. Модель системы управления и их построение. Особенности структурных моделей систем управления. Линейные модели и характеристики систем управления. Построение временных характеристик. Обратное преобразование Лапласа.
Рубрика | Экономико-математическое моделирование |
Вид | реферат |
Язык | русский |
Дата добавления | 08.03.2014 |
Размер файла | 512,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
если одна из передаточных функций звеньев имеет диполь;
звенья имеют одинаковые полюсы А1(si) = A2(si) = 0.
Дифференциальные уравнения типового соединения с обратной связью:
А1(p)x1(t) = В1(p)x3(t);
А2(p)x2(t) = В2(p) x1(t);
x3(t) = f(t) x2(t);
y(t) = x1(t),
где знак «минус» соответствует отрицательной обратной связи, а знак «плюс» - положительной.
Исключение внутренних переменных дает операторные полиномы дифференциального уравнения эквивалентного звена:
Аэ(p) = А1(p)А2(р) B1(p)B2(р);
Вэ(p) = В1(p)А2(p). (68)
Передаточная функция эквивалентного звена:
Wэ(s) = . (69)
Если звенья образуют контур положительной обратной связи, то в формулах (69), (69) используется знак «минус».
Временная характеристика системы с обратной связью wэ(t) сложным образом зависит от w1(t) и wэ(t), поэтому ее удобнее получать обратным преобразованием Лапласа эквивалентной передаточной функции:
wэ(t) =.
Комплексная частотная характеристика системы с обратной связью также сложным образом зависит от частотных характеристик звеньев:
Wэ(j) = . (70)
Свойства системы с обратной связью определяются усилением разомкнутого контура с передаточной функцией Wp(s) = W1(s) + W2(s) на различных частотах. Если усиление контура мало, то можно пренебречь обратной связью. Действительно, по виду выражения (44) можно заключить, что на частотах, где выполняется условие
= 1
имеет место приближенное соотношение
Wэ(j) W1(j).
Практически усиление контура считается малым, если
Размещено на http://www.allbest.ru/
Lр() = - (16-20) дБ.
С другой стороны, на частотах, где выполняется условие
1,
имеет место другое приближенное соотношение
Wэ(j) .
Система в целом имеет частотную характеристику, близкую к обратной частотной характеристике звена обратной связи. Практически усиление велико, если Lр() > 16-20 дБ. На остальных частотах, где -16 дБ < LP() < 16 дБ, необходимо пользоваться точной формулой (70) или специальными номограммами замыкания.
Рассмотрим пример системы, образованной интегрирующим звеном, охваченным единичной отрицательной обратной связью (рис.20, а). На рис.20, б изображены ЛАЧХ L1 и L2 этих звеньев. На частотах < 0,1 с-1 усиление контура превышает 20 дБ.
Следовательно, амплитудно-частотная характеристика замкнутой системы на этих частотах определяется только свойствами звена обратной связи, т.е. замкнутая система на низких частотах с большой степенью приближения ведет себя как безынерционное звено с единичным усилением.
Напротив, на частотах > 10 с-1 усиление контура ниже -20 дБ. Здесь контур практически разомкнут - замкнутая система ведет себя как интегрирующее звено,
Wэ(s) =.
На комплексной частоте нуля передаточной функции Wp усиление контура равно нулю, т.е. контур как бы разомкнут на соответствующей комплексной частоте. Если Wp имеет такой полюс, то в разложении Wp на сумму простейших дробей соответствующий коэффициент Сi равен нулю.
На рис.21 изображена структурная схема системы с единичной обратной связью, где звено в прямой цепи
W1(s) = Wp(s)
представлено как параллельное соединение простейших звеньев.
2.9 Неопределенность моделей систем управления
Математические модели не отражают исчерпывающим образом динамические свойства систем управления в силу идеализации и упрощений, неизбежных при моделировании, неточной реализации алгоритмов управления и изменений характеристик объектов и других элементов в процессе эксплуатации. Если изменения характеристик происходят достаточно медленно по сравнению с длительностью процессов управления, то вместо нестационарных моделей (например, дифференциальных уравнений с переменными коэффициентами) можно рассматривать стационарные модели.
Модели систем управления строятся для строго оговоренных условий взаимодействия со средой, и их адекватность оригиналам определяется и характеристиками воздействий. Значения параметров, структура и класс операторов зависят от амплитуд изменения и частотного спектра сигналов.
Линейные модели обычно строят для малых отклонений переменных от выбранных установившихся режимов. Если амплитуды сигналов превышают некоторое определенное значение А, то приходится строить нелинейные модели, как правило, учитывающие всевозможные ограничения в реальных элементах. Иногда область адекватности линейных моделей ограничивается малыми амплитудами а, для которых следует учитывать такие нелинейные явления, как зону нечувствительности, сухое трение и др.
Размещено на http://www.allbest.ru/
Выбранные структуры операторов (порядки дифференциальных уравнений) обеспечивают адекватность моделей по отношению к сигналам, частоты которых не превышают заданного предела. Границу области адекватности обычно удается несколько расширить путем усложнения структуры операторов. На рис.22 показана область адекватности моделей на плоскости амплитуд а и частот сигналов.
Таким образом, модели систем управления оказываются не полностью определенными. При интерпретации результатов анализа и синтеза необходимо всегда иметь в виду неполную определенность моделей и учитывать ограниченность области их адекватности. Анализ наряду с выявлением основных свойств поведения систем управления должен включать и исследование чувствительности характеристик к вариациям параметров, структур операторов и топологии систем.
Размещено на http://www.allbest.ru/
Литература
1. Алексеев А.А. Теория управления: Учебное пособие / А.А.Алексеев, Д.Х.Имаев, Н.Н.Кузьмин, В.Б.Яковлев; СПбГЭТУ, СПб, 1999. 435с.
2. Борисов Б.М., Математические модели и расчет систем управления техническими объектами: Учебное пособие / Б.М.Борисов, Н.В.Пальянова, В.И.Экгардт; СПГГИ, СПб, 1999. 45с.
3. Наладка средств автоматизации и автоматических систем регулирования: Справочник // Под редакцией А.С.Клюева. М.: Энергоатомиздат, 1989. 368с.
4. Учебное пособие / Б.М.Борисов, В.Е.Большаков, В.И.Маларёв, Р.М.Проскуряков; Санкт-Петербургский государственный горный институт (технический университет). СПб, 2002. 63 с.
Размещено на Allbest.ru
Подобные документы
Особенности создания непрерывных структурированных моделей. Схема выражения передаточной функции. Методы интегрирования систем дифференциальных уравнений. Структурная схема систем управления с учетом запаздывания в ЭВМ. Расчет непрерывной SS-модели.
курсовая работа [242,6 K], добавлен 16.11.2009Построение асимптотических логарифмических амплитудно- и фазочастотных характеристик. Расчет оптимального плана и экстремального значения функции цели с помощью симплекс-метода. Нахождение экстремума заданной функции с учетом системы ограничений.
курсовая работа [3,2 M], добавлен 25.05.2015Теория математического анализа моделей экономики. Сущность и необходимость моделей исследования систем управления в экономике и основные направления их применения. Выявление количественных взаимосвязей и закономерностей в социально-экономической системе.
курсовая работа [366,0 K], добавлен 27.09.2010Линеаризация математической модели регулирования. Исследование динамических характеристик объекта управления по математической модели. Исследование устойчивости замкнутой системы управления линейной системы. Определение устойчивости системы управления.
курсовая работа [1,6 M], добавлен 07.08.2013Методика формирования математической модели в операторной форме, а также в форме дифференциального уравнения и в пространстве состояний. Построение графа системы. Оценка устойчивости, управляемости, наблюдаемости системы автоматического управления.
контрольная работа [200,4 K], добавлен 03.12.2012Понятия теории нечетких систем, фаззификация и дефаззификация. Представление работы нечетких моделей, задача идентификации математической модели нечеткого логического вывода. Построение универсального аппроксиматора на основе контроллера Мамдани-Сугено.
курсовая работа [897,5 K], добавлен 29.09.2010Схема управления запасами для определения оптимального количества запасов. Потоки заказов, время отгрузки как случайные потоки с заданными интенсивностями. Определение качества предложенной системы управления. Построение модели потока управления запасами.
контрольная работа [361,3 K], добавлен 09.07.2014Модель развития многоотраслевой экономики Леонтьева для двух отраслей. Математические модели объекта управления. Свойства системы, процессы в объекте управления. Законы управления для систем с обратной связью. Структурная схема системы с регулятором.
курсовая работа [2,0 M], добавлен 30.12.2013Сущность экономико-математической модели, ее идентификация и определение достаточной структуры для моделирования. Построение уравнения регрессии. Синтез и построение модели с учетом ее особенностей и математической спецификации. Верификация модели.
контрольная работа [73,9 K], добавлен 23.01.2009Построение модели управления запасами в условиях детерминированного спроса. Методы и приемы определения оптимальных партий поставки для однопродуктовых и многопродуктовых моделей. Определение оптимальных параметров системы управления движением запасов.
реферат [64,5 K], добавлен 11.02.2011