Основные вопросы моделирования

Анализ статических и динамических моделей. Особенности построения математических моделей. Этапы расчета марковской цепи с дискретным временем. Рассмотрение задач теории массового обслуживания и кусочно-линейных агрегатов, функционирование агрегатов.

Рубрика Экономико-математическое моделирование
Вид шпаргалка
Язык русский
Дата добавления 19.06.2012
Размер файла 668,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Произошло или не произошло событие А?

2. Какое из возможных событий А12,…Аk произошло?

3. Какое значение приняла случайная величина Х?

4. Какую совокупность значений приняла система случайных величин Х12,…Хk?

Рассмотрим способы организации всех разновидностей единичного жребия. При любой организации жребия должен быть пущен в ход какой-то механизм случайного выбора. Механизмы могут быть самыми разнообразными, однако любой из них может быть заменен стандартным механизмом, позволяющим решить одну задачу: получить случайную величину, распределенную с постоянной плотностью от 0 до 1. Условимся для краткости называть такую случайную величину «случайное число от 0 до 1» и обозначать R.

Размещено на Allbest.ru


Подобные документы

  • Анализ основных способов построения математической модели. Математическое моделирование социально-экономических процессов как неотъемлемая часть методов экономики, особенности. Общая характеристика примеров построения линейных математических моделей.

    курсовая работа [1,3 M], добавлен 23.06.2013

  • Общие понятия теории массового обслуживания. Особенности моделирования систем массового обслуживания. Графы состояний СМО, уравнения, их описывающие. Общая характеристика разновидностей моделей. Анализ системы массового обслуживания супермаркета.

    курсовая работа [217,6 K], добавлен 17.11.2009

  • Марковские цепи с конечным числом состояний и дискретным временем, с конечным числом состояний и непрерывным временем и работа с ними. Основные понятия и классификация систем массового обслуживания, их типы и отличия. Сущность метода Монте-Карло.

    дипломная работа [581,9 K], добавлен 25.08.2009

  • Методика и основные этапы построения математических моделей, их сущность и особенности, порядок разработки. Составление математических моделей для системы "ЭМУ-Д". Алгоритм расчета переходных процессов в системе и оформление результатов программы.

    реферат [198,6 K], добавлен 22.04.2009

  • Основные понятия математических моделей и их применение в экономике. Общая характеристика элементов экономики как объекта моделирования. Рынок и его виды. Динамическая модель Леонтьева и Кейнса. Модель Солоу с дискретным и непрерывным временем.

    курсовая работа [426,0 K], добавлен 30.04.2012

  • Изучение экономических приложений математических дисциплин для решения экономических задач: использование математических моделей в экономике и менеджменте. Примеры моделей линейного и динамического программирования как инструмента моделирования экономики.

    курсовая работа [2,0 M], добавлен 21.12.2010

  • Рассмотрение немарковской системы массового обслуживания с двумя типами заявок. Расчет значений асимптотических характеристик немарковской системы. Выяснение возможности описания системы с помощью марковской модели и асимптотических характеристик.

    курсовая работа [1,4 M], добавлен 22.08.2017

  • Постановка цели моделирования. Идентификация реальных объектов. Выбор вида моделей, математической схемы. Построение непрерывно-стахостической модели. Основные понятия теории массового обслуживания. Определение потока событий. Постановка алгоритмов.

    курсовая работа [50,0 K], добавлен 20.11.2008

  • Основные принципы и методы построения линейных, нелинейных эконометрических моделей спроса, предложения. Типы взаимосвязей между переменными. Этапы интерпретации уравнения регрессии. Коэффициент (индекс) корреляции. Рассмотрение альтернативных моделей.

    контрольная работа [83,1 K], добавлен 14.02.2014

  • Задачи, функции и этапы построения экономико-математических моделей. Аналитические, анионные, численные и алгоритмические модели. Экономическая модель спортивных сооружений. Модели временных рядов: тенденции и сезонности. Теории массового обслуживания.

    реферат [167,6 K], добавлен 22.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.