Эконометрика: определение, предмет, основные измерения

Анализ понятия и основных задач эконометрики - отрасли науки, цель которой состоит в том, чтобы придать количественные меры экономическим отношениям. Оценка существенности параметров парной линейной регрессии и корреляции в эконометрических исследованиях.

Рубрика Экономико-математическое моделирование
Вид лекция
Язык русский
Дата добавления 13.02.2011
Размер файла 602,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Если остаточная дисперсия оказывается примерно одинаковой для нескольких функций, то на практике предпочтение отдается более простым видам функций, т. к. они в большей степени поддаются интерпретации и требуют меньшего объема наблюдений. Результаты многих исследований подтверждают, что число наблюдений должно в 6 -- 7 раз превышать число рассчитываемых параметров при переменной х. Это означает, что искать линейную регрессию, имея менее 7 наблюдений, вообще не имеет смысла. Если вид функции усложняется, то требуется увеличение объема наблюдений, т. к. каждый параметр при х должен рассчитываться хотя бы по 7 наблюдениям. Значит, если мы выбираем параболу второй степени

то требуется объем информации уже не менее 14 наблюдений. Учитывая, что эконометрические модели часто строятся по данным рядов динамики, ограниченным по протяженности (10, 20, 30 лет), при выборе спецификации модели предпочтительна модель с меньшим числом параметров при х.

2.2 Линейная регрессия и корреляция

Линейная регрессия находит широкое применение в эконометрике благодаря четкой экономической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида

yрасч. = а + bх или у = а + bх + е . (2.3)

Уравнение вида yрасч. = а + bх позволяет по заданным значениям фактора х определять теоретические значения результативного признака, подставляя в уравнение фактические значения х. На графике теоретические значения представляют линию регрессии (рис. 2.2).

Построение линейной регрессии сводится к оценке ее параметров -- а и b, которые могут быть найдены разными методами. Можно обратиться к полю корреляции и, выбрав на графике две точки, провести через них прямую линию (см. рис. 2.2). Далее по графику можно определить значения параметров. Параметр а определим как точку пересечения линии регрессии с осью оу, а параметр b оценим, исходя из угла наклона линии регрессии, как dy/dx, где dy -- приращение результата у, a dx -- приращение фактора х.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и b, при которых сумма квадратов отклонений фактических значений результативного признака (у) от расчетных (теоретических) ух минимальна:

Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной (рис. 2.3):

Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю. Проведем преобразования:

Преобразуя формулу (2.5), получим следующую систему нормальных уравнений для оценки параметров а и b:

Решая систему нормальных уравнений (2.6) либо методом последовательного исключения переменных, либо методом определителей, найдем искомые параметр а и b. Можно воспользоваться следующими готовыми формулами:

Уравнение регрессии всегда дополняется показателем тесноты связи. В случае линейной регрессии вычисляют линейный коэффициент корреляции

rxy = bуx/ уy (2.9)

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции r2xy , называемый коэффициентом детерминации

Он объясняет долю дисперсии результативного признака y, объясняемую регрессией. Соответственно величина (1 -- г2) характеризует долю дисперсии у, вызванную влиянием остальных не учтенных в модели факторов.

Например, r2 = 0,982. Следовательно, уравнением регрессии объясняется 98,2% дисперсии результативного признака, а на долю прочих факторов приходится лишь 1,8% ее дисперсии (т.е. остаточная дисперсия). Величина коэффициента детерминации служит одним из критериев оценки качества линейной модели. Чем больше доля объясненной вариации, тем соответственно меньше роль прочих факторов, и, следовательно, линейная модель лучше аппроксимирует исходные данные и ею можно воспользоваться для прогноза значений результативного признака.

2.3 Оценка существенности параметров линейной регрессии и корреляции

После того как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения регрессии в целом дается с помощью F -критерия Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен нулю, т. е. b = 0, и, следовательно, фактор х не оказывает влияния на результат у.

Непосредственному расчету F-критерия предшествует анализ дисперсии. Центральное место в нем занимает разложение общей суммы квадратов отклонений переменной у от среднего значения у на две части -- «объясненную» и «необъясненную»:

2.5 Нелинейная регрессия

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций: например, равносторонней гиперболы у = а+ - +е, параболы второй степени у -- а + b - х + х

+ с - х2+ е и др. (см. п. 2.1).

Различают два класса нелинейных регрессий:

* регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;

* регрессии, нелинейные по оцениваемым параметрам. Примером нелинейной регрессии по включаемым в нее объясняющим переменным могут служить следующие функции:

равносторонняя гипербола ~ y = a-i -+е.

К нелинейным регрессиям по оцениваемым параметрам относятся функции:

степенная -- у -- а * х6 - е;

показательная --у = а-Ьх-в;

экспоненциальная -- у = еа + Ьх - е.

Нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Она определяется, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в параболе второй степени

у -- а0 + О * х + а2 - х2 + г,

заменяя переменные х =х {, х2г, получим двухфакторное уравнение линейной регрессии:

y = ao + al-xl+a2-x2 + e,

Размещено на Allbest.ru


Подобные документы

  • Понятие о взаимосвязях в эконометрике. Сопоставление параллельных рядов. Корреляция альтернативных признаков. Оценка надежности параметров парной линейной регрессии и корреляции. Коэффициенты эластичности в парных моделях. Парная нелинейная корреляция.

    курсовая работа [1,9 M], добавлен 29.06.2015

  • Задачи эконометрики, ее математический аппарат. Взаимосвязь между экономическими переменными, примеры оценки линейности и аддитивности. Основные понятия и проблемы эконометрического моделирования. Определение коэффициентов линейной парной регрессии.

    контрольная работа [79,3 K], добавлен 28.07.2013

  • Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.

    контрольная работа [176,4 K], добавлен 17.10.2014

  • Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.

    контрольная работа [1,6 M], добавлен 14.05.2008

  • Поля корреляции, характеризующие зависимость ВРП на душу населения от размера инвестиций в основной капитал. Оценка параметров уравнения парной линейной регрессии. Коэффициент множественной корреляции. Способы оценки параметров структурной модели.

    контрольная работа [215,1 K], добавлен 22.11.2010

  • Измерения в эконометрике. Парная регрессия и корреляция эконометрических исследований. Оценка существования параметров линейной регрессии и корреляции. Стандартная ошибка прогноза. Коэффициенты эластичности для различных математических функций.

    курс лекций [474,5 K], добавлен 18.04.2011

  • Этапы и проблемы эконометрических исследований. Параметры парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Расчет коэффициентов автокорреляции второго порядка для временного ряда расходов на потребление.

    контрольная работа [60,3 K], добавлен 05.01.2011

  • Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.

    контрольная работа [141,3 K], добавлен 05.05.2010

  • Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа [108,5 K], добавлен 28.03.2018

  • Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.

    курсовая работа [233,1 K], добавлен 21.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.