Основы теории систем и системного анализа

Анализ этапов системного подхода к решению управленческих задач: постановка, построение модели (регулирование запасов, распределение ресурсов), моделирование системы в условиях неопределенности, массового обслуживания, противодействия (игры, торги).

Рубрика Экономико-математическое моделирование
Вид курс лекций
Язык русский
Дата добавления 07.11.2009
Размер файла 201,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Можно теперь заметить еще одно преимущество, которое мы получаем при использовании методов непараметрической статистики -- если мы сталкиваемся со случайной величиной непрерывной природы, то использование интервальной или относительной шкалы позволит нам иметь дело не со случайными величинами, а со случайными событиями -- типа "вероятность того, что вес продукции находится в интервале 17 Кг". Поэтому можно предложить единый подход к описанию всех показателей функционирования сложной системы -- описание на уровне простых случайных событий (с вероятностью P(X) может произойти событие X). При том под событием придется понимать то, что случайная величина займет одно из допустимых для нее положений на шкале Nom, Ord, Int или Rel.

Конечно -- такой, "микроскопический" подход резко увеличивает объем информации, необходимой для системного анализа. Частично этот недостаток смягчается при использовании компьютерных методов системного анализа, но более важно другое -- преимущество на начальных этапах анализа, когда решаются вопросы дезинтеграции большой системы (выделение отдельных ее элементов) и последующей ее интеграции для разработки стратегии управления системой.

Не будет большим преувеличением считать, что методы непараметрической статистики - наиболее мощное средство для решения задач системного анализа во многих областях деятельности человека и, в частности, в экономике.

2.5 Корреляция случайных величин

Прямое токование термина корреляция -- стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами.

Выше говорилось о том, что если для двух СВ (X и Y) имеет место равенство P(XY) =P(X) P(Y), то величины X и Y считаются независимыми. Ну, а если это не так!?

Ведь всегда важен вопрос -- а как сильно зависит одна СВ от другой? И дело в не присущем людям стремлении анализировать что-либо обязательно в числовом измерении. Уже понятно, что системный анализ означает непрерывные выЧИСЛения, что использование компьютера вынуждает нас работать с числами, а не понятиями.

Для числовой оценки возможной связи между двумя случайными величинами: Y(со средним My и среднеквадратичным отклонением Sy) и -- X (со средним Mx и среднеквадратичным отклонением Sx) принято использовать так называемый коэффициент корреляции

Rxy= . {2 - 11}

Этот коэффициент может принимать значения от -1 до +1 -- в зависимости от тесноты связи между данными случайными величинами.

Если коэффициент корреляции равен нулю, то X и Y называют некоррелированными. Считать их независимыми обычно нет оснований -- оказывается, что существуют такие, как правило -- нелинейные связи величин, при которых Rxy = 0, хотя величины зависят друг от друга. Обратное всегда верно -- если величины независимы, то Rxy = 0. Но, если модуль Rxy = 1, то есть все основания предполагать наличие линейной связи между Y и X. Именно поэтому часто говорят о линейной корреляции при использовании такого способа оценки связи между СВ.

Отметим еще один способ оценки корреляционной связи двух случайных величин -- если просуммировать произведения отклонений каждой из них от своего среднего значения, то полученную величину --

Сxy= (X - Mx)(Y - My)

или ковариацию величин X и Y отличает от коэффициента корреляции два показателя: во-первых, усреднение (деление на число наблюдений или пар X, Y) и, во-вторых, нормирование путем деления на соответствующие среднеквадратичные отклонения.

Такая оценка связей между случайными величинами в сложной системе является одним из начальных этапов системного анализа, поэтому уже здесь во всей остроте встает вопрос о доверии к выводу о наличии или отсутствии связей между двумя СВ.

В современных методах системного анализа обычно поступают так. По найденному значению R вычисляют вспомогательную величину:

W = 0.5 Ln[(1 + R)/(1-R)] {2 - 12}

и вопрос о доверии к коэффициенту корреляции сводят к доверительным интервалам для случайной величины W, которые определяются стандартными таблицами или формулами.

В отдельных случаях системного анализа приходится решать вопрос о связях нескольких (более 2) случайных величин или вопрос о множественной корреляции.

Пусть X, Y и Z - случайные величины, по наблюдениям над которыми мы установили их средние Mx, My,Mz и среднеквадратичные отклонения Sx, Sy, Sz.

Тогда можно найти парные коэффициенты корреляции Rxy, Rxz, Ryz по приведенной выше формуле. Но этого явно недостаточно - ведь мы на каждом из трех этапов попросту забывали о наличии третьей случайной величины! Поэтому в случаях множественного корреляционного анализа иногда требуется отыскивать т. н. частные коэффициенты корреляции -- например, оценка виляния Z на связь между X и Y производится с помощью коэффициента

Rxy.z = {2 - 13}

И, наконец, можно поставить вопрос -- а какова связь между данной СВ и совокупностью остальных? Ответ на такие вопросы дают коэффициенты множественной корреляции Rx.yz, Ry.zx, Rz.xy, формулы для вычисления которых построены по тем же принципам -- учету связи одной из величин со всеми остальными в совокупности.

На сложности вычислений всех описанных показателей корреляционных связей можно не обращать особого внимания - программы для их расчета достаточно просты и имеются в готовом виде во многих ППП современных компьютеров.

Достаточно понять главное -- если при формальном описании элемента сложной системы, совокупности таких элементов в виде подсистемы или, наконец, системы в целом, мы рассматриваем связи между отдельными ее частями, -- то степень тесноты этой связи в виде влияния одной СВ на другую можно и нужно оценивать на уровне корреляции.

В заключение заметим еще одно -- во всех случаях системного анализа на корреляционном уровне обе случайные величины при парной корреляции или все при множественной считаются "равноправными" -- т. е. речь идет о взаимном влиянии СВ друг на друга.

Так бывает далеко не всегда - очень часто вопрос о связях Y и X ставится в иной плоскости -- одна из величин является зависимой (функцией) от другой (аргумента).

2.6 Линейная регрессия

В тех случаях, когда из природы процессов в системе или из данных наблюдений над ней следует вывод о нормальном законе распределения двух СВ - Y и X, из которых одна является независимой, т. е. Y является функцией X, то возникает соблазн определить такую зависимость "формульно", аналитически.

В случае успеха нам будет намного проще вести системный анализ -- особенно для элементов системы типа "вход-выход". Конечно, наиболее заманчивой является перспектива линейной зависимости типа Y = a + bX .

Подобная задача носит название задачи регрессионного анализа и предполагает следующий способ решения.

Выдвигается следующая гипотеза:

H0: случайная величина Y при фиксированном значении величины X распределена нормально с математическим ожиданием My = a + bX и дисперсией Dy, не зависящей от X. {2 - 14}

При наличии результатов наблюдений над парами Xi и Yi предварительно вычисляются средние значения My и Mx, а затем производится оценка коэффициента b в виде

b = = Rxy {2 - 15}

что следует из определения коэффициента корреляции {2 - 11}.

После этого вычисляется оценка для a в виде

a = My - bMX {2 - 16}

и производится проверка значимости полученных результатов. Таким образом, регрессионный анализ является мощным, хотя и далеко не всегда допустимым расширением корреляционного анализа, решая всё ту же задачу оценки связей в сложной системе.

2.7 Элементы теории статистических решений

Что такое - статистическое решение? В качестве простейшего примера рассмотрим ситуацию, в которой вам предлагают сыграть в такую игру:

вам заплатят 2 доллара, если подброшенная монета упадет вверх гербом;

вы заплатите 1 доллар, если она упадет гербом вниз.

Скорее всего, вы согласитесь сыграть, хотя понимаете степень риска. Вы сознаете, "знаете" о равновероятности появления герба и "вычисляете" свой выигрыш 0.5 1- 0.5 1= + $0.5.

Усложним игру -- вы видите, что монета несколько изогнута и возможно будет падать чаще одной из сторон. Теперь решение играть или не играть по-прежнему зависит от вероятности выигрыша, которая не может быть заранее (по латыни -- apriori) принята равной 0.5.

Человек, знакомый со статистикой, попытается оценить эту вероятность с помощью опытов, если конечно они возможны и стоят не очень дорого. Немедленно возникает вопрос - сколько таких бросаний вам будет достаточно?

Пусть с вас причитается 5 центов за одно экспериментальное бросание, а ставки в игре составляют $2000 против $1000. Скорее всего, вы согласитесь сыграть, заплатив сравнительно небольшую сумму за 100..200 экспериментальных бросков. Вы, наверное, будете вести подсчет удачных падений и, если их число составит 20 из 100, прекратите эксперимент и сыграете на ставку $2000 против $1000, так как ожидаемый выигрыш оценивается в 0.82000 + 0.21000 -1000.05=$1795.

В приведенных примерах главным для принятия решения была вероятность благоприятного исхода падения монетки. В первом случае -- априорная вероятность, а во втором -- апостериорная. Такую информацию принято называть данными о состоянии природы.

Приведенные примеры имеют самое непосредственное отношение к существу нашего предмета. В самом деле -- при системном управлении приходится принимать решения в условиях, когда последствия таких решений заранее достоверно неизвестны. При этом вопрос: играть или не играть -- не стоит! "Играть" надо, надо управлять системой. Вы спросите - а как же запрет на эксперименты? Ответ можно дать такой -- само поведение системы в обычном ее состоянии может рассматриваться как эксперимент, из которого при правильной организации сбора и обработки информации о поведении системы можно ожидать получения данных для выяснения особенности системного подхода к решению задач управления.

3. Этапы системного анализа

3.1 Общие положения

В большинстве случаев практического применения системного анализа для исследования свойств и последующего оптимального управления системой можно выделить следующие основные этапы:

Содержательная постановка задачи

Построение модели изучаемой системы

Отыскание решения задачи с помощью модели

Проверка решения с помощью модели

Подстройка решения под внешние условия

Осуществление решения

Остановимся вкратце на каждом из этих этапов. Будем выделять наиболее сложные в понимании этапы и пытаться усвоить методы их осуществления на конкретных примерах.

Но уже сейчас отметим, что в каждом конкретном случае этапы системного занимают различный "удельный вес" в общем объеме работ по временным, затратным и интеллектуальным показателям. Очень часто трудно провести четкие границы -- указать, где оканчивается данный этап и начинается очередной.

3.2 Содержательная постановка задачи

Уже упоминалось, что в постановке задачи системного анализа обязательно участие двух сторон: заказчика (ЛПР) и исполнителя данного системного проекта. При этом участие заказчика не ограничивается финансированием работы - от него требуется (для пользы дела) произвести анализ системы, которой он управляет, сформулированы цели и оговорены возможные варианты действий. Так, -- в упомянутом ранее примере системы управления учебным процессом одной из причин тихой кончины ее была та, что одна из подсистем руководство Вузом практически не обладала свободой действий по отношению к подсистеме обучаемых.

Конечно же, на этом этапе должны быть установлены и зафиксированы понятия эффективности деятельности системы. При этом в соответствии с принципами системного подхода необходимо учесть максимальное число связей как между элементами системы, так и по отношению к внешней среде. Ясно, что исполнитель-разработчик не всегда может, да и не должен иметь профессиональные знания именно тех процессов, которые имеют место в системе или, по крайней мере, являются главными. С другой стороны совершенно обязательно наличие таких знаний у заказчика -- руководителя или администратора системы. Заказчик должен знать что надо сделать, а исполнитель -- специалист в области системного анализа -- как это сделать.

Обращаясь к будущей вашей профессии можно понять, что вам надо научиться и тому и другому. Если вы окажетесь в роли администратора, то к профессиональным знаниям по учету и аудиту весьма уместно иметь знания в области системного анализа -- грамотная постановка задачи, с учетом технологии решения на современном уровне будет гарантией успеха. Если же вы окажетесь в другой категории -- разработчиков, то вам не обойтись без "технологических" знаний в области учета и аудита. Работа по системному анализу в экономических системах вряд ли окажется эффективной без специальных знаний в области экономики. Разумеется, наш курс затронет только одну сторону -- как использовать системный подход в управлении экономикой.

3.3 Построение модели изучаемой системы в общем случае

Модель изучаемой системы в самом лаконичном виде можно представить в виде зависимости

E = f(X,Y) {3 - 1}

где:

E -- некоторый количественный показатель эффективности системы в плане достижения цели ее существования T, будем называть его -- критерий эффективности.

X -- управляемые переменные системы -- те, на которые мы можем воздействовать или управляющие воздействия;

Y -- неуправляемые, внешние по отношению к системе воздействия; их иногда называют состояниями природы.

Заметим, прежде всего, что возможны ситуации, в которых нет никакой необходимости учитывать состояния природы. Так, например, решается стандартная задача размещения запасов нескольких видов продукции и при этом можем найти E вполне однозначно, если известны значения Xi и, кроме того, некоторая информация о свойствах анализируемой системы.

В таком случае принято говорить о принятии управляющих решений или о стратегии управления в условиях определенности.

Если же с воздействиями окружающей среды, с состояниями природы мы вынуждены считаться, то приходится управлять системой в условиях неопределенности или, еще хуже -- при наличии противодействия. Рассмотрим первую, на непросвещенный взгляд -- самую простую, ситуацию.

3.4 Моделирование в условиях определенности

Классическим примером простейшей задачи системного анализа в условиях определенности может служить задача производства и поставок товара. Пусть некоторая фирма должна производить и поставлять продукцию клиентам равномерными партиями в количестве N =24000 единиц в год. Срыв поставок недопустим, так как штраф за это можно считать бесконечно большим.

Запускать в производство приходится сразу всю партию, таковы условия технологии. Стоимость хранения единицы продукции Cx=10 копеек в месяц, а стоимость запуска одной партии в производство (независимо от ее объема) составляет Cp =400 гривен.

Таким образом, запускать в год много партий явно невыгодно, но невыгодно и выпустить всего 2 партии в год -- слишком велики затраты на хранение! Где же "золотая середина", сколько партий в год лучше всего выпускать?

Будем строить модель такой системы. Обозначим через n размер партии и найдем количество партий за год -- p = N / n 24000 / n.

Получается, что интервал времени между партиями составляет

t = 12 / p (месяцев), а средний запас изделий на складе -- n/2 штук.

Сколько же нам будет стоить выпуск партии в n штук за один раз?

Сосчитать нетрудно -- 0.1 12 n / 2 гривен на складские расходы в год и 400p гривен за запуск партий по n штук изделий в каждой.

В общем виде годовые затраты составляют

E = Tn / 2 + N / n {3 - 2}

где T = 12 -- полное время наблюдения в месяцах.

Перед нами типичная вариационная задача: найти такое n0, при котором сумма E достигает минимума.

Решение этой задачи найти совсем просто -- надо взять производную по n и приравнять эту производную нулю. Это дает

n0 = , {3 - 3}

что для нашего примера составляет 4000 единиц в одной партии и соответствует интервалу выпуска партий величиной в 2 месяца.

Затраты при этом минимальны и определяются как

E0 = , {3 - 4}

что для нашего примера составляет 4800 гривен в год.

Сопоставим эту сумму с затратами при выпуске 2000 изделий в партии или выпуске партии один раз в месяц (в духе недобрых традиций социалистического планового хозяйства):

E1 = 0.1122000/2 + 40024000/ 2000 = 6000 гривен в год.

Комментарии, как говорится, -- излишни!

Конечно, так просто решать задачи выработки оптимальных стратегий удается далеко не всегда, даже если речь идет о детерминированных данных для описания жизни системы -- ее модели. Существует целый класс задач системного анализа и соответствующих им моделей систем, где речь идет о необходимости минимизировать одну функции многих переменных следующего типа:

E = a1X1 + a2X2 + ..... anXn {3 - 5}

где Xi -- искомые переменные, ai -- соответствующие им коэффициенты или "веса переменных" и при этом имеют место ограничения как на переменные, так и на их веса.

Задачи такого класса достаточно хорошо исследованы в специальном разделе прикладной математики -- линейном программировании. Еще в докомпьютерные времена были разработаны алгоритмы поиска экстремумов таких функций E = f(a,X), которые так и назвали -- целевыми. Эти алгоритмы или приемы используются и сейчас -- служат основой для разработки прикладных компьютерных программ системного анализа.

Системный подход к решению практических задач управления экономикой, особенно для задач со многими десятками сотен или даже тысячами переменных привел к появлению специализированных, типовых направлений как в области теории анализа, так и в практике.

Наиболее "старыми" и, следовательно, наиболее обкатанными являются методы решения специфичных задач, которые давно уже можно называть классическими.

Специалистам в области делового администрирования надо знать эти задачи хотя бы на уровне постановки и, главное, в плане моделирования соответствующих систем.

Задачи управления запасами

Первые задачи управления запасами были рассмотрены еще в 1915 году -- задолго не только до появления компьютеров, но и до употребления термина "кибернетика". Был обоснован метод решения простейшей задачи -- минимизация затрат на заказ и хранение запасов при заданном спросе на данную продукцию и фиксированном уровне цен. Решение -- размер оптимальной партии обеспечивало наименьшие суммарные затраты за заданный период времени.

Несколько позже были построены алгоритмы решения задачи управления запасами при более сложных условиях -- изменении уровня цен (наличие "скидок за качество" и / или "скидок за количество"); необходимости учета линейных ограничений на складские мощности и т. п.

Задачи распределения ресурсов

В этих задачах объектом анализа являются системы, в которых приходится выполнять несколько операций с продукцией (при наличии нескольких способов выполнения этих операций) и, кроме того, не хватает ресурсов или оборудования для выполнения всех этих операций.

Цель системного анализа -- найти способ наиболее эффективного выполнения операций с учетом ограничений на ресурсы.

Объединяет все такие задачи метод их решения -- метод математического программирования, в частности, -- линейного программирования. В самом общем виде задача линейного программирования формулируется так:

требуется обеспечить минимум выражения (целевой функции)

E(X) = C1X1 + C2X2 + ......+ CiXi + ... CnXn {3 - 6}

при следующих условиях:

все Xi положительны и, кроме того, на все Xi налагаются m ограничений (m < n)

A11X1 + A12X2 + ......+ AijXj + ... A1nXn = B1;

.....................................................................................

Ai1X1 + Ai2X2 + ......+ AijXj + ... AinXn = Bi; {3 - 7}

.....................................................................................

Am1X1 + Am2X2 + .....+ AmjXj+ ... AmnXn = Bm .

Начала теоретического обоснования и разработки практических методов решения задач линейного программирования были положены Д.Данцигом (по другой версии -- Л.В.Канторовичем).

Для большинства конкретных приложений универсальным считается т. н. симплекс-метод поиска цели, для него и смежных методов разработаны специальные пакеты прикладных программ (ППП) для компьютеров.

3.5 Наличие нескольких целей -- многокритериальность системы

Весьма часто этап содержательной постановки задачи системного анализа приводит нас к выводу о наличии нескольких целей функционирования системы. В самом деле, если некоторая экономическая система может иметь "главную цель" -- достижение максимальной прибыли, то почти всегда можно наблюдать ситуацию наличия ограничений или условий. Нарушение этих условий либо невозможно (тогда не будет самой системы), либо заведомо приводит к недопустимым последствиям для внешней cреды. Короче говоря, ситуация, когда цель всего одна и достичь ее требуется любой ценой, практически невероятна.

Пусть имеется самая простая ситуация многокритериальности -- существуют только две цели системы T1 и T2 и только две возможных стратегии S1, S2 . Пусть мы как-то оценили эффективность E11 стратегии S1 по отношению к T1 и эффективность эта оказалась равной 0.4 (по некоторой шкале 0..1). Проделав такую же оценку для всех стратегий и всех целей, мы получили табличку (матрицу эффективностей):

Таблица 3.1

E

T1

T2

S1

0.4

0.6

S2

0.7

0.3

Какую же из стратегий считать наилучшей? Пока мы не оговорим значимость каждой из целей, не укажем их веса, -- спорить бесполезно! Вот если бы нам было известно, что первая цель, к примеру, в 3 раза важнее второй, то тогда

можно учесть их относительные веса -- скажем величинами 0.75 для первой и 0.25 для второй. При таких условиях суммарные эффективности стратегий (по отношению ко всем целям) составят:

для первой E1 = 0.4 0.70 + 0.6 0.30 = 0.28 + 0.18 = 0.46;

для второй E2 = 0.8 0.70 + 0.2 0.25 = 0.56 + 0.05 = 0.61;

так что ответ на вопрос о выборе стратегии далеко не очевиден.

Итак, критерий эффективности системы при наличии нескольких целей приходится выражать через эффективности отдельных стратегий виде: Es = St Ut {3 - 8} т. е. учитывать веса отдельных целей Ut.

Если вы внимательно следили за рассуждениями при рассмотрении примера {3-2}, то сейчас можете сообразить, что по сути дела там речь шла о двух целях. С одной стороны, мы хотели бы иметь как можно меньшие партии -- их дешевле хранить (мал срок хранения). с другой стороны, нам были желательны большие партии, поскольку при этом меньше затраты на запуск партий в производство. Если бы мы перебирали все 365 возможных стратегий (от смены партии каждый день до одной в год), то, конечно же, нашли бы оптимальную стратегию со сменой партий каждые два месяца. Другое дело, что в нашем распоряжении была аналитическая модель системы (формула суммарных затрат).

Так вот -- весовые коэффициенты целей в той модели были равными и мы их могли не замечать при поиске минимума затрат. Ну, а что делать, если "важность" целей приходится измерять не по шкале Int или Rel, т. е. в числовом виде, а по шкале Ord? Иными словами -- откуда берутся весовые коэффициенты целей?

Очень редко весовые коэффициенты определяются однозначно по "физическому смыслу" задачи системного анализа. Чаще же всего их отыскание можно называть "назначением", "придумыванием", "предсказанием" -- т. е. никак не "научными" действиями.

Иногда, как ни странно это звучит, весовые коэффициенты назначаются путем голосования -- явного или тайного. Дело в том, что в ситуациях, когда нет числового метода оценки веса цели, реальным выходом из положения является использование накопленного опыта.

Нередко задает весовые коэффициенты непосредственно ЛПР, но чаще его опыт управления подсказывает: одна голова -- хорошо, а много умных голов -- куда лучше. Принимается особое решение -- использовать метод экспертных оценок..

Суть этого метода достаточно проста. Требуется четко оговорить все цели функционирования системы и предложить группе лиц, высоко компетентных в данной отрасли (экспертов) хотя бы расположить все цели по значимости, по "призовым местам" или, на языке ТССА, по рангам.

Высший ранг (обычно 1) означает наибольшую важность (вес) цели, следующий за ним -- несколько меньший вес и т. д. Специальный раздел непараметрической статистики -- теория ранговой корреляции, позволяет проверить гипотезы о значимости полученной от экспертов информации. Развитие ранговой корреляции, ее другой раздел, позволяет устанавливать согласие, согласованность мнений экспертов или ранговую конкордацию.

Это особо важно в случаях, когда не только возникла нужда использовать мнения экспертов, но и существует сомнение в их компетентности.

3.6 Экспертные оценки, ранговая корреляция и конкордация

Пусть в процессе системного анализа нам пришлось учитывать некоторую величину U, измерение которой возможно лишь по порядковой шкале (Ord). Например, нам приходится учитывать 10 целей функционирования системы и требуется выяснить их относительную значимость, удельные веса.

Если имеется группа лиц, компетентность которых в данной области не вызывает сомнений, то можно опросить каждого из экспертов, предложив им расположить цели по важности или "проранжировать" их. В простейшем случае можно не разрешать повторять ранги, хотя это не обязательно -- повторение рангов всегда можно учесть.

Результаты экспертной оценки в нашем примере представим таблицей рангов целей:

Таблица 3.2

Эксперты

1

2

3

4

5

6

7

8

9

10

Сумма

A

3

5

1

8

7

10

9

2

4

6

55

B

5

1

2

6

8

9

10

3

4

7

55

Сумма рангов

8

6

3

14

15

19

19

5

8

13

Суммарный ранг

4.5

3

1

7

8

9.5

9.5

2

4.5

6

55

Итак, для каждой из целей Ti мы можем найти сумму рангов, определенных экспертами, и затем суммарный или результирующий ранг цели Ri. Если суммы рангов совпадают -- назначается среднее значение.

Метод ранговой корреляции позволяет ответить на вопрос -- насколько коррелированны, неслучайны ранжировки каждого из двух экспертов, а значит -- насколько можно доверять результирующим рангам? Как обычно, выдвигается основная гипотеза -- об отсутствии связи между ранжировками и устанавливается вероятность справедливости этой гипотезы. Для этого можно использовать два подхода: определение коэффициентов ранговой корреляции Спирмэна или Кендэлла.

Более простым в реализации является первый -- вычисляется значение коэффициента Спирмэна

Rs = 1 - ; {3 - 9}

где di определяются разностями рангов первой и второй ранжировок по n объектов в каждой.

В нашем примере сумма квадратов разностей рангов составляет 30, а коэффициент корреляции Спирмэна около 0.8, что дает значение вероятности гипотезы о полной независимости двух ранжировок всего лишь 0.004.

При необходимости можно воспользоваться услугами группы из m экспертов, установить результирующие ранги целей, но тогда возникнет вопрос о согласованности мнений этих экспертов или конкордации.

Пусть у нас имеются ранжировки 4 экспертов по отношению к 6 факторам, которые определяют эффективность некоторой системы.

Таблица 3.3

Факторы --> Эксперты

1

2

3

4

5

6

Сумма

A

5

4

1

6

3

2

21

B

2

3

1

5

6

4

21

C

4

1

6

3

2

5

21

D

4

3

2

3

2

5

21

Сумма рангов

Сум. ранг

15

4

11

2

10

1

19

6

12

3

17

5

84

Отклонение суммы от среднего

+1

1

-3

9

-4

16

+5

25

-2

4

+3

9

0

64

Заметим, что полная сумма рангов составляет 84, что дает в среднем по 14 на фактор.

Для общего случая n факторов и m экспертов среднее значение суммы рангов для любого фактора определится выражением

{3 - 10}

Теперь можно оценить степень согласованности мнений экспертов по отношению к шести факторам. Для каждого из факторов наблюдается отклонение суммы рангов, указанных экспертами, от среднего значения такой суммы. Поскольку сумма этих отклонений всегда равна нулю, для их усреднения разумно использовать квадраты значений.

В нашем случае сумма таких квадратов составит S= 64, а в общем случае эта сумма будет наибольшей только при полном совпадении мнений всех экспертов по отношению ко всем факторам:

Smax {3 - 11}

М. Кэндэллом предложен показатель согласованности или коэффициент конкордации, определяемый как

{3 - 12}

В нашем примере значение коэффициента конкордации составляет около 0.229, что при четырех экспертах и шести факторах достаточно, чтобы с вероятностью не более 0.05 считать мнения экспертов несогласованными. Дело в том, что как раз случайность ранжировок, их некоррелированность просчитывается достаточно просто. Так для нашего примера указанная вероятность соответствует сумме квадратов отклонений S= 143.3 , что намного больше 64.

В заключение вопроса об особенностях метода экспертных оценок в системном анализе отметим еще два обстоятельства.

В первом примере мы получили результирующие ранги 10 целей функционирования некоторой системы. Как воспользоваться этой результирующей ранжировкой? Как перейти от ранговой (Ord) шкалы целей к шкале весовых коэффициентов -- в диапазоне от 0 до 1?

Здесь обычно используются элементарные приемы нормирования. Если цель 3 имеет ранг 1, цель 8 имеет ранг 2 и т. д., а сумма рангов составляет 55, то весовой коэффициент для цели 3 будет наибольшим и сумма весов всех 10 целей составит 1.

Вес цели придется определять как

(11-1) / 55 для 3 цели;

(11-2) / 55 для 8 цели и т. д.

При использовании групповой экспертной оценки можно не только выяснять мнение экспертов о показателях, необходимых для системного анализа. Очень часто в подобных ситуациях используют так называемый метод Дельфы (от легенды о дельфийском оракуле).

Опрос экспертов проводят в несколько этапов, как правило -- анонимно. После очередного этапа от эксперта требуется не просто ранжировка, но и ее обоснование. Эти обоснования сообщаются всем экспертам перед очередным этапом без указания авторов обоснований.

Имеющийся опыт свидетельствует о возможностях существенно повысить представительность, обоснованность и, главное, достоверность суждений экспертов. В качестве "побочного эффекта" можно составить мнение о профессиональности каждого эксперта.

3.7 Моделирование системы в условиях неопределенности

Как уже отмечалось в первой части нашего курса, в большинстве реальных больших систем не обойтись без учета "состояний природы" -- воздействий стохастического типа, случайных величин или случайных событий. Это могут быть не только внешние воздействия на систему в целом или на отдельные ее элементы. Очень часто и внутренние системные связи имеют такую же, "случайную" природу.

Важно понять, что стохастичность связей между элементами системы и уж тем более внутри самого элемента (связь "вход-выход") является основной причиной риска выполнить вместо системного анализа совершенно бессмысленную работу, получить в качестве рекомендаций по управлению системой заведомо непригодные решения.

Выше уже оговаривалось, что в таких случаях вместо самой случайной величины X приходится использовать ее математическое ожидание Mx. Все вроде бы просто -- не знаем, так ожидаем. Но насколько оправданы наши ожидания? Какова уверенность или какова вероятность ошибиться?

Такие вопросы решаются, ответы на них получить можно -- но для этого надо иметь информацию о законе распределения СВ. Вот и приходится на данном этапе системного анализа (этапе моделирования) заниматься статистического исследованиями, пытаться получить ответы на вопросы:

А не является ли данный элемент системы и производимые им операции "классическими"?

Нет ли оснований использовать теорию для определения типа распределения СВ (продукции, денег или информационных сообщений)? Если это так -- можно надеяться на оценки ошибок при принятии решений, если же это не так, то приходится ставить вопрос иначе.

А нельзя ли получить искомое распределение интересующей нас СВ из данных эксперимента? Если этот эксперимент обойдется дорого или физически невозможен, или недопустим по моральным причинам, то может быть "для рагу из зайца использовать хотя бы кошку" -- воспользоваться апостериорными данными, опытом прошлого или предсказаниями на будущее, экспертными оценками?

Если и здесь нет оснований принимать положительное решение, то можно надеяться еще на один выход из положения.

Не всегда, но все же возможно использовать текущее состояние уже действующей большой системы, ее реальную "жизнь" для получения глобальных показателей функционирования системы.

Этой цели служат методы планирования эксперимента, теоретической и методологической основой которых является особая область системного анализа -- т. н. факторный анализ, сущность которого будет освещена несколько позже.

3.8 Моделирование систем массового обслуживания

Достаточно часто при анализе экономических систем приходится решать т. н. задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элементе системы) могут возникать, по крайней мере, две типичных ситуации:

число заявок слишком велико для данной мощности станции, возникают очереди и за задержки в обслуживании приходится платить;

на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций. Такого соотношения, при котором математическое ожидание суммарных потерь окажется минимальным.

Так вот, специальный раздел теории систем -- теория массового обслуживания, позволяет

использовать методику определения средней длины очереди и среднего времени ожидания заказа в тех случаях, когда скорость поступления заказов и время их выполнения заданы;

найти оптимальное соотношение между издержками по причине ожидания в очереди и издержками простоя станций обслуживания;

установить оптимальные стратегии обслуживания.

Обратим внимание на главную особенность такого подхода к задаче системного анализа -- явную зависимость результатов анализа и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит -- времени их исполнения).

Но это уже связи нашей системы с внешним миром и без учета этого факта нам не обойтись. Потребуется провести исследования потоков заявок по их численности и сложности, найти статистические показатели этих величин, выдвинуть и оценить достоверность гипотез о законах их распределения. Лишь после этого можно пытаться анализировать -- а как будет вести себя система при таких внешних воздействиях, как будут меняться ее показатели (значение суммарных издержек) при разных управляющих воздействиях или стратегиях управления.

Очень редко при этом используется сама система, производится натуральный эксперимент над ней. Чаще всего такой эксперимент связан с риском потерь заказчиков или неоправданными затратами на создание дополнительных станций обслуживания.

Поэтому следует знать о таком особом подходе к вопросу моделирования систем как метод статистических испытаний или метод Монте Карло.

Вернемся к примеру с анализом работы станций обслуживания. Пусть у нас всего лишь одна такая станция и заранее известны:

-- средняя скорость поступления заказов и

-- средняя скорость выполнения заказов (штук в единицу времени), и таким образом задана величина = / -- интенсивность нагрузки станции.

Уже по этим данным оказывается возможным построить простейшую модель системы. Будем обозначать X число заказов, находящихся в очереди на обслуживании в единицу времени, и попытаемся построить схему случайных событий для определения вероятности P(X).

Событие -- в очереди находятся точно X заказов может наблюдаться в одной из четырех ситуаций.

В очереди было X заказов (A1), за это время не поступило ни одного нового заказа (A2) и за это же время не был выполнен ни один заказ из находящихся в работе (A3).

В очереди было X - 1 заказов (B1), за это время поступил один новый заказ (B2) и за это же время не был выполнен ни один заказ из находящихся в работе (B3).

В очереди было X + 1 заказов (C1), за это время не поступило ни одного нового заказа (C2) и за это же время был выполнен один заказ из находящихся в работе (C3).

В очереди было X заказов (D1), за это время поступил один новый заказа (D2) и за это же время был выполнен один заказ из находящихся в работе (D3).

Такая схема событий предполагает особое свойство "технологии" нашей системы -- вероятность поступления более одного заказа за рассматриваемую единицу времени и вероятность выполнения более одного заказа за то же время считаются равными 0.

Это не такое уж "вольное" допущение -- длительность отрезка времени всегда можно уменьшить до необходимых пределов.

А далее все очень просто. Перемножая вероятности событий A1..3, B1..3, C1..3, D1..3, мы определим вероятности каждого из вариантов интересующего нас события -- в течение заданного нами интервала времени длина очереди не поменялась..

Несложные преобразования суммы вероятностей всех четырех вариантов такого события приведут нас к выражению для вероятности длины очереди в X заказов:

P(X) = x (1-), {3-13}

а также для математического ожидания длины очереди:

MX = / (1-). {3-14}

Оценить полезность такого моделирования позволят простые примеры. Пусть мы решили иметь всего лишь 50%-ю интенсивность нагрузки станции, то есть вдвое "завысили" ее пропускную способность по отношению к потоку заказов.

Тогда для = 0.5 имеем следующие данные:

Таблица 3.4

Очередь

0

1

2

3

4 и более

Вероятность

0.5

0.25

0.125

0.0625

0.0625

Обобщим полученные результаты:

вероятность отсутствия очереди оказалась точно такой же, как и ее наличия;

очередь в 4 и более заказа практически невероятна;

математическое ожидание очереди составляет ровно 1 заказ.

Наше право (если мы и есть ЛПР!) -- принять такую интенсивность или отказаться от нее, но все же у нас есть определенные показатели последствий такого решения.

Полезно проанализировать ситуации с другими значениями интенсивности нагрузки станции.

Таблица 3.5

1 / 2

3 / 4

7 / 8

15 / 16

Mx

1

3

7

15

Обратим теперь внимание еще на одно обстоятельство -- мы полагали известной информацию только о средней скорости (ее математического ожидания) выполнения заказов. Иными словами, мы считали время выполнения очередного заказа независящим ни от его "содержания" (помыть автомобиль или ликвидировать следствия аварии), ни от числа заказов, "стоящих в очереди".

В реальной жизни это далеко не всегда так и хотелось бы хоть как-то учесть такую зависимость. И здесь теория приходит на помощь (тому, кто понимает ее возможности).

Если нам представляется возможность установить не только само (среднюю или ожидаемую скорость обработки заказа), но и разброс этой величины D (дисперсию), то можно будет оценить среднее число заказов в очереди более надежно (именно так -- не точнее, а надежнее!):

Mx = 0.5 . {3 - 15}

3.9 Моделирование в условиях противодействия, игровые модели

Как уже неоднократно отмечалось, системный анализ невозможен без учета взаимодействий данной системы с внешней средой. Ранее упоминалась необходимость учитывать состояния природы -- большей частью случайных, стохастических воздействий на систему.

Конечно, природа не мешает (но и не помогает) процессам системы осознанно, злонамеренно или, наоборот, поощряюще. Поэтому учет внешних природных воздействий можно рассматривать как "игру с природой", но в этой игре природа -- не противник, не оппонент, у нее нет цели существования вообще, а тем более -- цели противодействия нашей системе.

Совершенно иначе обстоит дело при учете взаимодействий данной системы с другими, аналогичными или близкими по целям своего функционирования. Как известно, такое взаимодействие называют конкуренцией и ситуации жизни больших систем-монополистов крайне редки, да и не вызывают особого интереса с позиций теории систем и системного анализа.

Особый раздел науки -- теория игр позволяет хотя бы частично разрешать затруднения, возникающие при системном анализе в условиях противодействия. Интересно отметить, что одна из первых монографий по этим вопросам называлась "Теория игр и экономического поведения" (авторы -- Нейман и Моргенштерн, 1953 г., имеется перевод) и послужила своеобразным катализатором развития методов линейного программирования и теории статистических решений.

В качестве простого примера использования методов теории игр в экономике рассмотрим следующую задачу.

Пусть вы имеете всего три варианта стратегий в условиях конкуренции S1,S2 и S3 (например -- выпускать в течение месяца один из 3 видов продукции). При этом ваш конкурент имеет всего два варианта стратегий C1 и C2 (выпускать один из 2 видов своей продукции, в каком то смысле заменяющей продукцию вашей фирмы). При этом менять вид продукции в течение месяца невозможно ни вам, ни вашему конкуренту.

Пусть и вам, и вашему конкуренту достоверно известны последствия каждого из собственных вариантов поведения, описываемые следующей таблицей.

Таблица 3.6

C1

C2

S1

-2000

+ 2000

S2

-1000

+3000

S3

+1000

+2000

Цифры в таблице означают следующее:

вы несете убытки в 2000 гривен, а конкурент имеет ту же сумму прибыли, если вы приняли стратегию S1, а конкурент применил C1;

вы имеете прибыль в 2000 гривен, а конкурент теряет ту же сумму, если вы приняли S1 против C2;

вы несете убытки в сумме 1000 гривен, а конкурент получает такую прибыль, если ваш вариант S2 оказался против его варианта C1 , и так далее.

Предполагается, что обе стороны имеют профессиональную подготовку в области ТССА и действуют разумно, соблюдая правила -- вариант поведения принимают один раз на весь месяц, не зная, конечно, что предпринял на этот же месяц конкурент.

По сути дела, в чисто житейском смысле -- это обычная "азартная" игра, в которой существует конечный результат, цель игры -- выигрыш.

Этой цели добивается каждый игрок, но не каждый может ее добиться. Варианты поведения игроков можно считать ходами, а множество ходов -- рассматривать как партию.

Пусть партия состоит всего лишь из одного хода с каждой стороны. Попробуем найти этот наилучший ход сначала для вашего конкурента -- порассуждаем за него.

Так как таблица известна как вам, так и конкуренту, то его рассуждения можно промоделировать.

Вашему конкуренту вариант C2 явно невыгоден -- при любом вашем ходе вы будете в выигрыше, а конкурент в проигрыше. Следовательно, со стороны вашего противника будет, скорее всего, принят вариант C1, доставляющий ему минимум потерь.

Теперь можно порассуждать за себя. Вроде бы вариант S2 принесет нам максимальный выигрыш в 3000 гривен, но это при условии выбора C2 вашим конкурентом, а он, скорее всего, выберет C1.

Значит наилучшее, что мы можем предпринять -- выбрать вариант S3, рассчитывая на наименьший из возможных выигрышей -- в 1000 гривен.

Ознакомимся с рядом общепринятых терминов теории игр:

поскольку в таблице игры наш возможный выигрыш всегда равен проигрышу конкурента и наоборот, то эту специфику отображают обычно в названии -- игра с нулевой суммой;

варианты поведения игроков-конкурентов называют чистыми стратегиями игры, учитывая независимость их от поведения конкурента;

наилучшие стратегии для каждого из игроков называют решением игры;

результат игры, на который рассчитывают оба игрока (1000 гривен прибыли для вас или столько же в виде проигрыша для конкурента) называют ценой игры; она в игре с нулевой суммой одинакова для обеих сторон;

таблицу выигрышей (проигрышей) называют матрицей игры, в данном случае -- прямоугольной.

Рассмотренный выше ход рассуждений по поиску наилучшего плана игры в условиях конкуренции -- не единственный способ решения задач. Очень часто намного короче и, главное, более логически стройным оказывается другой принцип поиска оптимальных игровых стратегий -- принцип минимакса.

Для иллюстрации этого метода рассмотрим предыдущий пример игры с несколько видоизмененной матрицей.

Таблица 3.7

C1

C2

S1

-2000

- 4000

S2

-1000

+3000

S3

+1000

+2000

Повторим метод рассуждений, использованный для предыдущего примера.

Мы никогда не выберем стратегию S1, поскольку она при любом ответе конкурента принесет нам значительные убытки.

Из двух оставшихся разумнее выбрать S3, так как при любом ответе конкурента мы получим прибыль.

Выбираем в качестве оптимальной стратегии S3.

Рассуждения нашего конкурента окажутся примерно такими же по смыслу. Понимая, что мы никогда не примем S1 и выберем, в конце концов, S3, он примет решение считать оптимальной для себя стратегию C1 -- в этом случае он будет иметь наименьшие убытки.

Можно применить и иной метод рассуждений, дающий, в конце концов, тот же результат. При выборе наилучшего плана игры для нас можно рассуждать так:

при стратегии S1 минимальный (min) "выигрыш" составит - 4000 гривен;

при стратегии S2 минимальный (min) "выигрыш" составит - 1000 гривен;

при стратегии S3 минимальный (min) выигрыш составит + 1000 гривен.

Выходит, что наибольший (max) из наименьших (min) выигрышей -- это 1000 гривен и сам бог велел полагать стратегию S3 оптимальной, с надеждой на ответный ход конкурента его стратегией C1. Такую стратегию и называют стратегией MaxiMin.

Если теперь попробовать смоделировать поведение конкурента, то для него:

при стратегии C1 максимальный (max) проигрыш составит 1000 гривен;

при стратегии C2 максимальный (max) проигрыш составит 2000 гривен.

Значит, наш конкурент, если он будет рассуждать здраво, выберет стратегию C1, поскольку именно она обеспечивает наименьший (min) из наибольших (max) проигрышей. Такую стратегию и называют стратегией MiniMax.

Легко заметить, что это одно и то же -- вы делаете ход S3 в расчете на ответ C1, а ваш конкурент -- ход C1 в расчете на S3.

Поэтому такие стратегии называют минимаксными -- мы надеемся на минимум максимальных убытков или, что одно и то же, на максимум минимальной прибыли.

В двух рассмотренных примерах оптимальные стратегии "противников" совпадали, принято говорить -- они соответствовали седловой точке матрицы игры.

Метод минимакса отличается от стандартного пути логических рассуждений таким важным показателем как алгоритмичность. В самом деле, можно доказать, что если седловая точка существует, то она находится на пересечении некоторой строки S и некоторого столбца C. Если число в этой точке самое большое для данной строки и, одновременно, самое малое в данном столбце, то это и есть седловая точка.

Конечно, далеко не все игры обладают седловой точкой, но если она есть, то поиск ее при числе строк и столбцов в несколько десятков (а то и сотен) по стандартному логическому плану -- дело практически безнадежное без использования компьютерных технологий.

Но, даже при использовании компьютера, писать программу для реализации всех возможных If ... Then придется на специальных языках программирования (например -- язык Prolog). Эти языки великолепны для решения логических задач, но практически непригодны для обычных вычислений. Если же использовать метод минимакса, то весь алгоритм поиска седловой точки займет на языке Pascal или C++ не более 5...10 строк программы.

Рассмотрим еще один простой пример игры, но уже без седловой точки.

Таблица 3.8

C1

C2

S1

-3000

+7000

S2

+6000

+1000

Задача в этом случае для нас (и для нашего разумного конкурента) будет заключаться в смене стратегий, в надежде найти такую их комбинацию, при которой математическое ожидание выигрыша или средний выигрыш за некоторое число ходов будет максимальным.

Пусть мы приняли решение половину ходов в игре делать с использованием S1, а другую половину -- с S2. Конечно, мы не можем знать, какую из своих двух стратегий будет применять конкурент, и поэтому придется рассматривать два крайних случая его поведения.

Если наш конкурент все время будет применять C1, то для нас выигрыш составит

0.5(-3000)+0.5(+6000) = 1500 гривен.

Если же он все время будет применять C2, то на выигрыш составит

0.5(+7000)+0.5(+1000) = 4000 гривен.

Ну, это уже повод для размышлений, для анализа. В конце концов, можно прикинуть, а что мы будем иметь в случае применения конкурентом также смешанной стратегии? Ответ уже готов -- мы будем иметь выигрыш не менее 1500 гривен, поскольку выполненные выше расчеты охватили все варианты смешанных стратегий конкурента.

Поставим вопрос в более общем виде -- а существует ли наилучшая смешанная стратегия (комбинация S1 и S2) для нас в условиях применения смешанных стратегий (комбинации C1 и C2) со стороны конкурента? Математическая теория игр позволяет ответить на этот вопрос утвердительно -- оптимальная смешанная стратегия всегда существует, но она может гарантировать минимум математического ожидания выигрыша. Методы поиска таких стратегий хорошо разработаны и отражены в литературе.

Таким образом, мы снова оказались в роли ЛПР -- системный подход не может дать рецепта для безусловного получения выигрыша.


Подобные документы

  • Общие понятия теории массового обслуживания. Особенности моделирования систем массового обслуживания. Графы состояний СМО, уравнения, их описывающие. Общая характеристика разновидностей моделей. Анализ системы массового обслуживания супермаркета.

    курсовая работа [217,6 K], добавлен 17.11.2009

  • Элементы теории массового обслуживания. Математическое моделирование систем массового обслуживания, их классификация. Имитационное моделирование систем массового обслуживания. Практическое применение теории, решение задачи математическими методами.

    курсовая работа [395,5 K], добавлен 04.05.2011

  • Характеристика простых и сложных систем, их основные признаки. Общие принципы и этапы экономико-математического моделирования. Назначение рабочего этапа системного анализа - выявление ресурсов и процессов, композиция целей, формулирование проблемы.

    контрольная работа [47,7 K], добавлен 11.10.2012

  • Разработка теории динамического программирования, сетевого планирования и управления изготовлением продукта. Составляющие части теории игр в задачах моделирования экономических процессов. Элементы практического применения теории массового обслуживания.

    практическая работа [102,3 K], добавлен 08.01.2011

  • Моделирование процесса массового обслуживания. Разнотипные каналы массового обслуживания. Решение одноканальной модели массового обслуживания с отказами. Плотность распределения длительностей обслуживания. Определение абсолютной пропускной способности.

    контрольная работа [256,0 K], добавлен 15.03.2016

  • Изучение теоретических аспектов эффективного построения и функционирования системы массового обслуживания, ее основные элементы, классификация, характеристика и эффективность функционирования. Моделирование системы массового обслуживания на языке GPSS.

    курсовая работа [349,1 K], добавлен 24.09.2010

  • Постановка цели моделирования. Идентификация реальных объектов. Выбор вида моделей, математической схемы. Построение непрерывно-стахостической модели. Основные понятия теории массового обслуживания. Определение потока событий. Постановка алгоритмов.

    курсовая работа [50,0 K], добавлен 20.11.2008

  • Основные категории и критерии инструментальных средств, предназначенных для моделирования информационных систем. Проведение анализа предметной области проекта автомастерской массового обслуживания и построение математической модели данной системы.

    курсовая работа [1,3 M], добавлен 18.08.2012

  • Использование системного анализа для подготовки и обоснования управленческих решений по многофакторным проблемам. Возникновение синергетики как науки о законах построения организации, возникновения упорядоченности, развитии и самоусложнении системы.

    реферат [40,4 K], добавлен 21.01.2015

  • Основы методов математического программирования, необходимого для решения теоретических и практических задач экономики. Математический аппарат теории игр. Основные методы сетевого планирования и управления. Моделирование систем массового обслуживания.

    реферат [52,5 K], добавлен 08.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.