Эконометрика. Модели парной и множественной регрессии

Характеристика принципа конкретных количественных и качественных взаимосвязей экономических объектов и процессов с помощью математических и статистических методов. Построение уравнения парной регрессии. Статистический анализ модели и оценка её качества.

Рубрика Экономика и экономическая теория
Вид лекция
Язык русский
Дата добавления 22.07.2014
Размер файла 126,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Виды корреляции и регрессии, применяемые в статистическом анализе социально-экономических явлений и процессов. Построение корреляционной модели (уравнения регрессии). Построение корреляционной таблицы, выполнение интервальной группировки по признакам.

    курсовая работа [131,7 K], добавлен 03.10.2014

  • Оценка статистической значимости параметров регрессии. Построение экономического прогноза прибыли при прогнозном значении произведенной валовой продукции. Статистическая оценка параметров уравнения регрессии. Построение мультипликативной модели тренда.

    контрольная работа [132,1 K], добавлен 10.03.2013

  • Порядок построения линейного уравнения парной регрессии, расчет коэффициентов и оценка статической значимости параметров регрессии и корреляции. Точность прогноза. Множественная регрессия и корреляция. Системы эконометрических уравнений. Временные ряды.

    контрольная работа [1,3 M], добавлен 24.09.2013

  • Определение среднего значения показателя в совокупности. Вариационный анализ статистической совокупности по показателю. Проведение выборочного наблюдения и корреляционно-регрессионного анализа. Построение уравнения парной регрессии, ряды динамики.

    курсовая работа [290,2 K], добавлен 29.11.2011

  • Составление матрицы парных коэффициентов корреляции переменных. Построение линейного уравнения регрессии, характеризирующее зависимость цены от факторов. Оценка статистической значимости параметров в регрессионной модели с помощью t-критерия Стьюдента.

    лабораторная работа [1,6 M], добавлен 13.04.2010

  • Классическая линейную модель множественной регрессии. Значимость уравнения регрессии и его коэффициентов. Доверительный интервал. Матрица парных коэффициентов корреляции. Модель множественной регрессии. Автокорреляция.

    контрольная работа [172,9 K], добавлен 17.01.2004

  • Автоматический анализ тренда на базе диаграммы экспериментальных данных Х и У с помощью программы MSExcel. Прогноз заработной платы при заданном значении среднедушевого прожиточного минимума с помощью пакета анализа. Уравнение линейной парной регрессии.

    контрольная работа [363,4 K], добавлен 22.01.2015

  • Проверка выполнения предпосылок МНК. Значимость параметров уравнения регрессии с помощью t-критерия Стьюдента и F-критерия Фишера. Средняя относительная ошибка аппроксимации. Гиперболические, степенные и показательные уравнения нелинейной регрессии.

    контрольная работа [253,4 K], добавлен 17.03.2011

  • Анализ, расчет и построение исходных динамических рядов признака-функции и признака-фактора. Расчет показателей вариации динамических рядов. Количественное измерение тесноты связи признака-функции и признаков-факторов методом парной корреляции.

    курсовая работа [92,7 K], добавлен 24.09.2014

  • Расчет параметров линейной и степенной парной регрессии. Показатели корреляции и детерминации, методика их расчета. Средняя ошибка аппроксимации. Оценка с помощью F-критерия Фишера статистической надежности результатов регрессионного моделирования.

    контрольная работа [25,2 K], добавлен 20.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.