Сравнительный анализ эффективности простейших систем массового обслуживания

Понятие, классификация систем массового обслуживания, особенности их структуры и сравнительное описание. Сферы применения данных систем и основные требования к ним. Исследование причин отказов в смешанных системах, расчет производительности каналов.

Рубрика Экономика и экономическая теория
Вид курсовая работа
Язык русский
Дата добавления 16.09.2017
Размер файла 404,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Курсовой проект

Сравнительный анализ эффективности простейших систем массового обслуживания

Введение

массовый обслуживание производительность

В производственной деятельности и повседневной жизни часто возникают ситуации, когда появляется крайне важность в обслуживании требований или заявок поступающих в систему. Часто встречаются ситуации, в которых крайне важно пребывать в ситуации ожидания. Примерами тому может служить очередь покупателей у касс большого магазина, группа пассажирских самолетов, ожидающих разрешения на взлет в аэропорте, ряд вышедших из строя станков и механизмов, поставленных в очередь для починки в ремонтном цехе предприятия и т.д. Иногда системы обслуживания обладают ограниченными возможностями для удовлетворения спроса, и это приводит к образованию очередей. Как правило, ни время возникновения потребностей в обслуживании, ни продолжительность обслуживания заранее не известны. Избежать ситуации ожидания чаще всего не удается, но можно сократить время ожидания до какого-то терпимого предела.

Предметом теории массового обслуживания являются системы массового обслуживания (СМО). Задачами теории массового обслуживания являются анализ и исследование явлений, возникающих в системах обслуживания. Одна из базовых задач теории заключается в определении таких характеристик системы, которые обеспечивают заданное качество функционирования, к примеру, минимум времени ожидания, минимум средней длины очереди. Цель изучения режима функционирования обслуживающей системы в условиях, когда фактор случайности является существенным, контролировать некоторые количественные показатели функционирования системы массового обслуживания. Такими показателями, в частности являются среднее время пребывания клиента в очереди или доля времени, в течение которой обслуживающая система простаивает. При этом в первом случае мы оцениваем систему с позиции «клиента», тогда как во втором случае мы оцениваем степень загруженности обслуживающей системы. Путем варьирования операционными характеристиками обслуживающей системы может быть достигнут разумный компромисс между требованиями «клиентов» и мощностью обслуживающей системы.

1. Теоретическая часть

1.1 Классификация СМО

Системы массового обслуживания (СМО) классифицируются по разным признакам, что подробно изображено на рисунке 1.1.

Рисунок 1.1. Классификация СМО

По числу каналов обслуживания (n) СМО разделяются на одноканальные (n = 1) и многоканальные (n > 2). К одноканальным СМО в торговле можно отнести практически любой вариант локального обслуживания, например выполняемый одним продавцом, товароведом, экономистом, торговым аппаратом.

В зависимости от взаимного расположения каналов системы подразделяются на СМО с параллельными и с последовательными каналами. В СМО с параллельными каналами входной поток заявок на обслуживание является общим, и поэтому заявки в очереди могут обслуживаться любым свободным каналом. В таких СМО очередь на обслуживание можно рассматривать как общую.

В многоканальной СМО с последовательным расположением каналов каждый канал может рассматриваться как отдельная одноканальная СМО, или фаза обслуживания. Очевидно, выходной поток обслуженных заявок одной СМО является входным потоком для последующей СМО.

В зависимости от характеристик каналов обслуживания многоканальные СМО подразделяются на СМО с однородными и неоднородными каналами. Отличие состоит в том, что в СМО с однородными каналами заявка может обслуживаться любым свободным каналом, а в СМО с неоднородными каналами отдельные заявки обслуживаются только специально для этой цели предназначенными каналами, например кассы для оплаты одного-двух предметов в универсаме.

В зависимости от возможности образования очереди СМО подразделяются на два основных типа: СМО с отказами обслуживания и СМО с ожиданием (очередью) обслуживания.

В СМО с отказами возможен отказ в обслуживании, если все каналы уже заняты обслуживанием, а образовывать очередь и ожидать обслуживания нельзя. Примером такой СМО является стол заказов в магазине, в котором прием заказов осуществляется по телефону.

В СМО с ожиданием, если заявка находит все каналы обслуживания занятым, то она ожидает, пока не освободится хотя бы один из каналов.

СМО с ожиданием подразделяются на СМО с неограниченным ожиданием или с неограниченной очередью lоч и временем ожидания Точ и СМО с ограниченным ожиданием, в которых накладываются ограничения или на максимально возможную длину очереди (max lоч = m), или на максимально возможное время пребывания заявки в очереди (max Точ = Тогр), или на время работы системы.

В зависимости от организации потока заявок СМО подразделяются на разомкнутые и замкнутые.

В разомкнутых СМО выходной поток обслуженных заявок не связан с входным потоком заявок на обслуживание. В замкнутых СМО обслуженные заявки после некоторой временной задержки Тз снова поступают на вход СМО и источник заявок входит в состав СМО. В замкнутой СМО циркулирует одно и то же конечное число потенциальных заявок, например, посуда в столовой - через торговый зал, мойку и раздачу. Пока потенциальная заявка циркулирует и не преобразовалась на входе СМО в заявку на обслуживание, считается, что она находится в линии задержки.

Типовые варианты СМО определяются также и установленной дисциплиной очереди, которая зависит от преимущества в обслуживании, т.е. приоритета. Приоритет отбора заявок на обслуживание может быть следующий: первый пришел - первый обслужен; последний пришел - первый обслужен; случайный отбор. Для СМО с ожиданием и обслуживанием по приоритету возможны следующие виды: абсолютный приоритет, например для сотрудников контрольно-ревизионного управления, министра; относительный приоритет, например для директора торга на подведомственных ему предприятиях; специальные правила приоритета, когда обслуживание заявок оговорено в соответствующих документах. Существуют и другие типы СМО: с поступлением групповых заявок, с каналами разной производительности, со смешанным потоком заявок.

Совокупности СМО разных типов, объединенные последовательно и параллельно, образуют более сложные структуры СМО: секции, отделы магазина, универсама, торговой организации и т.п. Такое моделирование позволяет выявить существенные связи в торговле, применить методы и модели теории массового обслуживания для их описания, оценить эффективность обслуживания и разработать рекомендации по его совершенствованию.

1.2 Примеры СМО

Примерами СМО могут служить:

­ телефонные станции;

­ ремонтные мастерские;

­ билетные кассы;

­ справочные бюро;

­ магазины;

­ парикмахерские.

Как своеобразные системы массового обслуживания могут рассматриваться:

­ информационно-вычислительные сети;

­ операционные системы электронных вычислительных машин;

­ системы сбора и обработки информации;

­ автоматизированные производственные цехи, поточные линии;

­ транспортные системы;

­ системы противовоздушной обороны.

Близкими к задачам теории массового обслуживания являются многие задачи, возникающие при анализе надежности технических устройств.

Случайный характер, как потока заявок, так и длительности обслуживания приводит к тому, что в СМО будет происходить какой-то случайный процесс. Чтобы дать рекомендации по рациональной организации этого процесса и предъявить разумные требования к СМО, необходимо изучить случайный процесс, протекающий в системе, описать его математически. Этим и занимается теория массового обслуживания.

Заметим, что область применения математических методов теории массового обслуживания непрерывно расширяется и все больше выходит за пределы задач, связанных с обслуживающими организациями в буквальном смысле слова.

Число моделей систем (сетей) обслуживания, используемых на практике и изучающихся в теории, очень и очень велико. Даже для того, чтобы описать схематично основные их типы, требуется не один десяток страниц. Мы рассмотрим только системы с очередью. При этом будем предполагать, что эти системы являются открытыми для вызовов, т.е., заявки, поступают в систему извне (в некотором входном потоке), каждому из них требуется конечное число обслуживаний, по окончании последнего из которых заявка навсегда покидает систему; а дисциплины обслуживания таковы, что в любой момент времени каждый прибор может обслуживать не более одного вызова (другими словами, не допускается параллельного обслуживания двух и более заявок одним прибором).

Во всех случаях мы обсудим условия, которые гарантируют стабильную работу системы.

2 . Расчётная часть

2.1 Первый этап. Система с отказами

На данном этапе проведём минимизацию средней стоимости обслуживания одной заявки в единицу времени для системы с отказами. Для этого определим число каналов обслуживания, обеспечивающее в системе с отказами наименьшее значение параметра - средней стоимости обслуживания одной заявки в единицу времени.

В соответствии с вариантом задания определены следующие параметры системы:

­ интенсивность входного потока (среднее число заявок, поступающих в систему в единицу времени) 1/ед. времени.

­ среднее время обслуживания одной заявки ед. времени;

­ стоимость эксплуатации одного канала ед. стоим./канал;

­ стоимость простоя одного канала ед. стоим./канал;

­ стоимость эксплуатации одного места в очереди

­ ед. стоим./заявка в очереди;

­ стоимость убытков, связанных с уходом заявки из системы, получившей отказ в обслуживании ед. стоим.ед. врем.

Задавая значения (число каналов обслуживания) от единицы до шести, вычислим финальные вероятности и в соответствии с ними показатели эффективности системы. Результаты вычислений приведены в Таблица 2.1 и Таблица 2.2, а также показаны на графиках функций , , , , приведённых на Рисунок 2.1.

Для вычисления вероятностей и основных показателей эффективности используем следующие формулы:

, , ,

, , ,

, , , ,

, . 2.1

Выполним расчеты по формулам 2.1.

Значение показателя одинаково для всех .

.

Вычислим показатели эффективности для системы с отказами при .

Вероятность того, что все каналы свободны равна:

.

Вероятность того, что занят один (в данном случае все) канал равна:

.

Так как канал всего один, то .

Вероятность обслуживания заявки равна:

.

Абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени) равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Среднее число занятых каналов равно:

канала.

Среднее число свободных каналов равно:

канала.

Коэффициент загрузки равен:

.

Время пребывания заявки в системе равно:

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Так как анализируемая система с отказами не имеет очереди, то среднее число заявок, находящихся в очереди равно нулю при любом числе каналов обслуживания .

Вычислим показатели эффективности для системы с отказами при .

Вероятность того, что все каналы свободны равна:

.

Вероятность того, что занят один канал равна:

.

Вероятность того, что занято два (в данном случае все) канала равна:

.

Так как канала всего два, то .

Вероятность обслуживания заявки равна:

.

Абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени) равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Среднее число занятых каналов равно:

канала.

Среднее число свободных каналов равно:

канала.

Коэффициент загрузки равен:

.

Время пребывания заявки в системе равно:

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Вычислим показатели эффективности для системы с отказами при .

Вероятность того, что все каналы свободны равна:

.

Вероятность того, что занят один канал равна:

.

Вероятность того, что занято два канала равна:

.

Вероятность того, что занято три (в данном случае все) канала равна:

.

Так как канала всего три, то .

Вероятность обслуживания заявки равна:

.

Абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени) равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Среднее число занятых каналов равно:

.

Среднее число свободных каналов равно:

канала.

Коэффициент загрузки равен:

канала.

Время пребывания заявки в системе равно:

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Вычислим показатели эффективности для системы с отказами при .

Вероятность того, что все каналы свободны равна:

.

Вероятность того, что занят один канал равна:

.

Вероятность того, что занято два канала равна:

.

Вероятность того, что занято три канала равна:

.

Вероятность того, что занято четыре (в данном случае все) канала равна:

.

Так как канала всего четыре, то .

Вероятность обслуживания заявки равна:

.

Абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени) равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Среднее число занятых каналов равно:

канала.

Среднее число свободных каналов равно:

канала.

Коэффициент загрузки равен:

.

Время пребывания заявки в системе равно:

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Для и вычисления выполняются аналогично, поэтому подробного приводить не требуется. Результаты расчётов также внесены в Таблица 2.1 и Таблица 2.2. и показаны на Рисунок 2.1.

Таблица 2.1. Результаты расчётов для СМО с отказами

Система с отказами 1/ед. времени, ед. времени

Результирующие показатели

ед. ст.

ед. ст.

ед. вр.

1

0,667

0,333

0

2,667

1,333

0,933

0,700

0,333

0,667

0,167

2

1,200

0,800

0

1,600

2,400

1,080

0,450

0,600

0,600

0,300

3

1,579

1,421

0

0,842

3,158

1,242

0,393

0,789

0,526

0,395

4

1,810

2,190

0

0,381

3,619

1,419

0,392

0,905

0,452

0,452

5

1,927

3,073

0

0,147

3,853

1,607

0,417

0,963

0,385

0,482

6

1,976

4,024

0

0,048

3,952

1,802

0,456

0,988

0,329

0,494

Таблица 2.2. Вспомогательные расчёты для СМО с отказами

К вычислению общей стоимости обслуживания заявок в единицу времени

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

1

0,333

0,067

0

0,533

0,933

2

0,600

0,160

0

0,320

1,080

3

0,789

0,284

0

0,168

1,242

4

0,905

0,438

0

0,076

1,419

5

0,963

0,615

0

0,029

1,607

6

0,988

0,805

0

0,010

1,802

Полученные расчёты позволяют сделать вывод, что наиболее оптимальным количеством каналов системы с отказами будет , так как при этом обеспечивается минимальное значение средней стоимости обслуживания одной заявки в единицу времени, экономического показателя, характеризующего систему как с точки зрения потребителя, так и с точки зрения её эксплуатационных свойств.

Рисунок 2.1. Графики результирующих показателей СМО с отказами

Значения основных показателей эффективности оптимальной СМО с отказами:

каналов,

,

,

ед. времени.

Допустимое для смешенной СМО значение времени пребывания заявки в системе вычисляется по формуле 2.2.

. 2.2

ед. времени.

2.2 Второй этап. Смешанная система

На данном этапе изучается, соответствующая заданию, система массового обслуживания с ограничением на время пребывания в очереди. Основной задачей этого этапа является решение вопроса о возможности с введением очереди обеспечить уменьшение значения оптимального для рассматриваемой системы значения экономического показателя С и улучшить другие показатели эффективности изучаемой системы.

Задавая значения параметра (среднего времени пребывания заявки в системе), вычислим те же показатели эффективности, что и для системы с отказами. Результаты вычислений приведены в Таблица 2.3 и Таблица 2.4, а также показаны на графиках функций , , , , приведённых на Рисунок 2.2.

Для вычисления вероятностей и основных показателей эффективности используем следующие формулы:

, ,

, , ,

, ,

, , ,

, , , ,

, , , ,

, . 2.3

Выполним расчеты по формулам 2.3.

Значение показателя одинаково для всех .

.

Выполним расчёт показателей эффективности СМО с ограничением на время пребывания в очереди ед. времени.

.

Вероятность того, что все каналы свободны, вычисляется по формулам:

,

, . 2.4

Требуемая по заданию точность расчёта финальных вероятностей составляет 0,01. Для обеспечения данной точности достаточно вычислить приблизительную сумму бесконечного ряда с аналогичной точностью.

Вычислим несколько первых членов ряда, использую формулы 2.3:

.

.

.

.

.

Выполним остальные расчеты по формулам 2.2.

Вычислим финальные вероятности:

.

.

.

.

Среднее число свободных каналов равно:

канала.

Среднее число занятых каналов равно:

канала

Вероятность обслуживания равна:

.

Абсолютная пропускная способность системы равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Коэффициент загрузки системы равен:

.

Среднее число заявок в очереди равно:

заявки.

Вычислим среднее время пребывания заявки в системе, которое должно удовлетворять условию ед. времени.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Так как полученная средняя стоимость обслуживания одной заявки меньше аналогичного параметра оптимальной СМО с отказами

, следует увеличить .

Выполним расчёт показателей эффективности СМО с ограничением на время пребывания в очереди ед. времени.

.

Вычислим вероятность того, что все каналы свободны.

Требуемая по заданию точность расчёта финальных вероятностей составляет 0,01. Для обеспечения данной точности достаточно вычислить приблизительную сумму бесконечного ряда с аналогичной точностью.

Для расчетов также используем формулы 2.2 и формулы 2.3.

Вычислим несколько первых членов ряда:

.

.

.

.

.

Вычислим остальные финальные вероятности:

.

.

.

.

Среднее число свободных каналов равно:

канала.

Среднее число занятых каналов равно:

канала

Вероятность обслуживания равна:

.

Абсолютная пропускная способность системы равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Коэффициент загрузки системы равен:

.

Среднее число заявок в очереди равно:

заявки.

Вычислим среднее время пребывания заявки в системе, которое должно удовлетворять условию ед. времени.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Как видно из расчётов, увеличение приводит к уменьшению средней стоимости обслуживания одной заявки. Аналогично выполним расчёты с увеличением среднего времени пребывания заявки в очереди, результаты внесём в Таблица 2.3 и Таблица 2.4, а также отобразим на Рисунок 2.2.

Таблица 2.3. Результаты расчётов для смешанной системы

Система с ограничением на время пребывания в очереди

, 1/ед. врем., ед. врем.

Результирующие показатели

ед. ст.

ед. ст.

ед. вр.

Данные системы с отказами

1,810

2,190

0,000

0,381

3,619

1,419

0,392

0,905

0,452

0,452

Данные системы с ограничением на время пребывания в очереди

1,924

2,076

0,076

0,151

3,849

1,415

0,368

0,962

0,481

0,500

1,949

2,051

0,102

0,102

3,898

1,415

0,363

0,975

0,487

0,513

1,981

2,019

0,151

0,038

3,962

1,417

0,358

0,991

0,495

0,533

1,987

2,013

0,159

0,026

3,974

1,417

0,357

0,993

0,497

0,536

1,992

2,008

0,183

0,015

3,985

1,419

0,356

0,996

0,498

0,544

1,997

2,003

0,265

0,007

3,993

1,427

0,357

0,998

0,499

0,565

1,997

2,003

0,278

0,006

3,994

1,428

0,358

0,998

0,499

0,569

Таблица 2.4. Вспомогательные расчёты для смешанной системы

К вычислению общей стоимости обслуживания заявок в единицу времени

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

Данные системы с отказами

0,905

0,438

0

0,076

1,419

Данные системы с ограничением на время пребывания в очереди

0,962

0,415

0,008

0,030

1,415

0,975

0,410

0,010

0,020

1,415

0,991

0,404

0,015

0,008

1,417

0,993

0,403

0,016

0,005

1,417

0,996

0,402

0,018

0,003

1,419

0,998

0,401

0,026

0,001

1,427

0,998

0,401

0,028

0,001

1,428

Полученные расчёты позволяют сделать вывод, что наиболее оптимальным средним временем пребывания заявки в очереди для системы с ограничением на время пребывания в очереди следует принять , так как при этом наименьшая средняя стоимость обслуживания одной заявки, а среднее время пребывания заявки в системе не превышает допустимого, то есть условие выполняется.

Рисунок 2.2. Графики результирующих показателей смешанной системы

Значения основных показателей эффективности оптимальной СМО с ограничением на время пребывания заявки в очереди:

каналов,

,

,

ед. времени.

ед. времени.

Сравнивания показатели эффективности оптимальной системы с отказами и изучаемой оптимальной смешанной системы с ограничением на время пребывания в очереди можно заметить, кроме уменьшения средней стоимости обслуживания одной заявки, повышение загруженности системы и вероятности обслуживания заявки, что позволяет оценить исследуемую системы как более эффективную. Незначительное увеличение времени пребывания заявки в системе не влияет на оценку системы, так как ожидаемо при введении очереди.

2.3 Третий этап. Влияние производительности каналов

На этом этапе исследуем влияние производительности каналов обслуживания на эффективность системы. Производительность канала обслуживания определяется значением среднего времени обслуживания одной заявки. В качестве предмета исследования примем смешанную систему, признанную оптимальной на предыдущем этапе. Показатели эффективности этой первоначальной системы сравним с аналогичными показателями двух вариантов этой системы.

Вариант А. Система с уменьшенной производительностью каналов обслуживания за счет увеличения в два раза среднего времени обслуживания и с уменьшенными затратами, связанными с эксплуатацией и простоем оборудования.

, , .

Вариант Б. Система с увеличенной производительностью каналов обслуживания за счет уменьшения в два раза среднего времени обслуживания и с увеличенными затратами, связанными с эксплуатацией и простоем оборудования.

, , .

Результаты вычислений приведены в Таблица 2.5 и Таблица 2.6.

Выполним расчёт показателей эффективности СМО с уменьшенной производительностью каналов обслуживания.

ед. времени.

.

.

.

.

Вычислим вероятность того, что все каналы свободны.

Требуемая по заданию точность расчёта финальных вероятностей составляет 0,01. Для обеспечения данной точности достаточно вычислить приблизительную сумму бесконечного ряда с аналогичной точностью.

Вычислим несколько первых членов ряда:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Вычислим остальные финальные вероятности:

.

.

.

.

Среднее число свободных каналов равно:

канала.

Среднее число занятых каналов равно:

канала

Вероятность обслуживания равна:

.

Абсолютная пропускная способность системы равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Коэффициент загрузки системы равен:

.

Среднее число заявок в очереди равно:

заявки.

Вычислим среднее время пребывания заявки в системе.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Выполним расчёт показателей эффективности СМО с увеличенной производительностью каналов обслуживания.

ед. времени.

.

.

.

.

Вычислим вероятность того, что все каналы свободны.

Требуемая по заданию точность расчёта финальных вероятностей составляет 0,01. Для обеспечения данной точности достаточно вычислить приблизительную сумму бесконечного ряда с аналогичной точностью.

Вычислим несколько первых членов ряда:

.

.

.

.

.

.

Вычислим остальные финальные вероятности:

.

.

.

.

Среднее число свободных каналов равно:

канала.

Среднее число занятых каналов равно:

канала.

Вероятность обслуживания равна:

.

Абсолютная пропускная способность системы равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Коэффициент загрузки системы равен:

.

Среднее число заявок в очереди равно:

заявки.

Вычислим среднее время пребывания заявки в системе.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Таблица 2.5. Результаты расчётов третьего этапа

Заданная смешанная система

ед. врем.

, 1/ед. врем., ед. врем.

Результирующие

показатели

ед. вр.

ед. ст.

ед. ст.

ед. вр.

Первонач. вариант

0,5

1,992

2,008

0,183

0,015

3,985

1,419

0,356

0,996

0,498

0,544

Вариант А

1

3,644

0,356

4,271

0,356

3,644

1,645

0,451

0,911

0,911

1,979

Вариант Б

0,25

0,999

3,001

0,009

0,001

3,999

1,701

0,425

0,999

0,250

0,252

Таблица 2.6. Вспомогательные расчёты третьего этапа

К вычислению общей стоимости обслуживания заявок в единицу времени

ед. вр.

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

Первонач. вариант

0,5

0,996

0,402

0,018

0,003

1,419

Вариант А

1

1,093

0,053

0,427

0,071

1,645

Вариант Б

0,25

0,800

0,900

0,001

0,000

1,701

Полученные результаты показывают не целесообразность увеличивать или уменьшать производительность каналов обслуживания. Так как при уменьшении производительности каналов обслуживания возрастает среднее время пребывания заявки в системе, хотя загруженность системы близка к максимальной. При увеличении производительности большая часть каналов обслуживания простаивает, но с точки зрения потребителя система эффективна, так как вероятность обслуживания близка к единице, а время пребывания заявки в системе невелико. Данный расчёт демонстрирует два варианта системы, первый из которых эффективен с точки зрения эксплуатационных свойств и не эффективен с точки зрения потребителя, а второй - наоборот.

Заключение

В ходе выполнения курсового проекта были изучены и рассмотрены система массового обслуживания с отказами и смешанная система массового обслуживания с ограничением на время пребывания в очереди, а также исследовано влияние производительности каналов обслуживания на эффективность системы, выбранной оптимальной.

Сравнивая оптимальные СМО с отказами и смешанную систему по параметрам эффективности, наилучшей следует признать смешанную систему. Так как средняя стоимость обслуживания одной заявки в смешанной системе меньше чем аналогичный параметр в СМО с отказами на 9%.

Анализируя эффективность с точки зрения эксплуатационных свойств системы, смешанная система показывает лучшие результаты по сравнению с СМО с отказами. Коэффициент загрузки и абсолютная пропускная способность смешанной системы больше на 10%, чем аналогичные параметры у СМО с отказами. С точки зрения потребителя вывод не так очевиден. Вероятность обслуживания смешанной системы выше почти на 10%, что говорит о большей эффективности смешанной системы по сравнению с СМО с отказами. Но также наблюдается увеличение времени пребывания заявки в системе на 20%, что характеризует СМО с отказами как более эффективную по данному параметру.

В результате исследований наиболее эффективной признана оптимальная смешанная система. Данная система имеет следующие преимущества перед СМО с отказами:

­ меньше затраты на обслуживание одной заявки;

­ меньше простоя каналов обслуживания, ввиду большей загруженности;

­ большая доходность, так как пропускная способность системы выше;

­ есть возможность выдержать неравномерность интенсивности поступающих заявок (увеличение нагрузки), ввиду наличия очереди.

Исследования влияния производительности каналов обслуживания на эффективность смешанной системы массового обслуживания с ограничением на время пребывания в очереди позволяют сделать вывод, что наилучшим вариантом будет исходная оптимальная смешанная система. Так как при уменьшении производительности каналов обслуживания система очень сильно «проседает» с точки зрения потребителя. Время пребывания заявки в системе увеличивается в 3,6 раза! А при увеличении производительности каналов обслуживания система настолько легко справляется с нагрузкой, что 75% времени будет простаивать, что является другой, экономически не эффективной, крайностью.

Учитывая вышеизложенное, оптимальная смешанная система является наилучшим выбором, так как демонстрирует баланс показателей эффективности с точки зрения потребителя и эксплуатационных свойств, имея при этом наилучшие экономические показатели.

Библиография

1 Дворецкий С.И. Моделирование систем: учебник для студ. высш. учеб. заведений / М.: Издательский центр «Академия». 2009.

2 Лабскер Л.Г. Теория массового обслуживания в экономической сфере: Учеб. пособие для вузов / М.: ЮНИТИ. 1998.

3 Самусевич Г.А. Теория массового обслуживания. Простейшие системы массового обслуживания. Методические указания по выполнению курсового проекта. / Е.: УрТИСИ СибГУТИ. 2015.

Размещено на Allbest.ru


Подобные документы

  • Истоки и история становления экономического анализа. Экономический анализ в условиях царской России, в послеоктябрьский период и в период перехода к рыночным отношениям. Теория массового обслуживания, ее применение и использование при принятии решений.

    контрольная работа [50,9 K], добавлен 03.11.2010

  • Экономическая система в разных научных школах. Сравнительное исследование механизма функционирования разных экономических систем. Соотношение плана и рынка (аллокация ресурсов). Виды систем: современная, традиционная, плановая и смешанная (гибридная).

    курсовая работа [30,2 K], добавлен 25.12.2014

  • Исследование особенностей повременной и сдельной заработной платы. Описание аккордной, контрактной и бестарифной систем оплаты труда. Бригадная форма организации труда. Анализ факторов, влияющих на заработную плату. Обзор причин неравенства в доходах.

    курсовая работа [187,3 K], добавлен 28.10.2013

  • Методология сравнительного исследования экономических систем. Развитие взглядов на доиндустриальную экономическую систему. Рыночная экономика: концептуальная схема построения и реальная действительность. Модели смешанной экономики в развивающихся странах.

    книга [2,2 M], добавлен 27.12.2009

  • Сущность массового типа организации производства и область его применения, основные показатели. Главные особенности применения массового типа организации производства на конкретном предприятии. Совершенствование управления массовым типом производства.

    курсовая работа [60,1 K], добавлен 04.04.2014

  • Подходы к изучению экономики и экономического процесса. Хозяйственный механизм как часть экономической системы. Виды экономических систем. Капитализм, социализм и смешанная экономика в теории и на практике. Национальные модели экономических систем.

    курсовая работа [120,8 K], добавлен 14.04.2013

  • Понятие экономических систем и подходы к их классификации. Основные модели развитых стран в рамках экономических систем. Основные черты и особенности шведской, американской, германской, японской, китайской и российской моделей переходной экономики.

    курсовая работа [48,6 K], добавлен 11.03.2010

  • Сущность портфельного, бюджетного, проектного подходов к оценки проектов по внедрению информационных технологий в компании. Описание традиционных финансовых и вероятностных методик определения эффективности применения корпоративных информационных систем.

    реферат [23,0 K], добавлен 06.12.2010

  • Понятие производственной функции и изокванты. Классификация малоэластичных, среднеэластичных и высокоэластичных товаров. Определение и использование коэффициентов прямых затрат. Использование метода теории игр в торговле. Системы массового обслуживания.

    практическая работа [224,7 K], добавлен 04.03.2010

  • Понятие и классификация экономических систем, их разновидности и сравнительное описание. Сущность и главные условия существования рынка, закономерности и направления его развития. Понятие субъекта и объекта рыночной экономики, принципы управления.

    контрольная работа [35,8 K], добавлен 26.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.