Обоснование выбора метода исследования влияния экологических факторов на различные аспекты качества жизни населения региона

Основные подходы и технологии исследования влияния экологических факторов на качество жизни населения региона. Требования к методу проведения и содержание задач. Анализ и интерпретация полученных результатов, а также их экономическое обоснование.

Рубрика Экономика и экономическая теория
Вид статья
Язык русский
Дата добавления 25.05.2017
Размер файла 768,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Обоснование выбора метода исследования влияния экологических факторов на различные аспекты качества жизни населения региона

Таблица 1. Исходные данные по регионам России для модели влияния экологических факторов на продолжительность жизни и причины смерти

Для объединения этих данных в одной таблице были убраны строки по федеральным округам и произведена одинаковая сортировка по регионам России. Кроме того некоторые итоговые колонки, которых не было в исходных данных, получены расчетным путем.

Исследование характеристик исходных данных и обоснование требований к методу достижения цели

Исходные данные Росстата по отдельным экологическим факторам и некоторым аспектам качества жизни, приведенные в таблице 1, охватывают небольшие периоды наблюдений (малый лонгитюд), а их восполнение, в т.ч. путем проведения экспериментов, принципиально невозможно. В результате в этих данных отсутствуют полные повторности. Экологические факторы описываются разнородными показателями, измеренными в различных типах измерительных шкал (номинальных, порядковых и числовых) и в различных единицах измерения. Решаемые задачи относятся к задачам большой размерности, т.е. в них идет речь не о 5 или максимум 7 факторах, а о сотнях и тысячах Исходные данные зашумлены, не случайны и взаимозависимы, не аддитивны, зависят от каких-то третьих более фундаментальных факторов.

Экологи до сих пор надеются на то, что их задачи позволит решить MS Excel и системы «Статистика» и SPSS. Но постепенно их иллюзии рассеиваются, и они начинают понимать, что возможности инструмента решения проблемы должны соответствовать сложности проблемы. Экологи пытаются применять эти методы, однако оказывается, что корректно сделать это довольно проблематично по целому ряду вполне объективных, независимых от исследователей, реально имеющих место причин. Мы назовем лишь некоторые из них.

Во-первых, это отсутствие или малодоступность необходимых для подобных исследований исходных данных. Те же данные, которые все же удается найти, охватывают небольшие периоды наблюдений (малый лонгитюд), а их восполнение, в т.ч. путем проведения экспериментов, принципиально невозможно. В результате невозможно требовать от таких данных полных повторностей, что является необходимым условием корректно применения факторного анализа.

Во-вторых, экологические факторы описываются разнородными показателями, измеренными в различных типах измерительных шкал (номинальных, порядковых и числовых) и в различных единицах измерения. Математические методы сопоставимой обработки подобных данных, а также реализующий эти методы программный инструментарий, фактически отсутствуют.

В-третьих, подобные задачи относятся к задачам большой размерности, т.е. в них идет речь не о 5 или максимум 7 факторах, как в факторном анализе, а по крайней мере о сотнях и тысячах. Обычно в руководствах по факторному анализу начинаются с сакраментальной фразы: «Выберем небольшое число наиболее важных факторов, которые будем исследовать». Но при этом авторы этих руководств благоразумно воздерживаются от рассмотрения методологических, методических и практических подходов к тому, как это сделать, т.к. они просто отсутствуют или малоизвестны, как и необходимый для этого программный инструментарий. На практике обычно все сводится не к исследованию объекта, который надо исследовать, а к исследованию данных, которые фактически есть и удовлетворяют этим жестким требованиям, но мягко говоря, не очень полно отражают исследуемый объект.

В-четвертых, факторный анализ является неустойчивым методом в том смысле, что, даже небольшие вариации значений исходных данных приводят к сильному изменению результатов применения метода, т.е. требует, чтобы исходные данные были абсолютно точными. Ясно, что реальные исходные данные сильно зашумлены и не удовлетворяют этому требованию. Фактически можно считать, что исходные данные в таблице 1 представляют собой сумму «истинных значений данных» и шума. Но само понятие «истинных значений данных» является весьма сомнительным. Ясно, что даже в принципе вряд ли можно всерьез говорить о каких-то гипотетических абсолютно точных данных, т.е. ясно, что это некая абстракция, которой в полной мере практически ничего в действительности не соответствует. Даже в такой точной науке, как физика никто не говорит об абсолютно точных значениях эмпирических данных. Для получения абсолютно точных данных есть ряд ограничений, которые не преодолеваются даже в принципе. Существуют и погрешности измерения, и соотношение неопределенностей Гейзенберга, и ограниченность пропускной способности каналов связи между датчиком измерительной системы и ее носителями данных, и ограниченность емкости этих носителей данных, и влияние самого процесса измерения на состояние измеряемой системы и т.д. и т.п. Измерение и передача информации о его результатах всегда занимает некоторое время в течение которого состояние измеряемой системы изменяется. Между тем получение абсолютно точных результатов измерения предполагает бесконечное время измерения.

В-пятых, факторный анализ является линейным, параметрическим методом, т.е. требует выполнения нормального распределения и независимости исследуемых факторов. Дело в том, что нормальное распределение выполняется только при действии большого числа случайных и независимых друг от друга аддитивных факторов, а на практике они конечно не случайны и часто взаимозависимы, не аддитивны, зависят от каких-то третьих более фундаментальных факторов.

В-шестых, из таблицы 1 видно, что сами данные приведены в различных единицах измерения из-за чего их совместная сопоставимая обработка в одной модели представляет собой проблему.

Выбор метода по обоснованным требованиям

Для достижения сформулированной цели и решения поставленных задач предлагается применить новую инновационную интеллектуальную технологию: автоматизированный системно-когнитивный анализ (АСК-анализ) и его программный инструментарий - систему «Эйдос». АСК - анализ имеет ряд особенностей, которые обусловили его выбор в качестве метода решения проблемы:

1) имеет теоретическое обоснование, основой которого является семантическая мера целесообразности информации А. Харкевича;

2) обеспечивает корректную сопоставимую количественную обработку разнородных по своей природе взаимосвязанных факторов, измеряемых в различных единицах измерения, высокую точность и независимость результатов расчетов от единиц измерения исходных данных;

3) обеспечивает построение многомерных моделей объекта моделирования непосредственно на основе неполных (фрагментированных) и зашумленных (искаженных) эмпирических данных о нем;

4) имеет развитую и доступную программную реализацию в виде универсальной когнитивной аналитической системы «Эйдос» (открытое программное обеспечение: http://lc.kubagro.ru/aidos/_Aidos-X.htm).

5) об АСК-анализе и различных аспектах его применения написано 22 монографии и учебных пособия, сотни статей в изданиях, входящих в Перечень ВАК РФ, на программный инструментарий АСК-анализа - интеллектуальную систему «Эйдос» и различные ее режимы и подсистемы получено 29 свидетельств РосПатента.

АСК-анализ представляет собой один из современных инновационных методов искусственно интеллекта, который имеет теоретическое обоснование и оснащен широко и успешно апробированным универсальным программным инструментарием, позволяющим решить эти вопросы не только как обычно на теоретическом концептуальном уровне, но и на практике.

Модели знаний АСК-анализа основаны на нечеткой декларативной модели представления знаний, предложенной проф. Е.В. Луценко в 1979 году и являющейся гибридной моделью, сочетающей в себе преимущества фреймовой и нейросетевой моделей и обеспечивающей создание моделей очень больших размерностей до 10 млн. раз превышающих максимальные размерности моделей знаний экспертных систем с четкими продукциями: От фреймовой модели модель представления знания системы «Эйдос» отличается существенно упрощенной программной реализацией и более высоким быстродействием без потери функциональности (за счет того, что в системе «Эйдос» для всех фреймов создается один набор баз данных, такой, как в фреймовой модели для каждого фрейма); от нейросетевой тем, что обеспечивает хорошо обоснованную теоретически на основе тоерии информации содержательную интерпретацию весовых коэффициентов на рецепторах и обучение методом прямого счета; от четкой продукционной модели - нечеткими продукциями, представленными в декларативной форме, что обеспечивает эффективное использование знаний без их многократной генерации для решения задач идентификации, прогнозирования, принятия решений и исследования моделируемого объекта.

АСК-анализ является непараметрическим методом, устойчивым к шуму в исходных данных, позволяющий корректно обрабатывать неполные (фрагментированные) исходные данные, описывающие воздействие взаимозависимых факторов на нелинейный объект моделирования.

Суть метода АСК-анализа в том, что он позволяет рассчитать на основе исходных данных какое количество информации содержится в значениях факторов, обуславливающих переходы объекта моделирования в различные будущие состояния, причем как в желательные, так и в нежелательные.

Он состоит в целенаправленном последовательном повышении степени формализации исходных данных до уровня, который позволяет ввести исходные данные в компьютерную систему, а затем преобразовать исходные данные в информацию; информацию преобразовать в знания; использовать знания для решения задач прогнозирования, принятия решений и исследования предметной области.

Итак, для достижения сформулированной цели и решения поставленных задач планируется применить АСК-анализ, который обеспечивает корректную сопоставимую количественную обработку разнородных по своей природе взаимосвязанных факторов, измеряемых в различных единицах измерения, высокую точность и независимость результатов расчетов от единиц измерения исходных данных, построение многомерных непараметрических нелинейных моделей объекта моделирования непосредственно на основе неполных (фрагментированных) и зашумленных (искаженных) эмпирических данных о нем, имеет развитую и доступную программную реализацию в виде универсальной когнитивной аналитической системы «Эйдос» (открытое программное обеспечение).

Разработка этапов достижения цели с применением выбранного метода

Для достижения сформулированной цели и решения поставленных задач необходимо осознанно и целенаправленно последовательно повышать степень формализации исходных данных до уровня, который позволяет ввести исходные данные в интеллектуальную систему, а затем: преобразовать исходные данные в информацию; преобразовать информацию в знания; использовать знания для решения задач управления, принятия решений и исследования предметной области.

Соответственно, АСК-анализ имеет следующее этапы:

1) когнитивно-целевая структуризация предметной области;

2) формализация предметной области (формирование классификационных и описательных шкал и градаций и обучающей выборки);

3) синтез и верификация статистических и системно-когнитивных моделей;

4) решение задач идентификации, прогнозирования, принятия решений и исследования предметной области в наиболее достоверных из созданных моделей.

Чтобы повысить обоснованность выводов о влиянии экологии на качество жизни необходимо перейти от общих рассуждений к применению количественных методов моделирования. Для этого необходима совместная обработка экологических баз данных и баз данных, отражающих различные аспекты качества жизни. Эти базы данных необходимо обработать не просто совместно, но и в сопоставимой форме по одной методологии, технологии и методике и в одной реализующей их программной системе. Впервые в экологических исследованиях это планируется сделать с применением АСК-анализа и системы «Эйдос».

В работе [1] поставлены цели и задачи применения АСК-анализа для исследования влияния экологических факторов на качество жизни населения региона. Обоснованы актуальность данного исследования, требования к методу проведения исследования, выбор метода исследования, кратко раскрыто содержание задач исследования. В данной работе более подробно и конкретно рассмотрено решение задач 2-4, т.е. дано описание источников исходных данных для исследования влияния экологических факторов на различные аспекты качества жизни населения региона; приведены сами исходные данные для этого исследования; дана характеристика исходных данных; обоснованы требования к методу исследования; выбор метода исследования, соответствующего требованиям; приведены этапы достижения цели исследования, соответствующие выбранному методу.

В последующих работах по данной тематике планируется более подробно и конкретно рассмотреть решение поставленных задач 5-7.

Литература

1. Луценко Е.В. Разработка интеллектуальной технологии исследования влияния экологических факторов на различные аспекты качества жизни населения региона / Луценко Е.В., Лойко В.И., Барановская Т.П. // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2016. - №08 (122). - Режим доступа: http://ej.kubagro.ru/2016/08/pdf/01.pdf, 1,188 у.п.л. - IDA [article ID]: 1221608001. http://dx.doi.org/10.21515/1990-4665-122-001

2. Луценко Е.В. Применение теории информации и когнитивных технологий для моделирования эколого-социально-экономических систем (АСК-анализ влияния экологических и производственно-экономических и факторов на здоровье населения) / Луценко Е.В., Стрельников В.В. // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2016. - №07 (121). - Режим доступа: http://ej.kubagro.ru/2016/07/pdf/01.pdf, 4,313 у.п.л. - IDA [article ID]: 1211607001. http://dx.doi.org/10.21515/1990-4665-121-001

3. Луценко Е.В. АСК-анализ влияния экологических факторов на качество жизни населения региона / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2015. - №06 (110). С. 1 - 37. - IDA [article ID]: 1101506001. - Режим доступа: http://ej.kubagro.ru/2015/06/pdf/01.pdf, 2,312 у.п.л.

4. Луценко Е.В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). - Краснодар: КубГАУ. 2002. - 605 с. http://elibrary.ru/item.asp? id=18632909

5. Луценко Е.В., Лойко В.И., Семантические информационные модели управления агропромышленным комплексом. Монография (научное издание). - Краснодар: КубГАУ. 2005. - 480 с. http://elibrary.ru/item.asp? id=21720635

6. Луценко Е.В., Лойко В.И., Великанова Л.О. Прогнозирование и принятие решений в растениеводстве с применением технологий искусственного интеллекта: Монография (научное издание). - Краснодар: КубГАУ, 2008. - 257 с. http://elibrary.ru/item.asp? id=21683725

7. Трубилин А.И., Барановская Т.П., Лойко В.И., Луценко Е.В. Модели и методы управления экономикой АПК региона. Монография (научное издание). - Краснодар: КубГАУ. 2012. - 528 с. ISBN 978-5-94672-584-2. http://elibrary.ru/item.asp? id=21683702

8. Луценко Е.В. Универсальная когнитивная аналитическая система «Эйдос». Монография (научное издание). - Краснодар, КубГАУ. 2014. - 600 с. ISBN 978-5-94672-830-0. http://elibrary.ru/item.asp? id=22401787

9. Орлов А.И., Луценко Е.В., Лойко В.И. Перспективные математические и инструментальные методы контроллинга. Под научной ред. проф. С.Г. Фалько. Монография (научное издание). - Краснодар, КубГАУ. 2015. - 600 с. ISBN 978-5-94672-923-9. http://elibrary.ru/item.asp? id=23209923

10. Орлов А.И., Луценко Е.В., Лойко В.И. Организационно-экономическое, математическое и программное обеспечение контроллинга, инноваций и менеджмента: монография / А.И. Орлов, Е.В. Луценко, В.И. Лойко; под общ. ред. С.Г. Фалько. - Краснодар: КубГАУ, 2016. - 600 с. ISBN 978-5-00097-154-3.http://elibrary.ru/item.asp? id=26667522

Размещено на Allbest.ru


Подобные документы

  • Определение, сущность и структура понятий "уровень жизни" и "качество жизни населения". Основные показатели уровня жизни и качества жизни населения. Факторы территориальной дифференциации качества жизни населения на примере Свердловской области.

    курсовая работа [355,4 K], добавлен 21.07.2015

  • Уровень жизни и его показатели. Основные аспекты жизнедеятельности человека. Проблемы преодоления бедности и отсталости. Система социальной защиты населения. Оценка качества его жизни в Беларуси, факторов его роста и динамика. Перспективы его повышения.

    курсовая работа [67,5 K], добавлен 19.06.2014

  • Уровень жизни и бедности населения, показатели измерения. Качество жизни и методы его оценки. Характеристика уровня и качества жизни населения Республики Беларусь, способы их повышения. Факторы, определяющие динамику уровня жизни и степень их влияния.

    курсовая работа [419,3 K], добавлен 04.06.2012

  • Теоретические подходы к определению уровня и качества жизни населения, индикаторы их измерения. Показатели уровня и качества жизни населения России: совокупность экономических отношений. Основные направления повышения уровня жизни населения России.

    курсовая работа [136,7 K], добавлен 03.10.2010

  • Концептуальные аспекты и системы показателей уровня жизни населения. Методики оценки уровня и качества жизни населения. Анализ и оценка основных показателей уровня жизни населения Тюменской области и России в целом. Меры повышения уровня жизни населения.

    курсовая работа [1,9 M], добавлен 20.04.2011

  • Подходы к определению уровня и качества жизни населения. Сравнительный анализ показателей уровня и качества жизни населения Ставропольского края и России в целом. Приоритетные меры по повышению уровня и качества жизни населения Ставропольского края.

    дипломная работа [1,4 M], добавлен 06.02.2018

  • Качество жизни населения, его социальная составляющая и оценка. Значение изучения динамики и качества уровня жизни населения, его прогнозирование. Показатели уровня и качества жизни населения Республики Беларусь, основные направления его повышения.

    курсовая работа [1,4 M], добавлен 19.10.2011

  • Уровень и качество жизни: понятие и сущность. Интегральный и частный подходы к познанию этих понятий. Факторы, определяющие динамику качества жизни населения. Оценка занятости населения и безработицы. Разработка направлений снижения уровня бедности.

    дипломная работа [83,5 K], добавлен 01.12.2014

  • Потребность в инновационных товарах и услугах как предмет статистического исследования. Расчет интегрального показателя качества жизни населения в России на основе регрессионных моделей. Построение обобщенных характеристик научно-технического развития.

    дипломная работа [2,0 M], добавлен 27.07.2016

  • Сущность качества жизни как социально-экономической категории и ряд ее особенностей. Уровни и система показателей "качества жизни". Важнейшие парадигмы и индекс развития человеческого потенциала. Меры по совершенствованию "качества жизни населения".

    курсовая работа [205,9 K], добавлен 23.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.