Линейный коэффициент корреляции
Корреляция как статистическая взаимосвязь двух или нескольких случайных величин, ее сущность и математическая мера. Корреляционный анализ и его ограничения и применение в экономике и социальных науках. Вычисление линейного коэффициента корреляции.
Рубрика | Экономика и экономическая теория |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 17.01.2015 |
Размер файла | 45,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Понятие Корреляции
Корреляция (корреляционная зависимость) -- статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения значений одной или нескольких из этих величин приводят к систематическому изменению значений другой или других величин.
Математической мерой корреляции двух случайных величин служит корреляционное отношение, либо коэффициент корреляции (или ). В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической.
Впервые в научный оборот термин «корреляция» ввёл французский палеонтолог Жорж Кювье в XVIII веке. Он разработал «закон корреляции» частей и органов живых существ, с помощью которого можно восстановить облик ископаемого животного, имея в распоряжении лишь часть его останков. В статистике слово «корреляция» первым стал использовать английский биолог и статистик Фрэнсис Гальтон в конце XIX века.
Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными (возможна также ситуация отсутствия статистической взаимосвязи -- например, для независимых случайных величин). Если предполагается, что на значениях переменных задано отношение строгого порядка, то отрицательная корреляция -- корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции может быть отрицательным; положительная корреляция в таких условиях -- корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции может быть положительным.
Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер. Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи. Например, рассматривая пожары в конкретном городе, можно выявить весьма высокую корреляцию между ущербом, который нанес пожар, и количеством пожарных, участвовавших в ликвидации пожара, причём эта корреляция будет положительной. Из этого, однако, не следует вывод «бомльшее количество пожарных приводит к бомльшему ущербу», и тем более не имеет смысла попытка минимизировать ущерб от пожаров путем ликвидации пожарных бригад.
В то же время, отсутствие корреляции между двумя величинами ещё не значит, что между ними нет никакой связи. Более тонкий инструмент для изучения связи между двумя случайными величинами является понятие взаимной информации
2. Линейный коэффициент корреляции
Для устранения недостатка ковариации был введён линейный коэффициент корреляции (или коэффициент корреляции Пирсона), который разработали Карл Пирсон, Фрэнсис Эджуорт и Рафаэль Уэлдон (англ.)русск. в 90-х годах XIX века. Коэффициент корреляции рассчитывается по формуле
Коэффициент корреляции изменяется в пределах от минус единицы до единицы.
Доказательство:
Разделив обе части двойного неравенства на получим
Линейный коэффициент корреляции связан с коэффициентом регрессии в виде следующей зависимости: , где -- коэффициент регрессии, -- среднеквадратическое отклонение соответствующего факторного признака.
Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».
Метод вычисления коэффициента корреляции зависит от вида шкалы, к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или (тау) Кендалла. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими: четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, когда связь между ними линейна (однонаправлена).
3. Корреляционный анализ
Корреляционный анализ -- метод обработки статистических данных, с помощью которого измеряется теснота связи между двумя или более переменными. Корреляционный анализ тесно связан с регрессионным анализом (также часто встречается термин «корреляционно-регрессионный анализ», который является более общим статистическим понятием), с его помощью определяют необходимость включения тех или иных факторов в уравнение множественной регрессии, а также оценивают полученное уравнение регрессии на соответствие выявленным связям (используя коэффициент детерминации)
Ограничения корреляционного анализа
1. Применение возможно при наличии достаточного количества наблюдений для изучения. На практике считается, что число наблюдений должно быть не менее, чем в 5-6 раз превышать число факторов (также встречается рекомендация использовать пропорцию не менее, чем в 10 раз превышающую количество факторов). В случае, если число наблюдений превышает количество факторов в десятки раз, в действие вступает закон больших чисел, который обеспечивает взаимопогашение случайных колебаний.
2. Необходимо, чтобы совокупность значений всех факторных и результативного признаков подчинялась многомерному нормальному распределению. В случае, если объём совокупности недостаточен для проведения формального тестирования на нормальность распределения, то закон распределения определяется визуально на основе корреляционного поля. Если в расположении точек на этом поле наблюдается линейная тенденция, то можно предположить, что совокупность исходных данных подчиняется нормальному закону распределения.
3. Исходная совокупность значений должна быть качественно однородной.
4. Сам по себе факт корреляционной зависимости не даёт основания утверждать, что одна из переменных предшествует или является причиной изменений, или то, что переменные вообще причинно связаны между собой, а не наблюдается действие третьего фактора.
Область применения
Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие. В различных прикладных отраслях приняты разные границы интервалов для оценки тесноты и значимости связи.
Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.
x |
y |
x 2 |
y 2 |
x * y |
|
38.6 |
-228.8 |
1489.96 |
52349.44 |
-8831.68 |
|
28.6 |
-149.4 |
817.96 |
22320.36 |
-4272.84 |
|
21.8 |
-104.4 |
475.24 |
10899.36 |
-2275.92 |
|
37.3 |
-218.1 |
1391.29 |
47567.61 |
-8135.13 |
|
40.0 |
-244.8 |
1600 |
59927.04 |
-9792 |
|
34.0 |
-192.7 |
1156 |
37133.29 |
-6551.8 |
|
35.6 |
-204.1 |
1267.36 |
41656.81 |
-7265.96 |
|
39.1 |
-234.8 |
1528.81 |
55131.04 |
-9180.68 |
|
34.2 |
-191.5 |
1169.64 |
36672.25 |
-6549.3 |
|
40.5 |
-251.4 |
1640.25 |
63201.96 |
-10181.7 |
|
36.5 |
-214.1 |
1332.25 |
45838.81 |
-7814.65 |
|
36.6 |
-216.2 |
1339.56 |
46742.44 |
-7912.92 |
|
34.5 |
-198.9 |
1190.25 |
39561.21 |
-6862.05 |
|
32.5 |
-177.1 |
1056.25 |
31364.41 |
-5755.75 |
|
35.5 |
-201.8 |
1260.25 |
40723.24 |
-7163.9 |
|
29.3 |
-149.9 |
858.49 |
22470.01 |
-4392.07 |
|
22.2 |
-103.7 |
492.84 |
10753.69 |
-2302.14 |
|
28.3 |
-143.4 |
800.89 |
20563.56 |
-4058.22 |
|
32.1 |
-176.7 |
1030.41 |
31222.89 |
-5672.07 |
|
17.5 |
-79.1 |
306.25 |
6256.81 |
-1384.25 |
|
654.7 |
-3740.9 |
24733.74 |
761720,28 |
-126355,03 |
Выборочные средние
===32.74
===-187.05
Выборочные дисперсии:
S2(x)= -=-32.74 = 1203.95
S2(y)= -=+187.74 = 1424.43
Среднеквадратическое отклонение
S(x)==34.70
S(y)==37.75
4. Вычисляем коэффициент корреляции
Коэффициент корреляции -- это показатель взаимного вероятностного влияния двух случайных величин. Коэффициент корреляции R может принимать значения от -1 до +1. Если абсолютное значение находится ближе к 1, то это свидетельство сильной связи между величинами, а если ближе к 0 -- то, это говорит о слабой связи или ее отсутствии. Если абсолютное значение R равно единице, то можно говорить о функциональной связи между величинами, то есть одну величину можно выразить через другую посредством математической функции.
Вычислить коэффициент корреляции можно по следующим формуле:
Корреляционная зависимость между величинами Х и Y - обратная и слабая.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + е
Для оценки параметров б и в - используют МНК (метод наименьших квадратов).
Система нормальных уравнений.
a*n + b?x = ?y
a?x + b?x2 = ?y*x
Для наших данных система уравнений имеет вид
20a + 654.7 b = -3740.9
654.7 a + 24733.74b = -126355,03
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 75.58, a = -2661.16
Уравнение регрессии:
y = -2661.16 x + 75.58
Вычисляем ковариацию.
Коэффициент ковариации характеризует степень линейной зависимости двух случайных величин Х и Y и вычисляется по формуле:
Cov (x,y) = ===0.98
корреляция математический экономический линейный
Литература
5. Гмурман В.Е. Теория вероятностей и математическая статистика: Учебное пособие для вузов. -- 10-е издание, стереотипное. -- Москва: Высшая школа, 2004. -- 479 с. -- ISBN 5-06-004214-6
6. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник / Под ред. И.И. Елисеевой. -- 4-е издание, переработанное и дополненное. -- Москва: Финансы и Статистика, 2002. -- 480 с. -- ISBN 5-279-01956-9
7. Общая теория статистики: Учебник / Под ред. Р.А. Шмойловой. -- 3-е издание, переработанное. -- Москва: Финансы и Статистика, 2002. -- 560 с. -- ISBN 5-279-01951-8
8. Суслов В.И., Ибрагимов Н.М., Талышева Л.П., Цыплаков А.А. Эконометрия. -- Новосибирск: СО РАН, 2005. -- 744 с. -- ISBN 5-7692-0755-8
Размещено на Allbest.ru
Подобные документы
Классификация показателей тесноты связи. Основные способы расчета показателей и определение их значимости. Линейный коэффициент корреляции для несгруппированных данных. Принятие решений о тесноте связи на основе линейного коэффициента корреляции.
презентация [146,4 K], добавлен 16.03.2014Назначение рангового коэффициента корреляции, определение силы и направления корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков. Графическое представление метода ранговой корреляции, расчет эмпирического значения rs.
презентация [46,5 K], добавлен 12.11.2010Порядок построения линейного уравнения парной регрессии, расчет коэффициентов и оценка статической значимости параметров регрессии и корреляции. Точность прогноза. Множественная регрессия и корреляция. Системы эконометрических уравнений. Временные ряды.
контрольная работа [1,3 M], добавлен 24.09.2013Основы линейного регрессионного анализа. Особенности использования функции Кобба-Дугласа. Применение множественной линейной регрессии. Сущность метода наименьших квадратов. Пути избегания ложной корреляции. Проверка значимости коэффициентов регрессии.
реферат [101,8 K], добавлен 31.10.2009Распределение вероятностей случайных величин. Числовые характеристики случайных величин. Смешанные начальный и центральный моменты совместного распределения совокупности случайных величин. Физический смысл понятия корреляции. Модель потока редких событий.
лекция [429,8 K], добавлен 02.08.2009Изучение понятия и сущности коэффициента корреляции, который является одним из методов статистического анализа взаимосвязи нескольких признаков. Отличительные черты экономики Сингапура и Перу. Анализ основных показателей прироста иностранных инвестиций.
курсовая работа [168,5 K], добавлен 25.06.2010Законы распределения случайных величин. Закон распределения Пуассона. Свойства плотности вероятности. Критериальные случайные величины. Свойство коэффициента корреляции. Закон больших чисел и его следствия. Предельные теоремы теории вероятностей.
курс лекций [774,3 K], добавлен 11.03.2011Коэффициент корреляции, его значение и основные характеристики. Связь между двумя переменными. Динамика уровней ряда. Исследование временного ряда. Последовательность коэффициентов автокорреляции уровней первого, второго и последующих порядков.
курсовая работа [295,7 K], добавлен 06.05.2015Оценка силы вариации признака. Построение регрессионной модели. Парный линейный коэффициент корреляции. Оценка статистической надежности результатов. Значение коэффициента детерминации. Оценка силы связи признаков. Фактическое значение критерия Фишера.
контрольная работа [165,8 K], добавлен 27.05.2015Средние статистические величины и аналитическая группировка данных предприятия. Результаты расчета коэффициента Фехнера по цехам. Измерение степени тесноты связи в статистике с помощью показателя корреляции. Поля корреляции и уравнения регрессии для цеха.
практическая работа [495,9 K], добавлен 26.11.2012