Выборочное наблюдение

Основные методы исследования массовых явлений. Способы наблюдения в зависимости от полноты охвата объекта (сплошное и не сплошное). Выборочное наблюдение как важнейший источник статистической информации. Способы формирования выборочной совокупности.

Рубрика Экономика и экономическая теория
Вид лекция
Язык русский
Дата добавления 25.06.2013
Размер файла 102,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Выборочное наблюдение

Выборочное наблюдение как важнейший источник статистической информации

Статистическая методология исследования массовых явлений различает, как известно, два способа наблюдения в зависимости от полноты охвата объекта: сплошное и несплошное. Разновидностью несплошного наблюдения является выборочное, которое в условиях рыночных отношений в России находит все более широкое применение. Переход статистики РФ на международные стандарты системы национального счетоводства требует более широкого применения выборки для получения и анализа показателей СНС не только в промышленности, но и в других секторах экономики.

Под выборочным наблюдением понимается несплошное наблюдение, при котором статистическому обследованию (наблюдению) подвергаются единицы изучаемой совокупности, отобранные случайным способом. Выборочное наблюдение ставит перед собой задачу - по обследуемой части дать характеристику всей совокупности единиц при условии соблюдения всех правил и принципов проведения статистического наблюдения и научно организованной работы по отбору единиц.

К выборочному наблюдению статистика прибегает по различным причинам. На современном этапе появилось множество субъектов хозяйственной деятельности, которые характерны для рыночной экономики. Речь идет об акционерных обществах, малых и совместных предприятиях, фермерских хозяйствах и т.д. Сплошное обследование этих статистических совокупностей, состоящих из десятков и сотен тысяч единиц, потребовало бы огромных материальных, финансовых и иных затрат. Использование же выборочного обследования позволяет значительно сэкономить силы и средства, что имеет немаловажное значение.

Наряду с экономией ресурсов одной из причин превращения выборочного наблюдения в важнейший источник статистической информации является возможность значительно ускорить получение необходимых данных. Ведь при обследовании, скажем, 10% единиц совокупности будет затрачено гораздо меньше времени, а результаты могут быть представлены быстрее, и будут более актуальными. Фактор времени важен для статистического исследования особенно в условиях изменяющейся социально-экономической ситуации.

Роль выборочного исследования в получении статистических данных возрастает в силу возможности расширения программы наблюдения (в случаях, когда это необходимо). Так как исследованию подвергается сравнительно небольшая часть всей совокупности, можно с помощью многофазной выборки более широко и детально изучить отдельные единицы и их группы.

Проведение статистического наблюдения вообще требует соответствующего кадрового обеспечения. Сплошное обследование занимает иногда слишком большое число людей для его организации и проведения. Обращение к опыту выборочного наблюдения приводит к тому, что необходимый штат сотрудников значительно уменьшается. Это позволяет привлекать более квалифицированных людей, снизить опасность появления субъективных ошибок, особенно при непосредственной регистрации фактов, и достичь поставленных целей с помощью меньшего количества более компетентных специалистов-статистиков.

Следует также отметить, что на практике приходится сталкиваться со специфическими задачами изучения массовых процессов, которые решаются лишь с помощью методологии выборки. К таким задачам относится, например, исследование качества продукции, если она при этом уничтожается. На основе выборочного наблюдения изучается, например, качество электроламп, спичек, многих сплавов и т.д. Кроме того, в современных условиях развития внешнеэкономических связей России при наличии, в частности, большого числа импортируемых продуктов и непродовольственных товаров таможенный и иной контроль обеспечивается также на основе выборки.

Наконец важным фактором превращения выборочного наблюдения в важнейший источник статистической информации является возможность его использования в целях уточнения и для разработки данных сплошного обследования. Выборочная разработка данных сплошного наблюдения связана с потребностью представления оперативных предварительных итогов обследования. Кроме того, при обобщении данных сплошного учета невозможно вести сплошную разработку по всем сочетаниям рассматриваемых признаков. Она является сложной и дорогостоящей. В этих условиях выборочный метод позволяет получить необходимые сведения приемлемой точности, когда факторы времени и стоимости делают сплошную разработку нецелесообразной.

Совокупность отобранных для обследования единиц в статистике принято называть выборочной, а совокупность единиц, из которых производится отбор, - генеральной.

Основные характеристики параметров генеральной и выборочной совокупности обозначаются определенными символами (табл. 1).

Результаты выборочного статистического исследования во многом зависят от уровня подготовки процесса наблюдения. Под уровнем подготовки в данном случае подразумевается соблюдение определенных правил и принципов проектирования выборочного обследования. Важнейшим элементом проектирования является составление организационного плана выборочного наблюдения. В общем виде в организационный план включаются следующие вопросы:

1. Постановка цели и задачи наблюдения.

2. Определение границ объекта исследования.

3. Отработка программы наблюдения (составление анкеты, опросного листа, формы отчета и т.д.) и разработки ее материалов.

4. Определение процедуры отбора, способа отбора и объема выборки.

5. Подготовка кадров для проведения наблюдения, тиражирование формуляров, инструктивных документов и др.

6. Расчет выборочных характеристик и определение ошибок выборки.

7. Распространение выборочных данных на всю совокупность.

Специфические вопросы организационного плана выборочного статистического наблюдения будут рассмотрены ниже.

Таблица 1.

Символы основных характеристик параметров генеральной и выборочной совокупностей

№ п/п

Характеристики

Генеральная совокупность

Выборочная совокупность

1

Объем совокупности (численность единиц)

N

n

2

Численность единиц, обладающих обследуемым признаком

M

m

3

Доля единиц, обладающих обследуемым признаком

4

Средний размер признака

5

Дисперсия количественного признака

6

Дисперсия доли

Основные способы формирования выборочной совокупности

Достоверность рассчитанных по выборочным данным характеристик в значительной степени определяется репрезентативностью выборочной совокупности, которая, в свою очередь, зависит от способа отбора единиц из генеральной совокупности. В каждом конкретном случае в зависимости от целого ряда условий, а именно, сущности исследуемого явления, объема совокупности, вариации и распределения наблюдаемых признаков, материальных и трудовых ресурсов, выбирают наиболее предпочтительную систему организации отбора, которая определяется видом, методом и способом отбора.

По виду различают индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе - группы единиц, а комбинированный отбор предполагает сочетание группового и индивидуального отбора.

Метод отбора определяет возможность продолжения участия отобранной единицы в процедуре отбора.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в совокупность, из которой осуществляется дальнейший отбор.

При повторном отборе попавшая в выборку единица после регистрации наблюдаемых признаков возвращается в исходную (генеральную) совокупность для участия в дальнейшей процедуре отбора. Повторный метод отбора применяется в тех случаях, когда характер исследуемого явления предполагает возможность повторной регистрации единиц. Такая возможность, прежде всего, может иметь место в выборочных обследованиях населения в качестве покупателей, пациентов, избирателей, абитуриентов и т.д.

Способ отбора определяет конкретный механизм или процедуру выборки единиц из генеральной совокупности. В практике выборочных обследований наибольшее распространение получили следующие виды выборки:

§ собственно-случайная;

§ механическая;

§ типическая;

§ серийная;

§ комбинированная.

Собственно-случайная выборка заключается в отборе единиц из генеральной совокупности наугад или наудачу без каких-либо элементов системности. Однако прежде чем производить собственно-случайный отбор, необходимо убедиться, что все без исключения единицы генеральной совокупности имеют абсолютно равные шансы попадания в выборку, в списках или перечне отсутствуют пропуски, игнорирования отдельных единиц и т.п. Следует также установить четкие границы генеральной совокупности таким образом, чтобы включение или невключение в нее отдельных единиц не вызывало сомнений. Так, например, при обследовании студентов необходимо указать, будут ли приниматься во внимание лица, находящиеся в академическом отпуске, студенты негосударственных вузов, военных училищ и т.п.; при обследовании торговых предприятий важно определиться, включит ли генеральная совокупность торговые павильоны, коммерческие палатки и прочие подобные объекты.

Технически собственно-случайный отбор проводят методом жеребьевки или по таблице случайных чисел. Для жеребьевки необходимо подготовить достаточное количество жребиев - фишек, шаров, карточек, соответствующее объему генеральной совокупности. Каждый жребий должен содержать информацию об отдельной единице совокупности - номер, фамилию лица или адрес, название или какой-либо другой отличительный признак. Необходимое в соответствии с установленным процентом отбора количество жребиев извлекается из общей их совокупности в случайном порядке. При отборе по таблицам случайных чисел каждая единица генеральной совокупности должна иметь порядковый номер. Таблицы случайных чисел получаются с помощью датчика случайных чисел на ПК и представляют собой абсолютно произвольные столбцы цифр. В соответствии с объектом генеральной совокупности выбирается любой столбец с числами необходимой значимости. Например, если генеральная совокупность включает 5000 единиц, потребуется четырехзначные столбцы, при этом числа больше 5000 не будут приниматься во внимание. В выборочную совокупность отбираются единицы с порядковыми номерами, соответствующими числам выбранного столбца.

Собственно-случайный отбор может быть как повторным, так и бесповторным. Для проведения бесповторного отбора в процессе жеребьевки выпавшие жребии обратно в исходную совокупность не возвращаются и в дальнейшем отборе не участвуют. При использовании таблиц случайных чисел бесповторность отбора достигается пропуском чисел в случае их повторения в выбранном столбце или столбцах.

После проведения отбора для определения возможных границ генеральных характеристик рассчитываются средняя и предельная ошибки выборки.

Эти два вида ошибок связаны следующим соотношением:

?=tµ,

где

? - предельная ошибка выборки;

µ - средняя ошибка выборки;

t - коэффициент доверия, определяемый в зависимости от уровня вероятности р.

Ниже приведены некоторые значения t.

Таблица 2.

Вероятность, pi

0,683

0,866

0,954

0,988

0,997

0,999

Значение t

1,0

1,5

2,0

2,5

3,0

3,5

Величина средней ошибки выборки рассчитывается дифференцированно в зависимости от способа отбора и процедуры выборки. Так, при случайном повторном отборе средняя ошибка определяется по формуле:

При бесповторном отборе применяется формула:

,

где у2 - выборочная (или генеральная) дисперсии;

у - выборочное (или генеральное) среднее квадратическое отклонение;

n - объем выборочной совокупности;

N - объем генеральной совокупности.

Расчет средней и предельной ошибок выборки позволяет определить возможные пределы, в которых будут находиться характеристики генеральной совокупности. Например, для выборочной средней такие пределы устанавливаются на основе следующих соотношений:

,

где и - генеральная и выборочная средняя соответственно;

- предельная ошибка выборочной средней.

Покажем практическое применение рассмотренной выше методики на следующих примерах.

Пример 1. При проверке веса импортируемого груза на таможне методом случайной повторной выборки было отобрано 200 изделий. В результате был установлен средний вес изделия 30 г. при среднем квадратическом отклонении 4 г. С вероятностью 0,997 определите пределы, в которых находится средний вес изделия в генеральной совокупности.

Решение. Рассчитаем сначала предельную ошибку выборки. Так как при р = 0,997 значение t = 3, предельная ошибка равна:

Определим пределы генеральной средней:

или

.

Следовательно, с вероятностью 0,997 можно утверждать, что средний вес изделий в генеральной совокупности находится в пределах от 29,16 г. до 30,84 г.

Пример 2. В городе проживает 250 тыс. семей. Для определения среднего числа детей в семье была организована 2% -ная случайная бесповторная выборка семей. По ее результатам было получено следующее распределение семей по числу детей:

Число детей в семье

0

1

2

3

4

5

Количество семей

1000

2000

1200

400

200

200

С вероятностью 0,954 определите пределы, в которых будет находиться среднее число детей в генеральной совокупности.

выборочное наблюдение совокупность статистический

Решение. Сначала на основе имеющегося распределения семей определим выборочные среднюю и дисперсию:

Число детей в семье, хi

Количество семей, fi

xi fi

0

1000

0

-1,5

2,25

2250

1

2000

2000

-0,5

0,25

500

2

1200

2400

0,5

0,25

300

3

400

1200

1,5

2,25

900

4

200

800

2,5

6,25

1250

5

200

1000

3,5

12,25

2450

Итого

5000

7400

-

-

7650

чел.;

Вычислим теперь предельную ошибку выборки (с учетом того, что при р = 0,954 значение t = 2).

Следовательно, пределы генеральной средней:

Таким образом, с вероятностью 0,954 можно утверждать, что среднее число детей в семьях города практически не отличается от 1,5: т.е. в среднем на каждые две семьи приходится три ребенка.

Наряду с определением ошибок выборки и пределов для генеральной средней эти же показатели могут быть определены для доли признака. В этом случае особенности расчета связаны с определением дисперсии доли, которая вычисляется так:

,

где - доля единиц, обладающих данным признаком в выборочной совокупности, определяемая как отношение количества соответствующих единиц к объему выборки.

Тогда, например, при собственно-случайном повторном отборе для определения предельной ошибки выборки используется следующая формула:

Соответственно, при бесповторном отборе:

Пределы доли признака в генеральной совокупности р выглядят следующим образом:

Рассмотрим пример.

Пример 3. С целью определения средней фактической продолжительности рабочего дня в государственном учреждении с численностью служащих 480 человек, в январе 1998 г. было проведена 25% -ная случайная бесповторная выборка. По результатам наблюдения оказалось, что у 10% обследованных потери времени достигали более 45 мин. в день. С вероятностью 0,683 установите пределы, в которых находится генеральная доля служащих с потерями рабочего времени более 45 мин. в день.

Решение. Определим объем выборочной совокупности:

n = 4800,25 = 120 чел.

Выборочная доля w равна по условию 10%.

Учитывая, что при р = 0,683 значение t = 1, вычислим предельную ошибку выборочной доли:

.

Пределы доли признака в генеральной совокупности:

Или

Таким образом, с вероятностью 0,683 можно утверждать, что доля работников учреждения с потерями рабочего времени более 45 мин. в день находится в пределах от 7,6% до 12,4%.

Механическая выборка применяется в случаях, когда генеральная совокупность каким-либо образом упорядочена, т.е. имеется определенная последовательность в расположении единиц (табельные номера работников, списки избирателей, телефонные номера респондентов, номера домов и квартир и т.п.).

Для проведения механической выборки устанавливается пропорция отбора, которая определяется соотнесением объемов выборочной и генеральной совокупностей. Так, если из совокупности в 500 000 единиц предполагается получить 2% -ную выборку, т.е. отобрать 10 000 единиц, то пропорция отбора составит

.

Отбор единиц осуществляется в соответствии с установленной пропорцией через равные интервалы. Например, при пропорции 1: 50 (2%-ая выборка) отбирается каждая 50-я единица, при пропорции 1: 20 (5%-ная выборка) - каждая 20-я единица и т.д.

Генеральную совокупность при механическом отборе можно ранжировать или упорядочить по величине изучаемого или коррелирующего (взаимосвязанного) с ним признака, что позволит повысить репрезентативность выборки. Однако в этом случае возрастает опасность систематической ошибки, связанной с занижением значений изучаемого признака (если из каждого интервала регистрируется первое значение) или с его завышением (если из каждого интервала регистрируется последнее значение). Поэтому целесообразно отбор начинать с середины первого интервала, например, при 5% -ной выборке отобрать 10-ю, 30-ю, 50-ю, 70-ю и с таким же интервалом последующие единицы.

Для определения средней ошибки механической выборки используется формула средней ошибки при собственно-случайном бесповторном отборе.

Типический отбор. Этот способ отбора используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько типических групп. При обследовании населения такими группами могут быть, например, районы, социальные, возрастные или образовательные группы, при обследовании предприятий - отрасль или подотрасль, форма собственности и т.п. Типический отбор предполагает выборку единиц из каждой типической группы собственно-случайным или механическим способом. Поскольку в выборочную совокупность в той или иной пропорции обязательно попадают представители всех групп, типизация генеральной совокупности позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки, которая в этом случае определяется только внутригрупповой вариацией. Отбор единиц в типическую выборку может быть организован либо пропорционально объему типических групп, либо пропорционально внутригрупповой дифференциации признака.

При выборке, пропорциональной объему типических групп, число единиц, подлежащих отбору из каждой группы, определяется следующим образом:

,

где Ni - объем i-ой группы;

ni - объем выборки из i-ой группы.

Средняя ошибка такой выборки находится по формулам:

(повторный отбор),

(бесповторный отбор).

Здесь - это средняя из внутригрупповых дисперсий.

При выборке, пропорциональной дифференциации признака, число наблюдений по каждой группе рассчитывается по формуле:

,

где

- среднее квадратическое отклонение признака в i-ой группе.

Средняя ошибка такого отбора определяется следующим образом:

(повторный отбор),

(бесповторный отбор).

Отбор, пропорциональный дифференциации признака, дает лучшие результаты, однако на практике его применение затруднено вследствие трудности получения сведений о вариации до проведения выборочного наблюдения.

Рассмотрим оба варианта типической выборки на условном примере. Предположим, 10% бесповторный типический отбор рабочих предприятия, пропорциональный размерам цехов, проведенный с целью оценки потерь из-за временной нетрудоспособности, привел к следующим результатам (табл. 3.).

Таблица 3.

Результаты обследования рабочих предприятия

Цех

Всего рабо-

чих, человек

Обследовано,

человек

Число дней временной нетрудоспособности за год

средняя

дисперсия

I

1000

100

18

49

II

1400

140

12

25

III

800

80

15

16

Рассчитаем среднюю внутригрупповых дисперсий:

Определим среднюю и предельную ошибки выборки (с вероятностью 0,954):

;

Рассчитаем выборочную среднюю:

дня

С вероятностью 0,954 можно сделать вывод, что среднее число дней временной нетрудоспособности одного рабочего в целом по предприятию находится в пределах:

Воспользуемся полученными внутригрупповыми дисперсиями для проведения отбора пропорционального дифференциации признака. Определим необходимый объем выборки по каждому цеху:

;

человек;

человек;

человек;

С учетом полученных значений рассчитаем среднюю ошибку выборки:

В данном случае средняя, а, следовательно, и предельная ошибки будут несколько меньше, что отразится и на границах генеральной средней.

Серийный отбор. Данный способ отбора удобен в тех случаях, когда единицы совокупности объединены в небольшие группы или серии. В качестве таких серий могут рассматриваться упаковки с определенным количеством готовой продукции, партии товара, студенческие группы, бригады и другие объединения. Сущность серийной выборки заключается в собственно-случайном или механическом отборе серий, внутри которых производится сплошное обследование единиц.

Поскольку внутри групп (серий) обследуются все без исключения единицы, средняя ошибка серийной выборки (при отборе равновеликих серий) зависит от величины только межгрупповой (межсерийной) дисперсии и определяется по следующим формулам:

(повторный отбор),

(бесповторный отбор).

где r - число отобранных серий;

R - общее число серий.

Межгрупповую дисперсию вычисляют следующим образом:

,

где - средняя i-й серии;

- общая средняя по всей выборочной совокупности.

Пример 4. В области, состоящей из 20 районов, проводилось выборочное обследование урожайности на основе отбора серий (районов).

Выборочные средние по районам составили, соответственно, 14,5 ц/га, 16 ц/га, 15,5 ц/га, 15 ц/га и 14 ц/га. С вероятностью 0,954 определите пределы урожайности во всей области.

Решение. Рассчитаем общую среднюю:

ц/га.

Межгрупповая (межсерийная) дисперсия равна:

Определим теперь предельную ошибку серийной бесповторной выборки

(t = 2 при р = 0,954):

Следовательно, урожайность в области будет с вероятностью 0,954 находиться в пределах:

или

Определение необходимого объема выборки

При проектировании выборочного наблюдения возникает вопрос о необходимой численности выборки. Эта численность может быть определена на базе допустимой ошибки при выборочном наблюдении, исходя из вероятности, на основе которой можно гарантировать величину устанавливаемой ошибки, и, наконец, на базе способа отбора.

Формулы необходимого объема выборки для различных способов формирования выборочной совокупности могут быть выведены из соответствующих соотношений, используемых при расчете предельных ошибок выборки. Приведем наиболее часто применяемые на практике выражения необходимого объема выборки:

§ собственно-случайная и механическая выборка:

(повторный отбор),

(бесповторный отбор).

§ типическая выборка:

(повторный отбор),

(бесповторный отбор).

§ серийная выборка:

(повторный отбор),

(бесповторный отбор).

При этом в зависимости от целей исследования дисперсии и ошибки выборки могут быть рассчитаны для средней величины или доли признака.

Рассмотрим примеры определения необходимого объема выборки при различных способах формирования выборочной совокупности.

Пример 5. В 100 туристических агентствах города предполагается провести обследование среднемесячного количества реализованных путевок методом механического отбора. Какова должна быть численность выборки, чтобы с вероятностью 0,683 ошибка не превышала 3 путевок, если по данным пробного обследования дисперсия составляет 225.

Решение. Рассчитаем необходимый объем выборки:

агентств

Пример 6. С целью определения доли сотрудников коммерческих банков области, имеющих возраст старше 40 лет, предполагается организовать типическую выборку пропорциональную численности сотрудников мужского и женского пола с механическим отбором внутри групп. Общее число сотрудников банков составляет 12 тыс. чел., в том числе 7 тыс. мужчин и 5 тыс. женщин.

На основании предыдущих обследований известно, что средняя из внутригрупповых дисперсий составляет 1600. Определите необходимый объем выборки при вероятности 0,997 и ошибке 5%.

Решение. Рассчитаем общую численность типической выборки:

чел.

Вычислим теперь объем отдельных типических групп:

чел.

чел.

Таким образом, необходимый объем выборочной совокупности сотрудников банков составляет 550 чел., в т. ч.319 мужчин и 231 женщина.

Пример 7. В акционерном обществе 200 бригад рабочих. Планируется проведение выборочного обследования с целью определения удельного веса рабочих, имеющих профессиональные заболевания. Известно, что межсерийная дисперсия доли равна 225. С вероятностью 0,954 рассчитайте необходимое количество бригад для обследования рабочих, если ошибка выборки не должна превышать 5%.

Решение. Необходимое количество бригад рассчитаем на основе формулы объема серийной бесповторной выборки:

бригад.

Оценка результатов выборочного наблюдения и распространение их на генеральную совокупность

Заключительным этапом выборочного наблюдения является распространение его результатов на генеральную совокупность. Однако часто при статистическом изучении социально-экономических явлений этому процессу предшествует оценка результатов наблюдения с точки зрения самой возможности распространения.

Вывод о возможности распространения в значительной степени зависит от качества основы выборки, прежде всего от ее полноты. Под полнотой подразумевается наличие или представленность всех типов или групп данной генеральной совокупности в основе выборки. Неполнота основы может привести к нарушению представительности выборки и, как следствие, к неправильным выводам при анализе данных наблюдения.

Однако не следует обосновывать возможность распространения выборочных данных только анализом качества исходной информации для отбора. Более точной основой суждения о возможности распространения представляется расчет относительной ошибки:

для средней ,

для доли ,

где ?% - относительная предельная ошибка выборки;

?x и ?w - предельная ошибка для среднего значения или доли признака соответственно;

и - генеральная средняя и доля соответственно.

Суждение о возможности распространения выборочных данных можно составить, если в формулах заменить p и x соответствующими выборочными характеристиками. Необходимым условием при этом является соответствие плановой и фактической численности и структуры выборочной совокупности. При больших расхождениях использование этого приема может привести к ошибочным суждениям.

Если величина относительной ошибки не превышает заранее установленного для данного обследования предельного значения, то данные выборочного наблюдения являются представительными и могут быть распространены на генеральную совокупность.

Существуют два основных метода распространения - прямой пересчет и способ коэффициентов.

Сущность способа прямого пересчета заключается в умножении среднего значения признака, найденного в результате выборочного наблюдения, на объем генеральной совокупности. Практические расчеты при этом не вызывают серьезных затруднений. Например, на основании выборочного обследования 1000 молодых семей требуется оценить потребность в местах в детских яслях. С помощью метода прямого пересчета это можно сделать следующим образом. Известно, что ясли могут посещать дети в возрасте до трех лет. По материалам выборочного обследования следует вычислить среднее число детей этого возраста в расчете на 1 семью. Предположим, что оно составляет 0,3 человека. Умножив это число на численность генеральной совокупности, получим, что в детских яслях потребуется выделить 300 мест.

В условиях существования большого числа факторов, влияющих на точность данных выборочного наблюдения, использование точечной оценки при распространении выборочных характеристик на генеральную совокупность в статистических исследованиях часто нецелесообразно. Во всех случаях, когда это возможно, правильнее пользоваться интервальной оценкой, позволяющей учесть размер предельной ошибки выборки, рассчитанной для средней или для доли признака. Так, если в нашем примере число детей в возрасте до трех лет по выборочным данным составило 0,3 человека, а предельная ошибка - ± 0,1 человека, то требуемое количество мест в детских учреждениях будет находиться в пределах от 200 до 400.

Наряду со способом прямого пересчета при распространении данных выборочного наблюдения на генеральную совокупность применяется так называемый способ коэффициентов. Данный способ целесообразно использовать в случаях, когда выборочное наблюдение проводится с целью проверки и уточнения данных сплошного наблюдения, в частности численности учтенных единиц совокупности.

При этом следует использовать следующую формулу:

,

где Y1 - численность совокупности с поправкой на недоучет;

Y0 - численность совокупности без этой поправки;

у0 - численность совокупности в контрольных точках по первоначальным данным;

у1 - численность совокупности в тех же точках по данным контрольных мероприятий.

До сих пор возможности выборки при уточнении данных сплошного наблюдения используются недостаточно. В то же время в современных условиях данный способ может быть, например, одним из инструментов контроля деятельности коммерческих структур со стороны финансовых органов.

При уточнении данных сплошного наблюдения на основе контрольных выборочных мероприятий определяется так называемая поправка на недоучет.

Метод ее расчета наиболее широко применяется в обследованиях относительно небольших совокупностей, когда их объем не превышает нескольких сотен или тысяч единиц.

Пример 8. При проведении учета коммерческих палаток в городе было зарегистрировано следующее их количество в районах: А - 2000; Б - 1500; В - 750.

С целью проверки данных сплошного учета проведены контрольные обходы части обследованных районов. Их результаты содержатся в нижеприведенной табл. 4.

Таблица 4.

Количество коммерческих палаток в районах города до и после контрольных обходов

Районы

Зарегистрировано

при сплошном

учете

Установлено при

контрольном обходе

Коэффициент недоучета

А

400

420

1,050

Б

300

310

1,033

В

150

160

1,067

Рассчитанный по каждой категории работников коэффициент недоучета является основой уточнения имеющихся данных.

В нашем примере количество коммерческих палаток (по данным сплошного учета) следует умножить на рассчитанный для каждого района коэффициент недоучета. В итоге получим результаты, представленные в табл. 5.

Таблица 5.

Уточненные данные учета коммерческих палаток в районах города

Количество коммерческих палаток в рай-

онах города

А

Б

В

Данные сплошного наблюдения

2000

1500

750

Численность с поправкой на недоучет

2100

1550

800

Малая выборка

В практике статистического исследования в условиях рыночной экономики все чаще приходится сталкиваться с небольшими по объему так называемыми малыми выборками. Под малой выборкой понимается такое выборочное наблюдение, численность единиц которого не превышает 30. В настоящее время малая выборка используется более широко, чем раньше, прежде всего за счет статистического изучения деятельности малых и средних предприятий, коммерческих банков, фермерских хозяйств и т.д. Их количество в определенных случаях, особенно при региональных исследованиях, а также величина характеризующих их показателей (например, численность занятых) часто незначительны. Поэтому хотя общий принцип выборочного обследования (с увеличением объема выборки повышается точность выборочных данных) остается в силе, иногда приходится ограничиваться малым числом наблюдений.

Наряду со статистическим изучением рыночных структур эта необходимость возникает при выборочной проверке качества продукции, в научно-исследовательской работе и в ряде других случаев.

При оценке результатов малой выборки величина генеральной дисперсии в расчетах не используется. Для определения возможных пределов ошибки пользуются так называемым критерием Стьюдента, определяемым по формуле:

,

где

- это мера случайных колебаний выборочной средней в малой выборке.

Приведем выдержку из таблицы распределения Стьюдента.

Таблица 6.

Распределение вероятности в малых выборках в зависимости от коэффициента доверия t и объема выборки n*

n

t

4

5

6

7

8

9

10

15

20

?

0,5

348

356

362

366

368

370

372

376

378

383

1,0

608

626

636

644

650

654

656

666

670

683

1,5

770

792

806

816

832

828

832

846

850

865

2,0

860

884

908

908

914

920

924

936

940

954

2,5

933

946

955

959

963

966

968

975

978

988

3,0

942

960

970

970

980

938

984

992

992

997

* При n = ? в таблице даны вероятности нормального распределения. Для определения вероятности соответствующие табличные значения следует разделить на 1000. Как видно из таблицы, при увеличении n это распределение стремится к нормальному и при n = 20 уже мало от него отличается. Покажем, как пользоваться таблицей распределения Стьюдента.

Пример 9. Предположим, что выборочное обследование 10 рабочих малого предприятия показало, что на выполнение одной из производственных операций рабочие затрачивали времени (мин.): 3,4; 4,7; 1,8; 3,9; 4,2; 3,9; 4,2; 3,9; 3,7; 3,2; 2,2; 3,9.

Найдем выборочные средние затраты:

мин.

Выборочная дисперсия:

.

Отсюда средняя ошибка малой выборки равна:

мин.

По табл. 6 находим, что для коэффициента доверия t = 2 и объема малой выборки n =10 вероятность равна 0,924. Таким образом, с вероятностью 0,924 можно утверждать, что расхождение между выборкой и генеральной средними лежит в пределах от - 2µ до +2µ, т.е. разность не превысит по абсолютной величине 0,56 (2Ч0,28). Следовательно, средние затраты времени во всей совокупности будут находиться в пределах от 2,93 до 4,05 мин. Вероятность того, что это предположение в действительности неверно и ошибка по случайным причинам будет по абсолютной величине больше, чем 0,56, равна: 1 - 0,924 = 0,076.

Размещено на Allbest.ru


Подобные документы

  • Понятие и основные виды выборочного наблюдения. Ошибки выборочного статистического наблюдения. Определение генеральной совокупности, проблема соотношения выборки и совокупности. Точечная и интервальная оценка параметров генеральной совокупности.

    контрольная работа [32,6 K], добавлен 02.12.2015

  • Изучение предмета, задач, методов исследования (наблюдение - сплошное, выборочное; группировка, обобщающие показатели) социальной-экономической статистики в условиях рынка. Ознакомление с организационной и информационной базами государственной статистики.

    реферат [28,5 K], добавлен 10.05.2010

  • Понятие о выборочном наблюдении, его преимущества. Ошибки выборки и основные способы отбора. Распространение выборочных данных на генеральную совокупность. Определение необходимой численности выборки. Оценка существенности расхождения выборочных средних.

    контрольная работа [95,1 K], добавлен 22.12.2010

  • Ряды распределения, их построение по количественному или по атрибутивному признаку. Выборочное метод наблюдения при сборе информации в условиях развитой рыночной экономики. Статистические методы изучения взаимосвязей социально-экономических явлений.

    реферат [66,2 K], добавлен 03.02.2010

  • Понятие выборочного наблюдения, его преимущества и недостатки. Определение понятий "генеральная совокупность" и "выборочная совокупность". Расчет предельной ошибки при простой и типической выборке. Определение дисперсии и доверительной вероятности.

    презентация [273,0 K], добавлен 27.04.2013

  • Понятие о выборочном методе наблюдения, его цель и основные статистические показатели. Способы отбора в выборочную совокупность. Определение средних и предельных ошибок, возникающих при исследовании. Определение необходимости численности выборки.

    презентация [429,9 K], добавлен 25.05.2016

  • Сущность понятий выборки и выборочного наблюдения, основные виды и категории отбора. Определение объема и численности выборки. Практическое применение статистического анализа выборочного наблюдения. Расчет ошибок выборочной доли и выборочной средней.

    курсовая работа [132,8 K], добавлен 17.02.2015

  • Простая сводка данных по показателю "Внешняя торговля по субъектам РФ". Вариационный анализ статистической совокупности. Выборочное наблюдение и генеральная совокупность на основе выборочной. Анализ рядов динамики и корреляционный анализ показателей.

    курсовая работа [1,6 M], добавлен 26.02.2012

  • Проведение статистического наблюдения за деятельностью предприятий. Стоимость основных производственных фондов. Статистический анализ генеральной совокупности. Описательные статистики выборочной совокупности. Распределение единиц выборочной совокупности.

    практическая работа [66,9 K], добавлен 31.01.2012

  • Ошибки регистрации и репрезентативности (представительности) - отклонения или разности между зафиксированными величинами при статистическом наблюдении, их причины. Показатели относительного рассеивания; правила построения таблиц; выборочное наблюдение.

    контрольная работа [109,2 K], добавлен 06.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.