Ряды динамики

Понятие рядов динамики, их виды и основные статистические показатели. Методика расчета среднего уровня в интервальных и моментных рядах. Исчисление показателей абсолютного прироста. Методы выравнивания рядов динамики: эмпирические и аналитические.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 29.09.2012
Размер файла 404,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • 1. Понятие рядов динамики. Их виды
    • 2. Анализ рядов динамики
      • 3. Методы выравнивания рядов динамики
  • Список литературы

1. Понятие рядов динамики. Их виды

Группировка первичного материала и вычисление обобщающих показателей позволяют на этапе статистического исследования решать задачи анализа развития изучаемых явлений, во-первых, во времени и, во-вторых, во взаимосвязи.

Первая задача решается путем построения и обработки динамических (временных) рядов, которые представляют собой совокупности последовательно расположенных показателей, характеризующих изменение какого-либо явления во времени.

Анализ временного ряда обычно начинается с выделения компонента, называемого в правовой статистике, трендом: его присутствие или отсутствие наглядно показывает график временного ряда.

Трендом временного ряда TRt, при t=1, ..., n называют плавно изменяющийся, не циклический компонент, описывающий чистое влияние долговременных факторов, эффект которых сказывается постепенно.

Сезонный компонент отражает повторяемость процессов во времени.

Сезонный компонент St временного ряда при t = 1, ..., n описывает поведение, изменяющееся регулярно в течение заданного периода (года, месяца, недели, дня и т.п.). Он состоит из последовательности почти повторяющихся циклов.

Сезонные эффекты присущи многим сферам человеческой активности: многие виды продукции имеют сезонный характер производства, некоторые виды преступлений (кражи, изнасилования) также имеют ярко выраженную сезонность.

Сезонный компонент может иметь плавающий, или изменяющийся характер. Идея подхода к анализу сезонных компонентов заключается в переходе к сравнению значений через определенный период времени. Так, при изучении динамики месячных количеств краж за несколько лет данные декабря одного года обычно сравнивают с данными декабря предыдущего года.

Циклический компонент занимает промежуточное положение между закономерной и случайной составляющими временного ряда. Если тренд - это плавные изменения, проявляющиеся на больших временных промежутках, если сезонный компонент - это периодическая функция времени, ясно видимая, когда ее период много меньше общего времени наблюдений, то под циклическим компонентом обычно подразумевают изменения временного ряда, достаточно плавные и заметные для того, чтобы не включать их в случайную составляющую, и которые нельзя отнести ни к тренду, ни к сезонному, периодическому компоненту.

Циклический компонент Сt, временного ряда описывает длительные периоды относительного подъема и спада. Он состоит из циклов, которые меняются по амплитуде и протяженности.

Числовые значения показателей динамического ряда называются уровнями ряда, которые могут быть выражены абсолютными показателями, относительными и средними величинами.

В тех случаях, когда уровни выражены абсолютными показателями, различают интервальные и моментные ряды.

Ряды динамики, статистические ряды, характеризующие изменение (развитие) социально-экономических явлений во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.

Ряды динамики содержат два вида показателей. Показатели времени (годы, кварталы, месяцы и др.) или моменты времени (на начало года, на начало каждого месяца и т.п.). Показатели уровней рядов динамики могут быть выражены абсолютными величинами (производство продукта в тоннах или рублях), относительными величинами (удельный вес городского населения в %) и средними величинами (средняя заработная плата работников отрасли по годам и т. п.). В табличной форме ряд динамики содержит два столбца или две строки.

Правильное построение рядов динамики предполагает выполнение ряда требований: [3; c. 75]

· все показатели ряда динамики должны быть научно обоснованными, достоверными;

· показатели ряда динамики должны быть сопоставимы по времени, т.е. должны быть исчислены за одинаковые периоды времени или на одинаковые даты;

· показатели ряда динамики должны быть сопоставимы по территории;

· показатели ряда динамики должны быть сопоставимы по содержанию, т.е. исчислены по единой методологии, одинаковым способом;

· показатели ряда динамики должны быть сопоставимы по кругу учитываемых хозяйств. Все показатели ряда динамики должны быть приведены в одних и тех же единицах измерения.

Статистические показатели могут характеризовать либо результаты изучаемого процесса за период времени, либо состояние изучаемого явления на определенный момент времени, т.е. показатели могут быть интервальными (периодическими) и моментными. Соответственно первоначально ряды динамики могут быть либо интервальными, либо моментными. Моментные ряды динамики в свою очередь могут быть с равными и неравными промежутками времени.

Последовательно расположенные во времени статистические данные называются уровнями рядов динамики. Они должны быть сопоставимы между собой, особенно в территориальном разрезе, по кругу охватываемых объектов, методике расчёта, критической дате, структуре. Уровни. могут характеризовать величину явлений за некоторые отрезки времени (интегральные Р. д.) или на определённую дату (моментные Р. д.).

Первоначальные ряды динамики могут быть преобразованы в ряд средних величин и ряд относительных величин (цепной и базисный). Такие ряды динамики называют производными рядами динамики.

Методика расчета среднего уровня в рядах динамики различна, обусловлена видом ряда динамики. На примерах рассмотрим виды рядов динамики и формулы для расчета среднего уровня.

Уровни интервального ряда характеризуют результат изучаемого процесса за период времени: производство или реализация продукции (за год, квартал, месяц и др. периоды), число принятых на работу, число родившихся и.т.п. Уровни интервального ряда можно суммировать. При этом получаем такой же показатель за более длительные интервалы времени.

Средний уровень в интервальных рядах динамики исчисляется по формуле средней арифметической простой:

y -- уровни ряда (y1, y2 ,...,yn),

n -- число периодов (число уровней ряда).

Рассмотрим методику расчета среднего уровня интервального ряда динамики на примере данных о продаже сахара в России.

Годы

Продано сахара, тыс. тонн

1994

2905

1995

2585

1996

2647

- это среднегодовой объем реализации сахара населению России за 1994-1996 гг. Всего за три года было продано 8137 тыс.тонн сахара.

Особенностью интервального ряда динамики является то, что каждый его уровень складывается из данных за более короткие интервалы (субпериоды) времени. Например, суммируя товарооборот за первые три месяца года, получают его объем за I квартал, а суммируя товарооборот за четыре квартала, получают его величину за год, и т. д. При прочих равных условиях уровень интервального ряда тем больше, чем больше длина интервала, к которому этот уровень относится.

Свойство суммирования уровней за последовательные интервалы времени позволяет получить ряды динамики более укрупненных периодов.

Посредством интервальных рядов динамики в торговле изучают изменения во времени поступления и реализации товаров, суммы издержек обращения и других показателей, отображающих итоги функционирования изучаемого явления за отдельные периоды.

Статистическое отображение изучаемого явления во времени может быть представлено рядами динамики с нарастающими итогами. Их применение обусловлено потребностями отображения результатов развития изучаемых показателей не только за данный отчетный период, но и с учетом предшествующих периодов. При составлении таких рядов производится последовательное суммирование смежных уровней. Этим достигается суммарное обобщение результата развития изучаемого показателя с начала отчетного периода (года, месяца, квартала и т. д.).

Ряды динамики с нарастающими итогами строятся при определении общего объема товарооборота в розничной торговле. Так, обобщением товарно - денежных отчетов за последние операционные периоды (пятидневки, недели, декады и т. д.) .

2) По форме представления уровней. Могут быть построены также ряды динамики, уровни которых представляют собой относительные и средние величины. Они также могут быть либо моментными либо интервальными.

В интервальных рядах динамики относительных и средних величин непосредственное суммирование уровней само по себе лишено смысла, так как относительные и средние величины являются производными и исчисляются через деление других величин.

По расстоянию между датами или интервалам времени выделяют полные или неполные ряды динамики.

Полные ряды динамики имеют место тогда, когда даты регистрации или окончания периодов следуют друг за другом с равными интервалами. Это равноотстоящие ряды динамики. Неполные - когда принцип равных интервалов не соблюдается.

4) По числу показателей можно выделить изолированные и комплексные (многомерные) ряды динамики. Если ведется анализ во времени одного показателя, имеем изолированный ряд динамики. Комплексный ряд динамики получается в том случае, когда в хронологической последовательности дается система показателей, связанных между собой единством процесса или явления.

Уровни моментных рядов динамики характеризуют состояние изучаемого явления на определенные моменты времени. Каждый последующий уровень включает в себя полностью или частично предыдущий показатель. Так, например, число работников на 1 апреля 1999 г. полностью или частично включает число работников на 1 марта.

Если сложить эти показатели, то получим повторный счет тех работников, которые работали в течение всего месяца. Полученная сумма экономического содержания не имеет, это расчетный показатель.

В моментных рядах динамики с равными интервалами времени средний уровень ряда исчисляется по формуле средней хронологической:

y -уровни моментного ряда;

n -число моментов (уровней ряда);

n -- 1 -- число периодов времени (лет, кварталов, месяцев). [1; c. 107]

Рассмотрим методику такого расчета по следующим данным о списочной численности работников предприятия за 1 квартал.

на 1 января

150

на 1 февраля

145

на 1 марта

162

на 1 апреля

166

Необходимо вычислить средний уровень ряда динамики, в данном примере -- среднюю списочную численность работников предприятия:

Расчет выполнен по формуле средней хронологической. Средняя списочная численность работников предприятия за 1 квартал составила 155 человек. В знаменателе -- 3 месяца в квартале, а в числителе (465) -- это расчетное число, экономического содержания не имеет. В подавляющем числе экономических расчетов месяцы, независимо от числа календарных дней, считаются равными.

В моментных рядах динамики с неравными интервалами времени средний уровень ряда исчисляется по формуле средней арифметической взвешенной. В качестве весов средней принимается продолжительность времени ( t- дни, месяцы ). Выполним расчет по этой формуле.

Списочная численность работников предприятия за октябрь такова: на 1 октября -- 200 человек, 7 октября принято 15 человек, 12 октября уволен 1 человек, 21 октября принято 10 человек и до конца месяца приема и увольнения работников не было. Эту информацию можно представить в следующем виде:

Число работников

Число дней (период времени)

200

6 (с 1 по 6 включительно)

215

5 (с 7 по 11 включительно)

214

9 (с 12 по 20 включительно)

224

11 (с 21 по 31 включительно)

При определении среднего уровня ряда надо учесть продолжительность периодов между датами, т. е. применять формулу средней арифметической взвешенной:

В данной формуле числитель имеет экономическое содержание. В приведенном примере числитель (6665 человеко-дней) -- это календарный фонд времени работников предприятия за октябрь. В знаменателе (31 день) -- календарное число дней в месяце.

В тех случаях, когда имеем моментный ряд динамики с неравными интервалами времени, а конкретные даты изменения показателя неизвестны исследователю, то сначала надо вычислить среднюю величину () для каждого интервала времени по формуле средней арифметической простой, а затем вычислить средний уровень для всего ряда динамики, взвесив исчисленные средние величины продолжительностью соответствующего интервала времени. Формулы имеют следующий вид:

Рассмотренные выше ряды динамики состоят из абсолютных показателей, получаемых в результате статистических наблюдений. Построенные первоначально ряды динамики абсолютных показателей могут быть преобразованы в ряды производные: ряды средних величин и ряды относительных величин. Ряды относительных величин могут быть цепные (в % к предыдущему периоду) и базисные (в % к начальному периоду, принятому за базу сравнения -- 100%). Расчет среднего уровня в производных рядах динамики выполняется по другим формулам.

2. Анализ рядов динамики

Для обоснованной оценки развития явлений во времени необходимо исчислить аналитические показатели: абсолютный прирост, коэффициент роста, темп роста, темп прироста, абсолютное значение одного процента прироста. В таблице приведен цифровой пример, а ниже даны формулы расчета и экономическая интерпретация показателей.

Анализ динамики производства продукта "A" по предприятию за 1994-1998 г.

Годы

Произведено,

Абсолютные

приросты,

тыс. т

Цеп-ные

базис-ные

цеп-ные

базис-ные

цеп-ные

базис-ные

цеп-ные

базис-ные

3

4

5

6

7

8

9

10

1994

200

-

-

-

1,00

-

100

-

-

-

1995

210

10

10

1,050

1,05

105,0

105

5,0

5,0

2,00

1996

218

8

18

1,038

1,09

103,8

109

3,8

9,0

2,10

1997

230

12

30

1,055

1,15

105,5

115

5,5

15,0

2,18

1998

234

Абсолютные приросты (Дy) показывают, на сколько единиц изменился последующий уровень ряда по сравнению с предыдущим (гр.3. -- цепные абсолютные приросты) или по сравнению с начальным уровнем (гр.4. -- базисные абсолютные приросты). Формулы расчета можно записать следующим образом:

При уменьшении абсолютных значений ряда будет соответственно "уменьшение", "снижение".

Показатели абсолютного прироста свидетельствуют о том, что, например, в 1998 г. производство продукта "А" увеличилось по сравнению с 1997 г. на 4 тыс. т, а по сравнению с 1994 г. -- на 34 тыс. т.; по остальным годам см. табл. 11.5 гр. 3 и 4.

Коэффициент роста показывает, во сколько раз изменился уровень ряда по сравнению с предыдущим (гр.5 -- цепные коэффициенты роста или снижения) или по сравнению с начальным уровнем (гр.6 -- базисные коэффициенты роста или снижения). Формулы расчета можно записать следующим образом:

Темпы роста показывают, сколько процентов составляет последующий уровень ряда по сравнению с предыдущим (гр.7 -- цепные темпы роста) или по сравнению с начальным уровнем (гр.8 -- базисные темпы роста). Формулы расчета можно записать следующим образом:

Так, например, в 1997 г. объем производства продукта "А" по сравнению с 1996 г. составил 105,5 %.

Темпы прироста показывают, на сколько процентов увеличился уровень отчетного периода по сравнению с предыдущим (гр.9- цепные темпы прироста) или по сравнению с начальным уровнем (гр.10- базисные темпы прироста ). Формулы расчета можно записать следующим образом:

Тпр = Тр - 100%

или

Тпр= абсолютный прирост / уровень предшествующего периода * 100%

Так, например, в 1996 г. по сравнению с 1995 г. продукта "А" произведено больше на 3,8 % (103,8 %- 100%) или (8:210)х100%, а по сравнению с 1994 г. -- на 9% (109% -- 100%).

Если абсолютные уровни в ряду уменьшаются, то темп будет меньше 100% и соответственно будет темп снижения (темп прироста со знаком минус).

Абсолютное значение 1% прироста (гр. 11) показывает, сколько единиц надо произвести в данном периоде, чтобы уровень предыдущего периода возрос на 1 %. В нашем примере, в 1995 г. надо было произвести 2,0 тыс. т., а в 1998 г. -- 2,3 тыс. т., т.е. значительно больше.

Определить величину абсолютного значения 1% прироста можно двумя способами: [2; c. 65]

· уровень предшествующего периода разделить на 100;

· цепные абсолютные приросты разделить на соответствующие цепные темпы прироста.

Абсолютное значение 1% прироста =

В динамике, особенно за длительный период, важен совместный анализ темпов прироста с содержанием каждого процента прироста или снижения.

Заметим, что рассмотренная методика анализа рядов динамики применима как для рядов динамики, уровни которых выражены абсолютными величинами (т, тыс. руб., число работников и т.д.), так и для рядов динамики, уровни которых выражены относительными показателями (% брака, % зольности угля и др.) или средними величинами (средняя урожайность в ц/га, средняя заработная плата и т.п.).

Наряду с рассмотренными аналитическими показателями, исчисляемыми за каждый год в сравнении с предшествующим или начальным уровнем, при анализе рядов динамики необходимо исчислить средние за период аналитические показатели: средний уровень ряда, средний годовой абсолютный прирост (уменьшение) и средний годовой темп роста и темп прироста.

Методы расчета среднего уровня ряда динамики были рассмотрены выше. В рассматриваемом нами интервальном ряду динамики средний уровень ряда исчисляется по формуле средней арифметической простой:

Среднегодовой объем производства продукта за 1994- 1998 гг. составил 218,4 тыс. т.

Среднегодовой абсолютный прирост исчисляется также по формуле средней арифметической простой:

Ежегодные абсолютные приросты изменялись по годам от 4 до 12 тыс.т (см.гр.3), а среднегодовой прирост производства за период 1995 -- 1998 гг. составил 8,5 тыс. т.

3. Методы выравнивания рядов динамики

статистический ряд динамика прирост

Построение динамического ряда в отдельных случаях, когда показатели уровней последовательно увеличиваются или уменьшаются, может сразу обнаружить тенденцию развития явления во времени. Но такие случаи бывают редко. Чаще всего уровни ряда на протяжении определенного времени колеблются. Эти колебания вызываются одновременным действием случайных и систематических, краткосрочных и долговременных факторов. Задача состоит в том, чтобы, отбросив случайные факторы, выявить общую тенденцию в изменении уровней ряда. Такая задача решается путем применения методов выравнивания динамических рядов.

Методы выравнивания динамических рядов можно разделить на две группы: эмпирические и аналитические. [2; с. 213]

Одним из самых простых эмпирических методов выравнивания динамических рядов является метод укрупнения интервалов. Суть его состоит в том, что в результате анализа ряда выбирается соответствующий укрупненный интервал и в пределах этого интервала складываются показатели уровней имеющегося ряда, в результате чего получается новый выровненный ряд. Рассмотрим пример.

Для выравнивания ряда выбираем интервал в три месяца и, сложив в пределах этих месяцев показатели уровней ряда, получим выровненный ряд:

Следует иметь в виду, что данный способ применим только к интервальным рядам. Для моментных рядов и рядов средних величин рассчитывается средний уровень по новым укрупненным интервалам.

Другим эмпирическим методом выравнивания динамических рядов является метод скользящей средней. Суть метода заключается в замене фактических уровней ряда скользящими средними, взятыми в пределах последовательно сдвигаемых интервалов. При этом способе по каждому укрупненному интервалу берется не сумма показателей, а их средняя арифметическая, причем после вычисления первой средней интервал переносится на один шаг вправо.

Для расчета скользящей средней можно, например, взять сумму пяти уровней и вычислить среднюю арифметическую этой суммы, разделив ее на пять. Далее, переходя на один интервал, подсчитывают среднюю для следующих пяти членов (начиная со второго) и так до конца.

В результате получается динамический ряд скользящих средних, который помогает более отчетливо выявить тенденции в развитии явлений.

Интервал в пять членов ряда выбран в данном случае произвольно. Можно производить сглаживание скользящими средними за 2, 3, 4 периода и т.д. в зависимости от характера динамического ряда.

Чем больше интервал, за который исчисляется средняя, тем более сглаженный ряд приближается к фактическому.

Помимо эмпирических методов существуют более сложные аналитические методы обработки динамических рядов. Сущность этих методов заключается в том, что на основе фактических данных подбираются подходящие для отражения тенденций развития явления математические уравнения, по которым рассчитываются теоретические значения уровней ряда. Используя математические критерии сравнения, среди уравнений выбирается такое, которое наилучшим образом описывает экспериментальные данные. Затем с его помощью находят расчетные уровни ряда динамики, близкие к фактическим и выявляющие тенденции развития явления, нашедшего отражение в форме исходного динамического ряда. В качестве зависимостей для аналитической обработки динамических рядов могут выбираться прямолинейная, параболическая, гиперболическая, экспоненциальная, логарифмическая и др.

Простейшей математической формулой, выражающей тенденции развития, является формула прямой линии. Прямая линия характеризует равномерное изменение динамики. Выравнивание по прямой осуществляется методом наименьших квадратов. Этот метод обеспечивает минимальную разность между фактическими и теоретическими уровнями.

Выравнивание, как особый способ обработки динамических рядов, решает задачу выявления тенденций развития того или иного явления к настоящему моменту. Но при исследовании может возникнуть и другая задача, а именно: как данное явление будет развиваться в будущем.

Нахождение по известным значениям недостающих уровней внутри динамического ряда называется интерполяцией. Таким образом, экстраполяция и интерполяция - это распространение выводов, полученных из наблюдения над одной частью явления на другую его часть.

Метод экстраполяции заключается в нахождении значений, лежащих за пределами данного статистического ряда: по известным значениям статистического ряда находятся другие значения, лежащие за пределами этого ряда.

При экстраполяции выводы, которые сделаны при изучении тенденций развития явления в прошлом и настоящем, переносятся на будущее, т.е. в основе метода лежит предположение об определенной стабильности факторных признаков, влияющих на развитие данного явления.

Ввиду такого предположения экстраполяцию можно применять при прогнозировании на короткий срок, причем прогнозируемый период должен быть значительно меньше периода, за который выявлена тенденция изучаемого явления.

При экстраполяции используется следующая терминология и понятия : t1 -- глубина ретроспекции; t2 -- момент прогнозирования; tз -- прогнозный горизонт; t2 - t1-интервал наблюдения (промежуток времени, на базе которого исследуется история развития объекта прогнозирования); t3 - t2 -- интервал упреждения (промежуток времени, на который разрабатывается прогноз). [3; c. 87]

Чем более устойчивый характер носят прогнозируемые процессы и тенденции, тем дальше может быть отодвинут горизонт прогнозирования. Как показывает практика, интервал наблюдения должен быть в три и более раза длиннее интервала упреждения. Как правило, этот период довольно короткий: до 1-го года. Метод экстраполяции не работает и при скачкообразных процессах.

Метод экстраполяции легко реализуется на персональных компьютерах. В частности, он особенно оперативен в реализации при использовании табличного процессора MS Excel, который можно установить практически на все современные персональные компьютеры.

Однако следует заметить, что при этом необходимо быть внимательным при выборе вида нелинейной функции линии тренда. Чем больше значение коэффициента достоверности R2, тем точнее сглаживающая кривая описывает эмпирические данные, но долгосрочная тенденция отражается тогда в меньшей степени. Поэтому при интерпретации полученной линии тренда, когда она неограниченно растет или резко уменьшается, надо учитывать также и физический смысл.

Следует иметь в виду и то обстоятельство, что экстраполяция - это не конечный результат, а отправной момент прогнозирования. Прогноз разрабатывается с учетом результатов экстраполяции, но с привлечением дополнительной информации, не содержащейся в самом динамическом ряду.

Если значения уровней динамического ряда последовательно увеличиваются или последовательно уменьшаются, то экстраполяцию можно осуществлять методом среднего геометрического. В этом случае находится средний темп роста, а он, как нам уже известно, определяется с помощью среднего геометрического. Умножая последний известный уровень ряда на средний темп, находим первый расчетный уровень; умножая его на средний темп роста, находим второй расчетный уровень и т.д.

Для динамических рядов, значения показателей уровней которых колеблются, можно применять аналитические методы выравнивания. Аналитическая обработка интервальных рядов динамики в целях выделения из их уровней случайных компонентов и установления тенденций развития осуществляется с помощью ряда способов, одним из наиболее часто применяемых и теоретически обоснованных среди которых является метод наименьших квадратов.

Посредством выравнивания по способу наименьших квадратов не только устанавливается общая тенденция развития явления, но и дается количественная характеристика изменения уровней ряда. Выравнивание может быть произведено по прямой или какой-либо другой линии, выражающей функциональную зависимость уровня динамического ряда от времени:

Выравниванию предшествует теоретический анализ динамического ряда в целях познания сущности исследуемого явления и законов его развития, на основе чего устанавливаются характер динамики и тип необходимой кривой. Теоретический, качественный анализ является основой и в дальнейшем преобразовании ряда. Выравнивание же выступает лишь в качестве технического приема, инструмента, который способствует теоретическому анализу. Если явление развивается с относительно стабильными абсолютными приростами ?У, то на практике чаще всего применяется выравнивание по прямой линии. При выравнивании ряда динамики по прямой линии фактические уровни У ряда заменяют теоретическими Уt, которые равномерно возрастают или убывают, так как прямой линией характеризуется равномерное изменение динамики.

Метод наименьших квадратов предполагает в этом случае, что расчетные уровни ряда должны лежать на прямой линии, которая ближе всего подходит к линии фактических уровней ряда и наиболее точно отражает тенденции изменения ряда. Найденная прямая обладает следующим свойством: сумма квадратов отклонений ее ординат от соответствующих ординат исходного ряда, т.е. разность между экспериментальными и теоретическими уровнями при одних и тех же абсциссах является наименьшей. Значения t всегда известны, а для нахождения нужно определить параметры прямой а и b. Для нахождения параметров линейного уравнения получается система линейных уравнений.

В целях облегчения нахождения параметров а и b систему упрощают, придавая условно показателям времени t такие значения, при которых их сумма становится равной нулю. Для этого в рядах с нечетным числом членов серединный член обозначается нулевым интервалом t = 0, а другие члены получают условные номера -1, -2, -3 и т.д. и +1, +2, +3 и т.д. Если число членов ряда четное, то два серединных члена обозначаются нулевыми интервалами, а другие члены, как и ранее, -1, -3, -5, -7 и т.д., +1, +3, +5,+7 и т.д. Определив параметры а и b, легко вычислить теоретические (расчетные) уровни, т.е. ординаты точек искомой прямой Уt. [2; c. 89]

Аналитическая обработка динамического ряда позволяет за колебаниями уровней исходного ряда обнаружить определенную тенденцию (тренд), количественным выражением которой будет значение параметра b, и экстраполировать динамический ряд в будущее. При этом следует иметь в виду, что интервал прогноза должен быть гораздо короче того периода, за который выявлена тенденция прогнозируемого процесса.

Список литературы

1. Статистика. Учебник для ВУЗов под редакцией Елисеевой И.И. М.: Проспект 2006.- 443 с.

2. Минашкин В.Г., Козарезова Л.О. Основы теории статистики. М: Финансы и статистика - 2004. 141 с.

3. Ефимова М.Р., Ганченко О.И., Петрова Е.В. Практикум по общей теории статистики. М. Финансы и статистика - 2005 . 332 с.

4. Красс М.С., Чупрынов Б.П. Математика для экономистов. СПб.: Питер 2008. 464 с.

Размещено на Allbest.ru


Подобные документы

  • Анализ системы статистических показателей, характеризующих аналитические показатели рядов динамики. Статистические методы, применяемые при изучении рядов динамики. Исследование структуры совокупности. Определение ошибки выборки. Расчет объема оборота.

    курсовая работа [569,2 K], добавлен 03.10.2010

  • Ряды динамки: тренд, методы выравнивания рядов динамики. Приведение рядов динамики в сопоставимый вид. Разно великие интервалы времени, изменение даты, методологии или расчета показателя, единицы измерения. Длительность интервала времени между уровнями.

    реферат [24,1 K], добавлен 08.03.2009

  • Объекты статистического исследования. Необходимость и сущность выравнивания (сглаживания) рядов динамики. Методы выравнивания (укрупнение интервалов). Метод сменного среднего, аналитического выравнивания. Сравнительная характеристика и сфера применения.

    контрольная работа [62,1 K], добавлен 30.04.2009

  • Сущность и отличительные черты статистических методов анализа: статистическое наблюдение, группировка, анализа рядов динамики, индексный, выборочный. Порядок проведения анализа рядов динамики, анализа основной тенденции развития в рядах динамики.

    курсовая работа [1,0 M], добавлен 09.03.2010

  • Статистический анализ рядов динамики. Показатели изменения уровней ряда динамики. Связный анализ рядов динамики. Корреляционный анализ рядов динамики. Элементы интерполяции и экстраполяции. Встроенные функции MS Excel для анализа рядов динамики.

    курсовая работа [1,0 M], добавлен 17.12.2015

  • Предмет и метод статистики. Сущность и основные аспекты статистического наблюдения. Ряды распределения. Статистические таблицы. Абсолютные величины. Показатели вариации. Понятие о статистических рядах динамики. Сопоставимость в рядах динамики.

    шпаргалка [31,9 K], добавлен 26.01.2009

  • Рассмотрение особенностей моментных и интервальных рядов динамики. Установка вида ряда динамики и приведение динамики к сопоставимому виду. Определение общей тенденции развития и прогнозирование динамики доходов населения в России за период 2004-2013.

    курсовая работа [844,4 K], добавлен 19.12.2014

  • Методика проведения анализа динамических рядов социально-экономических явлений. Компоненты, формирующие уровни при анализе рядов динамики. Порядок составления модели экспорта и импорта Нидерландов. Уровни автокорреляции. Корреляция рядов динамики.

    курсовая работа [583,6 K], добавлен 13.05.2010

  • Средние показатели в рядах динамики. Проверка ряда на наличие тренда. Непосредственное выделение тренда. Анализ сезонных колебаний. Анализ взаимосвязанных рядов динамики. Статистико-детерминированный характер социально-экономических явлений.

    реферат [98,1 K], добавлен 07.12.2006

  • Инвестиции как объект статистического изучения, Система статистических показателей, их характеризующих. Применение метода анализа рядов динамики в изучении инвестиций. Аналитические показатели ряда динамики инвестиций в основной капитал Курской области.

    курсовая работа [704,1 K], добавлен 10.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.