Средние величины и показатели вариации

Сущность, основные принципы и области применения средних величин, их виды и особенности исчисления. Использование показателей моды в качестве структурных средних величин. Характеристика абсолютных и относительных показателей вариации, свойства дисперсии.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 24.05.2012
Размер файла 167,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Статистика - это наука, изучающая количественную сторону массовых явлений и процессов в неразрывной связи с их качественной стороны.

Статистическое исследование независимо от его масштабов и целей всегда завершается расчетом и анализом различных по виду и форме выражения статистических показателей.

Статистический показатель представляет собой количественную характеристику социально-экономических явлений и процессов в условиях качественной определенности.

Как правило, изучаемый статистикой процесс и явления достаточно сложны, и их сущность не может быть отражена посредством одного отдельно взятого показателя. В таких случаях используется система показателей.

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, является средняя величина, представляющая собой обобщенную количественную характеристику признака в статистической совокупности. Средняя величина дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Она отражает уровень этого признака, отнесенный к единице совокупности. Широкое применение средних объясняется тем, что они имеют ряд положительных свойств, делающих их независимым инструментом анализа явлений и процессов в экономике.

Важнейшее свойство средней величины заключается в том, что она отражает от общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные.

Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызнанные действием основных факторов. Это позволяет средней абстрагировать от индивидуальных особенностей, присуще отдельным единицам.

Информации о средних уровнях исследуемых показателей обычно бывает недостаточно для глубокого анализа изучаемого процесса или явления. Необходимо также учитывать и вариацию значений отдельных единиц относительно средней, которая является важной характеристикой изучаемой совокупности. Значительной вариации, например, подвержены курсы акций, объемы спроса и предложения, процентные ставки в разные периоды.

Основными показателями, характеризующим вариацию, является размах, дисперсия, среднее квадратическое отклонение и коэффициент вариации.

1. Средние величины

1.1 Понятие средней величины

Средняя величина - это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего - один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.

1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.

2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.

3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.

4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

1.2 Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качестве структурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

,

где Xi - варианта (значение) усредняемого признака;

m - показатель степени средней;

n - число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

,

где Xi - варианта (значение) усредняемого признака или серединное значение интервала, в котором измеряется варианта;

m - показатель степени средней;

fi - частота, показывающая, сколько раз встречается i-e значение усредняемого признака.

Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:

№п/п

Возраст

(лет)

№п/п

Возраст

(лет)

№п/п

Возраст

(лет)

№п/п

Возраст

(лет)

1

2

3

4

5

18

18

19

20

19

6

7

8

9

10

20

19

19

19

20

11

12

13

14

15

22

19

19

20

20

16

17

18

19

20

21

19

19

19

19

Средний возраст рассчитаем по формуле простой средней:

Сгруппируем исходные данные. Получим следующий ряд распределения:

Возраст, Х лет

18

19

20

21

22

Всего

Число студентов

2

11

5

1

1

20

В результате группировки получаем новый показатель - частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:

средняя гармоническая, если m = -1;

средняя геометрическая, если m -> 0;

средняя арифметическая, если m = 1;

средняя квадратическая, если m = 2;

средняя кубическая, если m = 3.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Таблица 1. Виды степенных средних

Вид степенной

средней

Показатель

степени (m)

Формула расчета

Простая

Взвешенная

Гармоническая

-1

Геометрическая

0

Арифметическая

1

Квадратическая

2

Кубическая

3

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности - носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым. Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i1, i2, i3,..., in. Очевидно, что объем производства в последнем году определяется начальным его уровнем (q0) и последующим наращиванием по годам:

qn=q0Ч i1Ч i2Ч...Чin.

Приняв qn в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

Отсюда

1.3 Структурные средние

Особый вид средних величин - структурные средние - применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды - наиболее часто повторяющегося значения признака - и медианы - величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой - не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

,

где XMe - нижняя граница медианного интервала;

hMe - его величина;

(Sum m)/2 - половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);

SMe-1 - сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;

mMe - число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

,

где ХMo - нижнее значение модального интервала;

mMo - число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);

mMo-1 - то же для интервала, предшествующего модальному;

mMo+1 - то же для интервала, следующего за модальным;

h - величина интервала изменения признака в группах.

2. Показатели вариации

2.1 Общее понятие о вариации

средний величина мода вариация

Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов, которые по-разному сочетаются в каждом отдельном случае. Средняя величина - это абстрактная, обобщающая характеристика признака изучаемой совокупности, но она не показывает строения совокупности, которое весьма существенно для ее познания. Средняя величина не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней, сосредоточены ли они вблизи или значительно отклоняются от нее. В некоторых случаях отдельные значения признака близко примыкают к средней арифметической и мало от нее отличаются. В таких случаях средняя хорошо представляет всю совокупность. В других, наоборот, отдельные значения совокупности далеко отстают от средней, и средняя плохо представляет всю совокупность. Колеблемость отдельных значений характеризуют показатели вариации. Термин "вариация" произошел от латинского variatio -“изменение, колеблемость, различие”. Однако не всякие различия принято называть вариацией. Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую. Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов. Например, изучая силу и характер вариации в выделяемой совокупности, можно оценить, насколько однородной является данная совокупность в количественном, а иногда и качественном отношении, а следовательно, насколько характерной является исчисленная средняя величина. Степень близости данных отдельных единиц хi к средней измеряется рядом абсолютных, средних и относительных показателей.

Вариацией называется различие значений признака у отдельных единиц совокупности.

Вариация возникает в силу того, что отдельные значения признака формируются по влияние большого числа взаимосвязанных факторов. Эти факторы часто действуют в противоположных направлениях и их совместное действие формирует значение признаков у конкретной единицы совокупности.

Необходимость изучения вариаций связана с тем, что средняя величина, обобщающая данные статистического наблюдения, на показывает как колеблется вокруг нее индивидуальное значение признака. Вариации присущи явлениям природы и общества. При этом революция в обществе происходит быстрее, чем аналогичные изменения в природе. Объективно существуют также вариации в пространстве и во времени.

Вариации в пространстве показывают различие статистических показателей относящихся к различным административно-территориальным единицам.

Вариации во времени показывают различие показателей в зависимости от периода или момента времени к которым они относятся.

2.2 Сущность и значение показателей вариации

2.2.1 Абсолютные показатели вариации (=42, без коэффициента)

К примерам вариаций относятся следующие показатели:

1. размах вариаций

2. среднее линейное отклонение

3. среднее квадратическое отклонение

4. дисперсия

5. коэффициент

1. Размах вариаций является ее простейшим показателем. Он определяется как разность между максимальным и минимальным значение признака. Недостаток этого показателя заключается в том, что он зависит только от двух крайних значений признака (min, max) и не характеризует колеблемость внутри совокупности.

R=Xmax-Xmin.

2. Среднее линейное отклонение является средней величиной абсолютных значений отклонений от средней арифметической. Отклонения берутся по модулю, т.к. в противном случае, из-за математических свойств средней величины, они всегда были бы равны нулю.

3. Среднее квадратическое отклонение определяется как корень из дисперсии.

4. Дисперсия (средний квадрат отклонений) имеет наибольшее применение в статистике как показатель меры колеблемости.

Дисперсия является именованным показателем. Она измеряется в единицах соответствующих квадрату единиц измерения изучаемого признака.

5. Коэффициент вариаций определяется как отношение среднего квадратического отклонения к средней величине признака, выраженное в процентах.

Он характеризует количественную однородность статистической совокупности. Если данный коэффициент < 50%, то это говорит об однородности статистической совокупности. Если же совокупность не однородна, то любые статистические исследования можно проводить только внутри выделенных однородных групп.

Дисперсия - средний квадрат отклонений индивидуальных значений признака от их средней величины.

Свойства дисперсии:

1. Дисперсия постоянной величины равна нулю.

2. Уменьшение всех значений признака на одну и ту же величину А не меняет величины дисперсии. Значит средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-то постоянного числа.

3. Уменьшение всех значений признака в k раз уменьшает дисперсию в k2 раз, а среднее квадратическое отклонение - к раз. Значит, все значения признака можно разделить на какое-то постоянное число (скажем, на величину интервала ряда), исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число.

4. Если исчислить средний квадрат отклонений от любой величины А, то в той или иной степени отличающейся от средней арифметической (X~), то он всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической. Средний квадрат отклонений при этом будет больше на вполне определенную величину - на квадрат разности средней и этой условно взятой величины.

Выделяют дисперсию общую, межгрупповую и внутригрупповую.

Общая дисперсия (2 измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию.

Межгрупповая дисперсия ((2x) характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки.

Внутригрупповая дисперсия ((2i) отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки.

Существует закон, связывающий три вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий.

Данное соотношение называют правилом сложения дисперсий. Согласно этому правилу, общая дисперсия, возникающая под действием всех факторов, равна сумме дисперсии, возникающей за счет группировочного признака.

Зная любые два вида дисперсий, можно определить или проверить правильность расчета третьего вида.

Правило сложения дисперсий широко применяется при исчислении показателей тесноты связей, в дисперсионном анализе, при оценке точности типической выборки и в ряде других случаев.

2.2.2 Относительные показатели вариации

Для сравнения вариации в разных совокупностях рассчитываются относительные показатели вариации. К ним относятся коэффициент вариации, коэффициент осцилляции и линейный коэффициент вариации (относительное линейное отклонение).

Коэффициент вариации - это отношение среднеквадратического отклонения к среднеарифметическому, рассчитывается в процентах:

Коэффициент вариации позволяет судить об однородности совокупности:

17% - абсолютно однородная;

17-33%% - достаточно однородная;

35-40%% - недостаточно однородная;

40-60%% - это говорит о большой колеблемости совокупности.

Отсюда, отношения каждой из перечисленных абсолютных оценок вариации к среднему значению, являются оценками относительных показателей вариации:

- относительный размах

VR=R :`x ;

- относительное отклонение

Va=a :`x ;

- относительное среднее квадратическое отклонение

Vs=s :`x и

- относительный межквартальный полуразмах

Vq=q :`x.

Интенсивность вариации показывает, какая степень вариации приходится на единицу среднего значения случайной величины.

Коэффициент осцилляции - это отношение размаха вариации к средней, в процентах. Отражает относительную колеблемость крайних значений признака вокруг средней. Линейный коэффициент вариации характеризует долю усредненного значения абсолютного отклонения от средней величины. При сравнении колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях с различной величиной средней арифметической используются относительные показатели вариации. Они вычисляются как отношение абсолютных показателей вариации к средней арифметической (или медиане) и чаще всего выражаются в процентах. Самые лучшие значения его до 10%, неплохие до 50%, плохие свыше 50%. Если коэффициент вариации не превышает 33%, то совокупность по рассматриваемому признаку можно считать однородной. Его применяют не только для сравнительной оценки вариации, но и для характеристики однородности совокупности.

3. Практическая работа

3.1 Задача №1

Условие: Определить снижение себестоимости в отчетном году по сравнению с базисным по всем видам продукции, для чего рассчитайте общий индекс себестоимости, укажите сумму экономии от снижения себестоимости продукции.

Продукция

Общие затраты на производство в прошлым году, тыс.руб.

Изменение себестоимости 1шт. в отчетном году

№1

780

+2

№2

690

-13

№3

745

-4

Решение:

1) Найдем общие затраты на производство в отчетном году по каждому виду продукции:

Себестоимость продукции №1 по сравнению с прошлым годом увеличилась на 2 единицы за каждую штуку, следовательно 780тыс.руб. х 2 = 1560тыс.руб.

Аналогично можно рассчитать себестоимости продукций №2 и №3.

Себестоимость продукции №2 = 690тыс.руб./ |-13| = 53,08тыс.руб.

Себестоимость продукции №3 = 745тыс.руб./ |-4| = 186,25тыс.руб.

2)Отсюда мы узнаем рентабельность продукции:

Продукция №1=780тыс.руб.-1560тыс.руб.= -780тыс.руб. составил перерасход в отчетном году на производство продукции №1

Продукция №2 =690тыс.руб.-53,08=636,92тыс.руб. составила экономия от производства продукции №2 в отчетном году

Продукция №3=745тыс.руб.-186,25=558,75тыс.руб. было сэкономлено в отчетном году от производства продукции №3

3)Полученные данные необходимо отразить в таблице.

Продукция

Общие затраты на производство в прошлым году, тыс.руб. С0

Изменение себестоимости 1шт.в отчетном году

Общие затраты на производство в отчетном году, тыс.руб. С1

Индекс себестоимости iс/с

№1

780

+2

1560,0

2,0

№2

690

-13

53,08

0,08

№3

745

-4

186,25

0,25

iс/с продукции №1= С1 / С0 = 1560,0тыс.руб. / 780тыс.руб.= 2,0

iс/с продукции №2=53,08тыс.руб / 690тыс.руб.= 0,08

iс/с продукции №3=186,25тыс.руб/ 745тыс.руб.= 0,25.

3.2 Задача №2

Условие: Имеется данные среднемесячной заработной платы на одного занятого в экономике и объеме оборота общественного питания на одного жителя в городах Удмуртии в 2004г.:

Город

Среднемесячная заработная плата на 1 занятого в экономике, руб.

Объем оборота общественного питания на 1 жителя, руб.

Ижевск

Воткинск

Глазов

Можга

Сарапул

6587,2

4519,0

6530,2

4415,7

4748,0

887,1

608,2

1724,2

510,4

298,8

Сравните вариацию показателей каждой совокупности, для этого по каждой совокупности отдельно рассчитайте средний квадрат отклонений (дисперсию) и квадратичное отклонение, коэффициент вариации. Сделайте вывод. Постройте график вариационных рядов. Как он называется?

1)Исследуем среднемесячную заработную плату:

R=xmax -x min=6587.2-4415.7=2171.5руб.

=(6587,2+4519+6530,2+4415,7+4748)/5=5360,02

Город

Среднемесячная заработная плата на 1 занятого в экономике, руб.Х

Среднее отклонение

Х-

Квадратичное отклонение

(Х-)2

Ижевск

Воткинск

Глазов

Можга

Сарапул

6587,2

4519,0

6530,2

4415,7

4748,0

1227,18

-841,02

1170,18

-944,32

-608,02

1505970,75

707314,64

1513342,83

891740,26

374568,48

Итого

-

-

4992936,96

=

2)Исследуем объем оборота общественного питания на 1 жителя

R=xmax -x min=1724,2-298,8=1425,4руб

(887,1+608,2+1724,2+510,4+ 298,8)/5805,74рублей

Город

Объем оборота общественного питания на 1 жителя, руб.

Среднее отклонение

Х-

Квадратичное отклонение

(Х-)2

1

2

3

4

Ижевск

Воткинск

887,1

608,2

81,36

197,54

162,72

39022,05

Глазов

Можга

Сарапул

1724,2

510,4

298,8

918,46

295,34

506,94

843568,77

87225,72

256988,16

Итого

-

-

1226967,42

=

Пределы вероятности ошибок:

заработная плата

общественное питание

Границы генеральной средней:

заработная плата

общественное питание

Вывод: У жителей городов Ижевск и Глазов средняя заработная плата и обороты от общественного питания выше, чем у остальных исследуемых городов. В городах Воткинск, Сарапул и Можга экономическая ситуации примерно одинаковы.

Заключение

Информация о средних уровнях исследуемых показателей обычно бывает недостаточной для глубокого анализа изучаемого процесса или явления. Необходимо учитывать и разброс или вариацию значений отдельных единиц, которая является важной характеристикой изучаемой совокупности. Каждое индивидуальное значение признака складывается под совместным воздействием многих факторов. Социально-экономические явления, как правило, обладают большой вариацией. Причины этой вариации содержатся в сущности явления.

Показатели вариации определяют как группируются значения признака вокруг средней величины. Они используются для характеристики упорядоченных статистических совокупностей: группировок, классификаций, рядов распределения. В наибольшей степени вариации подвержены курсы акций, объёмы спроса и предложения, процентные ставки в разные периоды и в разных местах.

По смыслу определения вариация измеряется степенью колеблемости вариантов признака от уровня их средней величины, т.е. как разность х-х. На использовании отклонений от средней построено большинство показателей применяемых в статистике для измерения вариаций значений признака в совокупности.

Самым простейшим абсолютным показателем вариации является размах вариации

R=xmax-xmin.

Размах вариации выражается в тех же единицах измерения, что и Х. Он зависит только от двух крайних значений признака и, поэтому, недостаточно характеризует колеблемость признака.

Среднее линейное отклонение является средней величиной из абсолютных значений отклонений от средней арифметической величины.

Среднее линейное отклонение имеет единицы измерения как у признака.

Дисперсия (средний квадрат отклонения) - это средняя арифметическая из квадратов отклонений значений варьирующего признака от средней арифметической.

Дисперсию в отдельных случаях удобнее рассчитывать по другой формуле, представляющей собой алгебраическое преобразование предыдущих формул.

Наиболее удобным и широко распространенным на практике показателем является среднее квадратическое отклонение (s). Оно определяется как квадратный корень из дисперсии.

Абсолютные показатели вариации зависят от единиц измерения признака и затрудняют сравнение двух или нескольких различных вариационных рядов.

Относительные показатели вариации вычисляются как отношение различных абсолютных показателей вариации к средней арифметической. Наиболее распространённым из них является коэффициент вариации. Его формула:

Коэффициент вариации характеризует колеблемость признака внутри средней. Самые лучшие значения его до 10%, неплохие до 50%, плохие свыше 50%. Если коэффициент вариации не превышает 33%, то совокупность по рассматриваемому признаку можно считать однородной.

Размещено на Allbest.ru


Подобные документы

  • Виды и применение абсолютных и относительных статистических величин. Сущность средней в статистике, виды и формы средних величин. Формулы и техника расчетов средней арифметической, средней гармонической, структурной средней. Расчет показателей вариации.

    лекция [985,6 K], добавлен 13.02.2011

  • Сущность и разновидности средних величин в статистике. Определение и особенности однородной статистической совокупности. Расчет показателей математической статистики. Что такое мода и медиана. Основные показатели вариации и их значение в статистике.

    реферат [162,6 K], добавлен 04.06.2010

  • Абсолютные и относительные статистические величины. Понятие и принципы применения средних величин и показателей вариации. Правила применения средней арифметической и гармонической взвешенных. Коэффициенты вариации. Определение дисперсии методом моментов.

    учебное пособие [276,4 K], добавлен 23.11.2010

  • Группы средних величин: степенные, структурные. Особенности применения средних величин, виды. Рассмотрение основных свойств средней арифметической. Характеристика структурных средних величин. Анализ примеров на основе реальных статистических данных.

    курсовая работа [230,6 K], добавлен 24.09.2012

  • Понятие абсолютной и относительной величины в статистике. Виды и взаимосвязи относительных величин. Средние величины и общие принципы их применения. Расчет средней через показатели структуры, по результатам группировки. Определение показателей вариации.

    лекция [29,1 K], добавлен 25.09.2011

  • Построение ряда распределения предприятий по стоимости основных производственных фондов методом статистической группировки. Нахождение средних величин и индексов. Понятие и вычисление относительных величин. Показатели вариации. Выборочное наблюдение.

    контрольная работа [120,9 K], добавлен 01.03.2012

  • Проведение расчета абсолютных, относительных, средних величин, коэффициентов регрессии и эластичности, показателей вариации, дисперсии, построение и анализ рядов распределения. Характеристика аналитического выравнивания цепных и базисных рядов динамики.

    курсовая работа [351,2 K], добавлен 20.05.2010

  • Порядок группировки территорий с определенным уровнем фондовооруженности, расчет доли занятых. Расчёт средних значений каждого показателя с указанием вида и формы использованных средних гармонических, абсолютных и относительных показателей вариации.

    контрольная работа [45,5 K], добавлен 10.11.2010

  • Абсолютная величина как объем или размер изучаемого события. Виды абсолютных величин: абсолютная и суммарная. Группы величин: моментная и интервальная единицы измерения. Виды относительных величин. Виды средних величин: степенные и структурные.

    презентация [173,3 K], добавлен 22.03.2012

  • Понятие и свойства средних величин. Характеристика и расчет их видов (средних арифметической, гармонической, геометрической, квадратической, кубической и структурных). Сфера их применения в экономическом анализе хозяйственной деятельности отраслей.

    курсовая работа [56,8 K], добавлен 21.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.