Экономические риски: причины возникновения и способы снижения

Определение понятий и раскрытие содержания неопределенности и риска как экономических явлений. Изучение классификации и исследование методов измерения риска. Содержание теории ожидаемой полезности и вероятности. Способы снижения риска и неопределенности.

Рубрика Экономика и экономическая теория
Вид курсовая работа
Язык русский
Дата добавления 10.05.2012
Размер файла 40,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

на тему: «Экономические риски: причины возникновения и способы снижения»

Содержание

Введение

1. Понятие неопределенности и риска

2. Классификация рисков

3. Измерение и оценка риска

4. Теория ожидаемой полезности. Функции полезности и вероятности

5. Отношение к риску

6. Способы снижения риска и неопределенности

Заключение

Список литературы

Введение

Наука о риске сегодня необходима, ибо риск и неопределенность - это детище тех проблем, которые везде, которые нужны каждому, с другой стороны, общество не может жить без них и двигаться вперед. Все возможные колебания, нестабильность будущего… Необходимы общеконцептуальные представления, нужна систематизация знаний. Хаотичные, случайные процессы, происходящие в экономике, убедили людей в этом. Данная работа посвящена попытке систематизировать имеющиеся научные знания о таких явлениях, как риск и неопределенность.

В начале стоит отметить, что сама по себе проблема довольно молода - основная доля исследования приходится на 20 век. Связано это, конечно, с тем, что именно 20й век и показал необходимость тщательного изучения рисков и неопределенности. Век, когда бурно развивалось предпринимательство, становится колыбелью для случайных процессов. Каков будет спрос на выпускаемую продукцию, например, в следующем году? Насколько возрастет или наоборот упадет стоимость закупаемых на стороне материалов? Можно составить прогноз, провести анализ ситуации. Но практически никогда невозможно точно знать наперед, что и как произойдёт. Неопределенность похожа на ящик Пандоры - можно получить всё, что угодно, как хорошего, так и плохого. Имеются в виду, что все возможные прибыли, связанных с деятельностью в условиях неопределенности. Но не стоит забывать и об издержках и убытках. Хаотичность и непредсказуемость процессов, культивируемых неопределенностью порой заставляет восторгаться, а порой и бояться.

Сегодня основные задачи направлены на прикладную сторону этого вопроса - управление риском или снижение. Стоит сказать, что в этой сфере не наблюдается какого-то единого, применимого ко всем четкого подхода, ибо разнообразие рисков заставляют изучать их применительно к сфере деятельности, в которой они возникают. В области финансовой деятельности изучением проблем рисков занимаются, в том числе и частные компании. Например, JPMorgan, которая разработала свою методику оценки рисковых активов. Помимо этого с рисками очень тесно связана страховая сфера деятельности. Риски, связанные с управлением - одна из главных проблем в менеджменте.

Данная работа представляет собой анализ монографических публикаций и статей и других трудов известных экономистов ХХ века по тематике риска и неопределенности. Импульсом к выбору именно этой темы послужили актуальность и одновременная малоизученность этих феноменов в экономической деятельности. Поэтому цель работы - углубление знаний по проблеме риска и неопределенности в экономике, а так же по возможности переосмысление имеющейся информации в новых условиях.

Перед тем, как приступить к содержанию работы, хотелось бы наметить цели: 1) попытка систематизировать существующие представления теории риска и неопределенности, в частности, о поведении человека и его выборе в этих условиях, 2) раскрыть основные подходы проблеме рисковых активов в условиях неопределенности.

экономика риск неопределенность теория полезность

1. Понятие неопределенности и риска

Что же такое риск? И в каких областях человеческой деятельности мы с ним встречаемся?

Термин риск произошел от греческого «risikon» - утёс. На уровне обыденного познания риск понимается как некая опасность неблагоприятного исхода и носит скорее негативную, чем позитивную, окраску. В словаре Ожегова риск определяется как «опасность, возможность опасности» или «действие наудачу в надежде на счастливый исход». В современном экономическом словаре риск - это опасность возникновения непредвиденных потерь ожидаемой прибыли, дохода или имущества, денежных средств, других ресурсов в связи со случайным изменением условий экономической деятельности, неблагоприятными обстоятельствами. Тщательный анализ источников показывает, что в настоящее время не существует четко определенного понятий риска и неопределенности. Тем не менее, понятно, что они играют серьезную роль в экономической деятельности. Поэтому для наиболее точного представления об этих понятиях стоит изучить развитие теорий с самого начала до наших дней.

Начальные попытки оценки рисковых решений в условиях неопределенности восходят к работам математика Д. Бернулли, который предположил, что математическое ожидание успеха должно определяться с учетом его субъективной оценки. Исследуя Санкт-Петербургский парадокс он утверждал, что, принимая свои решения в условиях неопределенности, индивид руководствуется не априорно подсчитанным математическим ожиданием шансов на успех, а “моральным ожиданием успеха, при котором вероятность взвешивается на полезность дохода”. При этом предельная полезность дохода снижается с ростом общей. При уменьшающейся предельной полезности люди будут настаивать на увеличении выигрыша, чтобы компенсировать риск. “Никто не станет платить 1 доллар за шанс выиграть 2 доллара с вероятностью 50 процентов”, -- утверждал он. Впоследствии эта гипотеза, а вернее предположение, что ожидание успеха - результат субъективных оценок, получило отражение в известной теории “функции полезности Неймана--Монгерштерна”, а также в работе Нобелевского лауреата по экономике французского ученого М. Алле “Поведение рационального человека в условиях риска”.

В рамках школы маржиналистов дальнейшее развитие теории риска связано с исследованиями Й. фон Тюнена. В своей работе “Изолированное государство” (1850 г.) он впервые рассмотрел сущность инновационных рисков в процессе предпринимательской деятельности. Характеризуя инновационную деятельность как одну из наиболее рискованных в экономике, он утверждал, что вознаграждение предпринимателя является доходом за принятие на себя тех рисков, которые из-за непредсказуемости не примет на себя и не покроет ни одна страховая компания. Это впервые наметило различия между “условиями риска” (т.е. условиями, вероятность которых может быть рассчитана) и “условиями неопределенности” (т.е. условиями, вероятность которых непредсказуема и не поддастся количественному анализу).

Определенный вклад в развитие инновационной теории риска был внесен представителем школы институционализма Й. Шумпетером. В своей книге “Теории экономического развития” (1912 г.) он предложил новый подход к оценке роли предпринимателей, осуществляющих инновационную деятельность в условиях риска. Он утверждал, предприниматель, осуществляющий инновационную деятельность в условиях высокого риска, является источником всех положительных динамических изменений в экономике. Однако магистральное направление экономической теории того времени проигнорировало этот вывод Шумпетера, поскольку он не укладывался в рамки статического равновесного анализа и противоречил выводам о предпринимательском доходе как результате неисчислимого (а соответственно и нестрахуемого) риска.

Наряду с Й. Шумпетером одним из первых ученых, осветивших проблему риска и неопределенности, был Ф. Найт. Он дал четкие рамки определениям риска и неопределенности, и, следовательно, провёл различия между ними. Однако, как и во многих остальных работах по этой теме, четкого определения риска и неопределенности не даётся. Он писал: «Когда речь идёт о риске, распределение исходов … известно либо благодаря априорным расчетам, либо из статистических данных прошлого опыта, тогда как в условиях неопределенности это не так по той общей причине, что ситуация, с которой приходится иметь дело, весьма уникальна, и нет возможности сформировать какую-либо группу случаев». Риск возникает только тогда, когда имеется какое-то ограниченное количество вероятных исходов, неопределенность же не имеет заранее определенного количества исходов. Соответственно риск имеет такую природу, которой можно так или иначе управлять или влиять на нее через известную вероятность. Если известно распределение различных возможных результатов в группе, становится возможным путем надлежащей группировки или объединения случаев устранить всякую неопределенность. Ее можно устранить, но это не значит, что так и будет сделано. Поэтому, как тавтологично бы ни звучало, в ситуации принятия единичного решения не существует никакой разницы между измеримым риском и неизмеримой неопределенность. И всё же изначально неопределенность имеет кардинально противоположную сущность, не имеющую вероятность, а следовательно, не поддающуюся управлению и воздействию. Эта неопределенность, с которой сталкивается большинство предпринимателей, “не может быть ни застрахована, ни капитализирована, ни оплачена в форме заработной платы”. Предприниматель не знает заранее цену, по которой будет продан его продукт, но в то же время обязан заранее расплатиться с собственниками факторов производства.

Вследствие того, что в некоторых моментах ситуация риска, то есть та, в которой известно конечное число исходов и вероятностей, не отличается от неопределенности, то Найт под словом риск имеет в виду так называемую измеримую неопределенность, а под неопределенностью - неизмеримую. Чтобы сохранить различие между измеримой и неизмеримой неопределенностью, о котором шла речь выше, мы можем использовать термин "риск" для обозначения первого типа неопределенности и собственно термин "неопределенность" - для второго.

Помимо этого Ф. Найт рассуждает на тему причин появления риска и неопределенности. Рассматривая отдельно механизмы функционирования экономики в моделях совершенной и несовершенной конкуренции, он утверждает, что риск и неопределенность возникают во время перехода от первой ко второй. В то время как необходимым условием совершенной конкуренции является полнота информации, в несовершенной конкуренции информация в руках субъекта либо ограничена, либо не поддается полному анализу из-за больших объемов. Так или иначе, при решениях приходится прибегать к оценкам, которые в свою очередь могут привести к ожидаемому результату, а могут и не привести.

Теоретические выводы Ф. Найта позволили впервые со времен А. Смита четко отделить понятия риска от неопределенности, но так и не дали их точной трактовки.

Теория риска получила определенное развитие и в работах представителей экономической школы кейнсианства. В своей статье “Общая теория занятости” Дж. Кейнс акцентирует внимание на неопределенности, господствующей в экономической жизни и не поддающейся вероятностным оценкам.

Эта неопределенность в значительной степени влияет на экономическое поведение людей. Вследствие этой неопределенности, отмечал он, инвестиции обречены колебаться вместе с колебаниями доверия в сфере бизнеса, которые не находятся ни в какой предсказуемой зависимости от стандартных экономических величин.

Современный синтез теории риска включает в себя многочисленные его характеристики, выявленные ранее, и имеет скорее практическую направленность -- в страховом бизнесе, банковском деле, инвестициях, предпринимательстве и т.д.

Анализ многочисленных толкований риска позволяет выявить характерные для рисковой ситуации моменты:

- случайный характер события, который определяет, какой из возможных исходов реализуется на практике (наличие неопределенности);

- наличие альтернативных решений;

- известны (или можно определить) вероятности исходов и ожидаемые результаты;

- вероятность возникновения убытков;

- вероятность получения дополнительной прибыли.

Говоря о теории риска и неопределенности в российской экономической науке, стоит заметить, что этой проблеме не уделено должного внимания. Ориентация в течение длительного времени на преимущественно экстенсивное развитие народного хозяйства страны, чрезмерно высокая степень централизации управления, господство административных методов управления и не подразумевали учета неопределенности и риска. Кроме того, при «экономике дефицита» не было заинтересованности и желания идти на риск, менять сложившуюся технологию производства. Но с переходом на рыночную экономику, либерализацию цен и другие экономические свободы, проблема риска и неопределенности, само собой, стала весьма актуальной.

Тем не менее, есть такое определение риска: «деятельность, связанная с преодолением неопределенности в ситуации неизбежного выбора, в процессе которой имеется возможность количественно и качественно оценить вероятность достижения предполагаемого результата, неудачи либо отклонения от цели». Данное определение, во-первых, содержит разделение понятий неопределенности и риска (данные Ф. Найтом), во-вторых, охватывает все возможные исходы, как положительные, так и отрицательные, в-третьих, рисует тесную связь риска и неопределенности.

Таким образом, ситуация риска (рисковая ситуация) -- это разновидность неопределенности, когда наступление событий вероятно и может быть определено, т.е. в этом случае объективно существует возможность оценить вероятность событий, возникающих в результате осуществления экономической деятельности.

2. Классификация рисков

Многообразие рисковых ситуаций на практике заставляет сравнивать их между собой по различным характеристикам. Поскольку главной задачей является оценка степени рисков, то их систематизация по одинаковым признакам, распределение по группам существенно облегчит этот процесс.

По характеру последствий риски подразделяются на чистые и предполагаемые. Особенность чистых рисков (их иногда называют статистическими или простыми) заключается в том, что они практически всегда несут в себе отрицательный результат деятельности; их причинами могут быть стихийные бедствия, несчастные случаи, недееспособность руководителей фирм и т.д. Так как потери такого рода всегда можно подсчитать, то именно такие риски чаще других покрываются страхованием.

Предполагаемые риски, которые называют также динамическими или спекулятивными, несут в себе либо потери, либо дополнительную прибыль. Эти риски характерны в б?льшей степени для предпринимательской деятельности; их причинами могут быть изменение курсов валют, конъюнктуры рынка, условий инвестиций и др.

По сфере возникновения, различают следующие виды рисков:

- производственный риск, связанный с невыполнением предприятиями своих планов и обязательств по производству продукции, товаров, услуг, других видов производственной деятельности в результате воздействия как внешней среды, так и внутренних факторов;

- коммерческий риск -- это риск потерь в процессе финансово-хозяйственной деятельности; его причинами могут быть снижение объемов реализации, непредвиденное снижение объемов закупок, повышение закупочной цены товара, повышение издержек обращения, потери товара в процессе обращения и др.;

- финансовый риск возникает в связи с невозможностью выполнения фирмой своих финансовых обязательств; причинами являются изменение покупательной способности денег, неосуществление платежей, изменение валютных курсов и прочее.

В зависимости от основной причины возникновения рисков они делятся на следующие категории:

- природно-естественные риски - это риски, связанные с проявлением стихийных сил природы;

- экологические риски связаны с наступлением гражданской ответственности за нанесение ущерба окружающей среде;

- политические риски - это возможность возникновения убытков или сокращения размеров прибыли, являющихся следствием государственной политики;

- транспортные риски связаны с перевозками грузов различными видами транспорта;

- имущественные риски -- это риски от потери имущества предпринимателя по не зависящим от него причинам;

- торговые риски зависят от убытков в случае задержки платежей, не поставки товара, отказа от платежа и т.п.

Большая группа рисков связана с покупательной способностью денег. Сюда относятся:

- инфляционные риски, которые обусловлены обесцениванием реальной покупательной способности денег, при этом предприниматель несет реальные потери;

- дефляционный риск связан с тем, что при росте дефляции падает уровень цен и, следовательно, снижаются доходы;

- валютные риски связаны с изменением валютных курсов, они относятся к предполагаемым рискам, поэтому при потерях одной из сторон в результате изменения валютных курсов другая сторона, как правило, получает дополнительную прибыль, и наоборот;

- риск ликвидности связан с потерями при реализации ценных бумаг или других товаров из-за изменения оценки их качества и потребительской стоимости.

Инвестиционные риски связаны с возможностью недополучения или потери прибыли в ходе реализации инвестиционных проектов, они включают в себя следующие подвиды:

- риск упущенной выгоды заключается в том, что возникает финансовый ущерб в результате неосуществления некоторого мероприятия;

- риск снижения доходности связан с уменьшением размера процентов и дивидендов по портфельным инвестициям; он делится на процентный риск, возникающий в результате превышения процентных ставок, выплачиваемых по привлеченным средствам, над ставками по предоставленным кредитам, и кредитный риск, возникающий в случае неуплаты заемщиком основного долга и процентов, причитающихся кредитору;

- биржевые риски представляют собой опасность потерь от биржевых сделок;

- селективные риски возникают из-за неправильного формирования видов вложения капиталов, вида ценных бумаг для инвестирования;

- риск банкротства связан с полной потерей предпринимателем собственного капитала из-за его неправильного вложения.

Естественно, анализ классификационных признаков, видов и подвидов риска можно продолжить, но это приведет к перечислению мнений различных исследователей и специалистов, что не даст ответа на основной вопрос - какой подход, какая классификация является основной, в какой степени она будет способствовать снижению степени риска.

3. Измерение и оценка риска

После того, как выяснены основные подходы к определению понятий и классификациям, мы приближаемся к следующей проблеме - потребности измерить или каким-то образом оценить риск. Имея оценку рисков, мы можем сравнивать их между собой, принимать, отвергать и т. д. В общем, оценка и измерения необходимы для принятия решения в рисковой ситуации. Как отмечалось выше, риск включает в себя оцененную любым способом вероятность некоторых исходов. Именно вероятность является количественной составляющей риска. В теории риска можно встретить три общих типа вероятностей:

Априорная или математическая. Это вероятность, полученная на основе научного закона или определенного логического принципа, «абсолютно однородная классификация случаев, во всем идентичных[5]». Сюда входят все события, вероятность наступления исходов которых мы можем сосчитать, например, используя классическое определение вероятности из курса теории вероятности.

Статистическая. Это вероятность, полученная нами благодаря статистическому наблюдению за данным событием в прошлом. Стало быть, для расчета обязательно иметь накапливающуюся определенный период времени информацию и обязательно об идентичном событии. На практике камнем преткновения является то, что зачастую невозможно ограничить наблюдение только за абсолютно идентичными событиями. К примеру, если ведется наблюдение за студентами, забывающими студенческий билет, из 100 студентов забывают 15 человек. В среднем вероятность того, что один студент забудет билет =100/15Но понятно, что это вероятность будет разной у того, кто забывает билет хронически, и у того, кто почти не забывает. Поэтому, несмотря на то, что подобную вероятность реальнее рассчитать, она менее точна, чем априорная.

Ожидаемая. Для определения этого рода вероятности не требуется никаких рациональных алгоритмов. Находится такая вероятность путем субъективной оценки, решения. Не будем вдаваться в причины, просто имеет смысл отметить, что это явление происходит в результате взаимодействия человеческого сознания и реальности. Именно такой случай имеет самое широкое распространение на практике. Вместе с тем он сложнее всего поддается объяснению.

Теория измерения риска бывает порой весьма далека от практики. В реальной среде, например, в бизнесе или менеджменте, очень редко можно применить априорную вероятность полностью. Ведь обязательным критерием ее применения является однородность групп вероятностных исходов, а это, в свою очередь, понятие идеальное и недостижимое. Поэтому результаты измерения вероятности по априорному методу будут весьма далёкими от реальности. Часто неприменима и статистическая вероятность - из-за уникальности событий происходящих. В таких условиях место остается лишь ожидаемой вероятности.

Когда известны вероятности событий, составляющих полную группу возможных в рисковой ситуации, их можно подвергнуть анализу. Вот некоторые показатели этого анализа:

Среднее значение. С точки зрения математики среднее значение - средневзвешенная оценка из всех возможных результатов с учетом соответствующих вероятностей. Оно рассчитывается по формуле математического ожидания (Приложение Б). Притом, если группа событий полная, то сумма всех вероятностей будет равна единице.

Экономический смысл этого показателя, увы, ограничивается рамками теории: он показывает, какое значение примет результат при бесконечно большом количестве повторений события. На практике же данное событие (рисковая ситуация) происходит один раз - и в этот момент требуется принять решение.

Однако одного среднего значения недостаточно для анализа. Ведь, как уже замечалось выше, единичные события (то есть те, которые реально имеют вероятность настать) могут иметь разное отклонение от среднего значения. Для расчета этого отклонения существует два показателя: дисперсия и среднеквадратичное отклонение.

Дисперсия - средневзвешенная величина квадратов отклонений действительных результатов от средних значений

Для большей наглядности используют корень из дисперсии, называемый средним квадратичным отклонением.

Пример применения данных показателей покажем на ситуации:

1. Фирма инвестирует 50 млн. руб. и, по мнения экспертов, через год с вероятностью 2/6 получит текущую дисконтированную стоимость (PDV), равную 250 млн. руб., с вероятностью 1/6 PDV составит 100 млн. руб. и с вероятностью 3/6 PDV=0 .

2. При той же сумме инвестиций фирма с вероятностью 1/6 получит 600 млн. руб. и ничего не получит в остальных случаях (вероятность = 5/6).

Для первого проекта среднее значение составит 100 млн. руб., так же, как и для второго. Это означает, что оба проекта принесут фирме среднюю ожидаемую выручку, равную удвоенной величине инвестиций.

Но полученные величины - лишь гипотетические. Каково же будет отклонение реального дохода от средней величины? Чтобы найти, рассчитаем дисперсию.

Получается, что во втором проекте дисперсия в 4 раза выше. Это означает, что во втором проекте риск больше. Для того, чтобы узнать насколько, рассчитаем среднеквадратичное отклонение. Для первого случая оно составит 111, 9 млн. руб., а для второго 223,6 млн. руб. Эти величины показывают, на сколько фактический доход будет отличаться от ожидаемого. В последнем случае отличие примерно в 2 раза больше, чем в первом, что так же говорит о более высоком уровне риска.

Однако описанная выше ситуация - идеальна. На практике крайней редко случаются такие ситуации, когда можно точно найти вероятность событий и тем более все возможные события. Кроме того вышеописанные методы, исходя из теории вероятности, применимы лишь к идеальной ситуации, когда количество повторений рисковых событий стремится к бесконечности. Во всех остальных случаях, особенно когда требуется один раз принять решение для всей ситуации, равенство не соблюдается.

Поэтому возникает вопрос, в таком случае, зачем нужны, с одной стороны, идеальные математические выкладки и, с другой, чересчур «гадательные» субъективные оценок индивидумов? В чем заключается их применение на практике? И чему придавать предпочтение? На эти вопросы нет единого мнения в настоящее время. Несмотря на то, что математические вычисления далеки от реальности, а ожидаемая (субъективная) вероятность зачастую выявляется с помощью догадок и шатких предположений, тем не менее, и те, и другие имеют практическое применение. Математические расчеты зачастую служат своеобразным ориентиром. А процесс формирования наших оценок порой весьма сложен с психофизиологической точки зрения и может рождаться благодаря бесчисленному множеству аналитических процессов, проходящих в подсознании. В любом случае, использование всех типов вероятностей, правильное сочетание и анализ помогает взвесить все альтернативы в рисковых ситуациях с наиболее возможной точностью.

4. Теория ожидаемой полезности. Функции полезности и вероятности

Однако знание или тем более незнание вероятностей в рисковых ситуациях всё еще не решает проблему выбора в условиях неопределенности.

С этим кругом вопросов призвана справляться теория ожидаемой полезности. Модели ожидаемой полезности изучают выбор между рисковыми перспективами (т.е. произведениями векторов исходов и вероятностей наступления каждого из них.) как с одним, так и с несколькими возможными исходами.

Имеет смысл рассмотреть формирование моделей ожидаемой полезности с исторической точки зрения. В частности впервые об ожидаемой полезности стало известно из работ Д. Бернулли. Как уже было отмечено в начале работы, в процессе исследования т. н. Санкт-Петербургского парадокса были выдвинуты предположения о том, что индивид руководствуется оптимизацией не ожидаемого выигрыша, а ожидаемой полезности. Напомним, что суть этого парадокса заключалась в игре, в которой подбрасывалась монета до тех пор, пока не выпадет герб. Причем выигрыш будет равен ден. единиц. Если составить закон распределения случайной величины выигрыша, то значения будут такими: 2, 4, 8, 16 и т. д… (), - а вероятности будут соответствовать и т. д…. Нетрудно подсчитать по формуле математического ожидания, что ожидаемый доход будет равняться. В ответ на это Бернули вместе с известным математиком Г. Крамером предложили, что в данной ситуации для человека важен не математический подсчет ожидания, а его субъективная оценка. Зависимость между исходами и их ценностью для индивида показывает полезность и кривые безразличия. Функция полезности, предложенная Бернулли, имеет логарифмический вид (приложение Г), тем самым показывая убывание по мере роста богатства (в данном случае выигрыша). Так же он показал, что ожидаемая полезность, имеющая вид , будет конечна (ряд сходится). Однако он не ставил перед собой задачи измерения полезности, и не пытался объяснить, почему его принцип ожидаемой полезности можно считать рациональным. Вместе с тем эту теорию впоследствии неизменно отвергали как правильное объяснение, - обычно потому, что господствующее убеждение в убывающей предельной полезности заставляло считать, что существование азартных игр не может быть объяснено таким образом.

Теория Бернулли как таковая является главным образом описательной моделью, хотя для своего времени сам принцип ожидаемой полезности мог выглядеть вполне убедительно.

Формальное доказательство того, что принцип максимизации ожидаемой полезности является критерием рациональности принимаемых решений, т.е. может быть выведен из нескольких аксиом, было проведено лишь в 1947 году Джоном фон Нейманом и Оскаром Моргенштерном. В нем утверждается, что "в условиях, на которых базируется анализ кривой безразличия, легко определить численную полезность[6]", ожидаемое значение которой максимизируется в выборе среди альтернатив, предполагающих риск. И эта концепция применима к исходам любого рода, где денежные выигрыши являются лишь частным случаем (в отличие от модели Крамера и Бернулли). Именно эта общность теории, по мнению многих экономистов[7], и позволила ей стать основой анализа рисковых ситуаций.

Теория ожидаемой полезности Неймана и Моргенштерна строится на следующих аксиомах:

- Аксиомы полноты и транзитивности предпочтений. Если рисковая ситуация (далее РС) L1 предпочтительней РС L2, то это можно записать как L1> L2. Полнота означает, что индивид способен всегда оценить, какая РС для него предпочтительней, а какая нежелательней. Транзитивность заключается в то, что, если L1> L2, L2> L3, то L1> L3.

- Аксиома непрерывности. Если существуют такие исходы x1,x2,x3 , что x1>x2>x3, существует такая вероятность p для x1, а для x3 -вероятность (1-p), что РС (x1, p; x3, (1-p)) столь же привлекательно, как РС с гарантированным исходом x2. То есть при определенной p индивиду будет всё равно, точно получить какой-то результат или иметь риск получить результат лучше или хуже.

- Аксиома независимости. Если существуют две РС - L1(x1, p; x3, 1-p) и L2(x2,p; x3, 1-p), где x1, x2 могут или связаны, или не связаны с риском - и x1=x2 (равнозначны), то и L1=L2 независимо от x3.

- Если в РС L1(x1, p; x2, 1-p) и L2(x1,q; x2, 1-q) x1>x2, то L1> L2 тогда и только тогда, когда p>q.

- Принцип сведения составных РС. При принятии решения для человека не важен порядок, в котором представлены призы и вероятности в РС, а важно лишь конечное распределение призов в РС, сочетающееся с перемножением составных вероятностей.

Пяти вышеперечисленных аксиом, достаточно, чтобы гарантировать существование такого индекса полезности, при котором ранжирование РС по их ожидаемой полезности полностью соответствует действительным предпочтениям индивида, как считают Д. Нейман и О. Моргенштерн.

Что касается самой функции полезности, то она является единственной с точностью до положительного линейного преобразования. Это означает, что если функция U(x) задает предпочтения индивида относительно исходов x, то функция U*(x) = aU(x)+ b, где a, b - числовые коэффициенты, a > 0, также задает предпочтения индивида относительно x. Оказывается, если подвергнуть функцию ожидаемой полезности положительному линейному преобразованию, то полученная в результате этого функция не только будет представлять те же самые предпочтения, но и по-прежнему будет обладать свойством ожидаемой полезности.

Это также означает, что для этой функции нет зависимости от начала координат и единицы измерения. Например, мы можем произвольно считать началом координат $10 (т.е. положить U(10) = 0, и принять U(10 000) равной, скажем, 100 единицам полезности (ютилям)). Используя эти две точки отсчета, индекс полезности можно легко получить с помощью простых вопросов типа "Какой достоверный доход столь же привлекателен, что и лотерея 50/50 с исходами $10 и $10000?" Если эта сумма равна $x*, то U(x*) полагается равным 0,5U(10) + 0,5U(10 000) = 50 ютилям. До тех пор, пока такая пробная лотерея содержит исходы, полезность которых известна, мы можем определять значения полезности в других точках.

Важную роль в теории ожидаемой полезности играет понятие неприятия риска. Выпуклая вверх функция полезности, принимающая вид экспоненциальной кривой, характеризует неприятие риска, а выпуклая вниз - стремление к риску.

С точки зрения измерения полезности теория Неймана и Моргенштерна является кардиналистской, поскольку ее шкала полезности является интервальной. Однако с точки зрения предпочтений, её можно трактовать как ординалистскую, поскольку она обеспечивает лишь порядковое ранжирование лотерей. Поэтому к кардиналистской составляющей теории следует относиться аккуратно. Хотя функции полезности представляют собой интервальные шкалы, т.е. отношения разностей между уровнями полезности независимы относительно линейных преобразований, - это не означает, например, что из x1 > x2 > x3 > x4 и U(x1) - U(x2) > U(x3) - U(x4) следует, что перемещение из x1 в x2 должно быть более предпочтительным, чем перемещение из x3 в x4. Поэтому полезность по Нейману и Моргенштерну нельзя интерпретировать как измерение силы предпочтения в условиях определенности, что качественно отличает ее от неоклассической кардинальной полезности. Это объясняется тем, что предпочтения определяются по крайней мере двумя различными факторами, а именно: 1) силой предпочтений достоверных исходов; и 2) отношением к риску. Функция полезности Неймана и Моргенштерна является составной комбинацией этих двух факторов, которая не требует ни прямого сопоставления интервалов, ни измерения силы предпочтений. Как теория предпочтений она является всецело ординалистской. Тем не менее, она неявно предполагает, что существует полезность неоклассического кардиналистского типа - иначе было бы психологически невозможно определить достоверный эквивалент рисковых ситуаций.

Существует, еще множество концепций ожидаемой полезности, имеющих различие в функциях полезности, но все так или иначе являются модификацией именно этой модели. Об остальных вскользь упоминается чуть ниже.

Другой аспект модели ожидаемой полезности, в котором наблюдаются различные точки зрения - это определение вероятностей. В аксиоматике теории Неймана и Моргенштерна вероятность рассматривается как элементарное понятие, численное значение которого определено объективно. Однако эмпирически понятие вероятности является куда более проблематичным как с философской, так и с практической точек зрения. Чтобы убедиться в этом, рассмотрим коротко четыре основные концепции вероятности и пределы возможностей каждой из них.

Первая - это классическая концепция Пьера Лапласа, который определил вероятность как число благоприятных элементарных исходов некоторого события, отнесенное к числу всех возможных элементарных исходов. К недостаткам этой теории можно отнести то, что это определение нелегко применить в случае бесконечного пространства исходов, и оно практически ограничивается только хорошо структурированными ситуациями. К положительным моментам, разумеется, относится формальная наглядность и относительная простота этой модели.

Якоб Бернулли, дядя Даниила Бернулли, еще раньше избежал этой тавтологии, отличив само понятие от его измерения. Он определил вероятность как "степень доверия", которая для каждого события может разниться у разных людей. Тем не менее, он полагал, что искусство угадывания заключается в том, чтобы уточнять оценки неизвестных вероятностей, в частности, исследуя объективные частоты. Этот частотный подход позже был положен в основу аксиоматики Джона Венна, Ханса Рейхенбаха и Рихарда фон Мизеса которые определяли вероятность как предельное значение процента благоприятных исходов в бесконечной последовательности независимых испытаний. Такой подход является ограниченным, по крайней мере, с двух точек зрения. Во-первых, вероятность никогда не бывает точно измеримой численно - в лучшем случае ее можно оценить на очень большой выборке. Во-вторых, часто бывает непонятно, что следует считать пространством возможных исходов - так, если оценивается объективная вероятность попасть в авиакатастрофу, то следует ли брать все предыдущие полеты, или же только на этом маршруте, на этом типе самолета, в это время года и т.д.

Третью попытку определить вероятность объективно предприняла так называемая логическая школа Джона Мейнарда Кейнса и Гарольда Джеффриса. Эти авторы утверждали, что каждое множество эмпирических данных находится в логическом, объективном отношении к истинности некоторой гипотезы (например, о виновности кого-либо), даже если эти данные сами по себе не позволяют прийти к определенным выводам. Вероятность измеряет силу этой связи с точки зрения рационального индивида. Поскольку все три вышеописанных подхода привлекательны с определенных точек зрения, было предпринято немало попыток соотнести их друг с другом. Рудольф Карнап разработал формальную теорию согласованной системы приобретения нового знания, основанную на байесовском подходе, в которой совмещаются объективный и субъективный подходы. Гленн Шэфер подошел к объединению этих подходов с другой стороны - посредством формального различения разных типов вероятностей, делая упор на принципиальное отличие вероятности случайных событий от степени убежденности в наступлении тех или иных событий. Эта последняя концепция является основополагающей для субъективизма, четвертой традиции, о которой следует упомянуть.

Субъективная, или персоналистская доктрина вероятности изначально разрабатывалась Фрэнком Рамсэем, Бруно де Финетти, Леонардом Сэвиджем и Праттом, Райффой и Шлайфером. С их точки зрения вероятности - это степени убежденности в том, что наступят те или иные события - как повторяющиеся, так и уникальные (например, третья мировая война). Данному множеству гипотез в принципе можно приписать любые субъективные вероятности при соблюдении некоторых условий рациональности. В отличие от других доктрин, эти условия рассматриваются здесь как достаточные и необходимые одновременно, без каких-либо дополнительных ограничений, накладываемых по логическим или эмпирическим соображениям. Основная аксиома совместимости, принятая в теории субъективной вероятности, - это согласованность предпочтений. Эта аксиома означает, что вероятности элементарных событий дают в сумме единицу, и что взаимодополняющие и взаимоисключающие события следуют с вероятностью, равной соответственно произведению и сумме элементарных вероятностей. В этом свете субъективные вероятности с математической точки зрения ничем не отличаются от других типов вероятности. Субъективная школа выработала процедуру одновременного измерения полезности и вероятности, основанную на выявленных предпочтениях.

Как видим, вероятность - не такое уж простое понятие. Ее измерение, очевидно, - нелегкое дело даже в некоторых вероятностных играх, не говоря уже о реальном мире. Чтобы отличать субъективную вероятность от объективной, первую из них мы будем обозначать f(p). Преобразование f() показывает, что вероятности, используемые в модели ожидаемой полезности, могут отличаться от установленных или тех, которые исследователь полагает объективными. Однако не все такие преобразования f(pi), обладающие свойствами вероятностей (таким, как ?f(pi) = 1), должны рассматриваться как степени убежденности в том, что события наступят. В литературе преобразования f(pi) обычно используются в качестве показателей отношения к риску; для исследования симметричности компонент вероятности и ожидаемого исхода в моделях ожидаемой полезности; чтобы отразить предпочтения в отношении вероятностей и/или дисперсий, наконец, просто чтобы эмпирические данные можно было согласовать с предпосылкой нелинейности предпочтений по вероятности. Хотя эти разнообразные модели, как правило, относят к теории субъективной ожидаемой полезности, преобразование f(pi) не обязательно должно являться мерой степени убежденности. Помимо преобразований, которые сохраняют математические свойства вероятности, существует много теорий, в которых это требование ослаблено. В Приложении Д эти преобразования вероятностей обозначены w(pi), - мы будем называть их весами решений. Причем веса решений - это не вероятности: по словам Дэниэля Канемана и Амоса Тверски, они не подчиняются аксиомам вероятностей, и не должны интерпретироваться как меры убежденности. В их теории перспектив веса решений вводятся для того, чтобы отразить влияние событий на общую привлекательность игр - поэтому они монотонны по вероятности, но не обязательно линейны.

Подводя итоги, можно отметить, что полезность и вероятность по-разному трактуются в моделях ожидаемой полезности. Теоретическая концепция этой своеобразной психологии риска прошла последовательно четыре этапа:

а) На первом этапе считалось, что значение неопределенной перспективы равно придаваемому ей математическому ожиданию денежных значений выигрышей: т.е. их средней, взвешенной по объективными вероятностям.

б) На втором этапе стали учитывать психологические значения выигрышей, которые заменили денежные значения в предыдущей формуле. Тем самым было предложено выражение где p i - объективные вероятности, а психологические значения в зависимости от исхода (выигрыша). Основными идеологами этой модели являются Бернулли, Нейман и Моргенштерн (разницей лишь в видах функции ).

в) На третьем этапе была высказана идея, что индивид оперирует не объективными вероятностями, а психологическими представлениями о них, т.е. субъективными вероятностями. Так возникла формула -, где - субъективные вероятности. Эта формула остается еще вида формулы Бернулли, но объективные вероятности уже заменены субъективными.

г) На четвертом этапе, наконец, пришли к тому, что следует учитывать не только средневзвешенные по вероятностям психологические значения , но также и функцию распределения вероятностей, откуда следует формула

В Приложении Д показаны основные модели ожидаемой полезности, существующие на данный момент. Основными различиями в моделях, как говорилось в начале параграфа, являются разновидности функций полезности и вероятности. Существуют и другие различия: например, в теории перспектив исходы xi определяются как изменение финансового положения, а не итоговой величины богатства индивида. Кроме того, в описательных моделях пространство исходов может включать такие измерения, как сожаление, обоснованность выбора и т.д. Большинство из перечисленных моделей возникли как описательные, за исключением разве что моделей Неймана-Моргенштерна и Сэвиджа. Наверное, благодаря именно этому практическое использование закрепилось в основном за этими двумя моделями.

Как описательная модель, ориентированная на постижение процесса принятия решения, теория ожидаемой полезности несостоятельна, по крайней мере, с двух точек зрения.

Во-первых, люди не рассматривают все проблемы как единое целое, как это полагает теория ожидаемой полезности. При выборе в условиях неопределенности индивид физически не способен принимать в расчет все возможные исходы, потому что попросту не имеет информации о них.

Во-вторых, они не обрабатывают информацию, особенно вероятности, в соответствии с принципами ожидаемой полезности (существуют масса исключений в поведении людей, которые невозможно описать с помощью данных функций полезности или вероятности).

Помимо этого сложность вызывает построение функции полезности Неймана-Моргенштерна. Использование в качестве стандарта лотерей с вероятностью 50/50 зачастую приводит к иным функциям полезности, чем, например, при использовании лотерей с вероятностями 30/70. Установлено, что весьма незначительные изменения в контексте или общих условиях формулировки проблемы могут привести к совершенно иным предпочтениям. Таким образом, встает вопрос еще и о том, в каком из контекстов следует измерять "истинное" отношение к риску; или, в более фундаментальной постановке, существуют ли в действительности неизменные вкусы и предпочтения, которые были бы совместимы с аксиомами ожидаемой полезности.

Однако нет правил без исключений. Для хорошо структурированных повторяющихся ситуаций со значительными ставками, в которых решения принимают хорошо подготовленные специалисты, максимизация ожидаемой полезности может хорошо описывать действительный процесс принятия решения, - например, если речь идет о бурении нефтяных скважин. Действительно, в крупных организациях, где используются компьютеры и работают высококвалифицированные менеджеры, модель ожидаемой полезности может использоваться в явном виде. Однако даже в таких благоприятных условиях постановки проблем и их решения могут быть искажены, если учесть невозвратные издержки, эффекты изоляции, асимметричность оценок альтернативных и непосредственных издержек и прочие косвенные факторы.

И всё же если бы не было самой теории ожидаемой, большая часть вышеупомянутых исследований не имела бы место. Модель как таковая породила более глубокие идеи и поставила более тонкие вопросы как описательного, так и нормативного характера относительно принятия решений в условиях риска. Она выявила тот факт, что люди воспринимают и решают проблемы иначе, и предложила схему и язык, в рамках которых обсуждаются эти расхождения. Впрочем это не меняет того факта, что нынешний статус общепринятой концепции в некоторых областях применения может быть поставлен под вопрос. Тем не менее, пока не созданы более удачные модели рациональности, максимизация ожидаемой полезности, несомненно, может оставаться ценным ориентиром, с которым можно сравнивать и по которому можно корректировать реальное поведение. Вместе с тем, возможно, что нынешние парадоксы и устойчивые нарушения ожидаемой полезности содержат в себе семена будущих нормативных и описательных теорий выбора. В конце концов, ведь именно парадокс Бернулли породил нынешнюю модель ожидаемой полезности.

5. Отношение к риску

В предыдущем параграфе были рассмотрены основные модели общей полезности. Отличия в них по сути заключались в различных функциях психологических преобразований объективных переменных: вероятности и исхода рисковой ситуации. То есть многие экономисты пытались максимально отождествить формальную математическую функцию и поведение [рационального] человека.

Говоря о психологическом восприятии индивидуумом действительности (в нашем случае рисковой ситуации) принято рассматривать две отклоняющиеся от нормальной ситуации типологии поведения.

О первой, неприятии риска, было упомянуто еще в модели ожидаемой полезности Неймана-Моргенштерна. Именно в этой модели впервые принимается во внимание психологический эффект, производящий влияние на функцию полезности. Противником риска считается человек, который предпочитает рисковой ситуации результат, равный ожидаемому значению исходов. Это означает, что для этого человека полезность ожидаемого дохода больше ожидаемой полезности рисковой ситуации. Иначе говоря, если такому человеку предложить одно из двух: либо 10 рублей, либо 5 рублей с вероятностью 50% и 15 рублей с вероятностью 50%, - то он выберет 10 рублей и избежит рисковой ситуации. То есть . Графически эта ситуация изображена в Приложении Е. Выпуклая вверх функция - кривая полезности для индивида, который не является сторонником риска. Причем существует прямо пропорциональная зависимость между степенью неприятия и выпуклостью функции. Для такого вида функции производная первого порядка будет убывающей величиной. Каждое равное увеличение дохода будет порождать всё меньшие увеличения полезности (это видно на графике).

Стоит отметить, что для определения степени неприятия риска (степени выпуклости вверх функции U(x)) был введен коэффициент Эрроу-Пратта (независимо друг от друга Arrow, 1971 и Pratt, 1964). Он представлен в Приложении З. Являясь константой для линейных и экспоненциальных функций, этот коэффициент отражает важный момент - психологическое восприятие рисковой ситуации (неприятие, предпочтение) не зависят от исходов (результатов).

Что же касается уже упомянутой ситуации предпочтения риска, то она обратна вышеописанному случаю. То есть психологическое восприятие рисковой ситуации таково, что функция полезности такового индивида принимает вид выпуклой вниз экспоненциальной функции. В той же рисковой ситуации (Приложение Ж) полезность ожидаемого дохода U(10) будет ниже ожидаемой полезности этой рисковой ситуации , что будет толкать индивида идти на риск. Для этого вида функции U(x) производная первого порядка. Это означает, что с каждым одинаковым увеличением дохода полезность будет увеличиваться всё больше и больше. Теоретически коэффициент Эрроу-Пратта можно использовать и для ситуации предпочтения риска.

На практике восприятия или отношение к риску можно увидеть воочию. Например, в ситуации выбора способа заработка. Большая часть населения стран с рыночной экономикой пытаются найти такие положения, при которых в наименьшей степени возможно снижение уже имеющегося благосостояния. Поэтому эта же большая часть населения предпочитает относительно стабильный заработок наемного работника ненадежному предпринимательскому доходу.

Основная причина этого состоит в том, что высокие прибыли, которые сулит частное предпринимательство, никто не гарантирует. И, отдавая свои предпочтения стабильным заработным платам, более низким, чем возможные прибыли предпринимательской деятельности, индивидуумы имеют возросшие альтернативные издержки. Можно сказать, что такие издержки идут на уменьшение риска.

Конечно, нельзя назвать такое поведение нерациональным. В условиях постоянных расходов для многих стабильность доходов является высшим приоритетом, которым нельзя пожертвовать ради увеличения богатства в будущем. В России эта ситуация подкрепляется еще и не самыми благоприятными условиями для предпринимательства, по разным оценкам, заключающимися в высокой степени нестабильно.

6. Способы снижения риска и неопределенности

Но избежание или приятие риска не являются единственными действиями, которые возможно, а порой даже необходимо производить над рисковыми ситуациями и неопределенностью.

Еще Ф. Найт утверждал, что в человеке наблюдается постоянное стремление избавиться от любого вида неопределенности. «…при рациональном поведении имеет место стремление свести к минимуму неопределенности, связанные с приспособлением средств к целям[8]». Но это, как ни парадоксально, не означает, что наше стремление имеет окончание в точке полного избавления от неопределенности, даже если это и невозможно. Вряд ли кто-либо пожелал бы в условиях абсолютной детерминации. Тем не менее какая-то сила заставляет нас гнаться за тем, что нам не нужно и недостижимо. Можно сказать, тут раскрывается один из диалектических законов - единство и борьба противоположностей.

Как бы то ни было, стремления так или иначе повлиять на степень неопределенности и риска присутствуют на практике. Рассмотрим некоторые из их разновидностей.

Снова возвращаясь к работе Ф. Найта, заметим, что он выделяет два принципиальных способа снижения неопределенности, основанные на двух ключевых моментах. «…наиболее существенные точки зрения, связанные с неопределенностью, суть, во-первых, возможность уменьшить её масштаб путем группировки случаев, а во-вторых, разное отношение индивидов к неопределенности, порождающее тенденцию к сосредоточению функции ее преодоления в руках определенных индивидов или классов[9]». Если классифицировать единичные исходы по группам, то степени неопределенности будут меньше, чем если эти случаи рассматривать в отдельности. При априорной вероятности неопределенность исчезает с размером группы. Например, вероятность выпадения хотя бы одного герба из одной, двух, трех монет увеличивается по мере роста числа монет в испытании. Та же закономерность наблюдается и в статистической вероятности, но не так явно, ибо нет такой же однородности групп.

Среди способов снижения неопределенности, основанных на этом принципе, можно выделить следующие:


Подобные документы

  • Изучение понятия и факторов риска. Виды и классификация предпринимательского риска. Способы измерения, показатели риска и методы его оценки и снижения, способы построения кривых вероятностей возникновения потерь. Предпринимательские риски и страхование.

    курсовая работа [141,9 K], добавлен 29.03.2015

  • Риск и неопределенность: разделение понятий. Причины неопределенности и экономического риска. Общая характеристика компании "Семь желаний". Анализ туристического рынка. Пути предотвращения и преодоления последствий риска и неопределенности для компании.

    курсовая работа [89,1 K], добавлен 12.01.2016

  • Содержание экономического риска. Общее понятие риска. Классификация экономических рисков, основные методы их снижения. Аналитическая, защитная, регулятивная и инновационная функции риска. Основные формы диверсификации. Теория классификации рисков.

    курсовая работа [224,5 K], добавлен 24.06.2015

  • Классификация и причины возникновения экономических рисков, их виды и методы оценки. Влияние кризиса на уровень риска в мировой и российской экономике. Процесс управления риском, способы его минимизации. Проблемы риск-менеджмента рынка недвижимости.

    курсовая работа [1008,9 K], добавлен 06.12.2014

  • Система мер, направленных на уменьшение риска до минимально возможного уровня, их форма и содержание. Методы снижения риска в стратегическом планировании. Анализ риска, выявление его зон. Планирование сценариев, формирование перечня факторов риска.

    контрольная работа [32,7 K], добавлен 22.02.2013

  • Основные этапы анализа риска предпринимательской деятельности. Методы оценки неопределенности риска при выработки стратегии и тактики антикризисного управления. Принципы снижения риска в антикризисном управлении. Теория, методология изучения рисков.

    лекция [26,9 K], добавлен 12.05.2009

  • Средства разрешения рисков: избегание риска; удержание; снижение степени риска. Принципы разрешения риска. Сущность понятия "хеджирование". Хеджирование финансовых рисков. Методы снижения банковского риска. Страхование ценных бумаг и операций с ними.

    контрольная работа [25,1 K], добавлен 10.05.2010

  • Сущность предпринимательского риска и его классификация. Объективные и субъективные причины предпринимательских рисков. Определение и функции предпринимательского риска. Классификация предпринимательских рисков. Методы смягчения риска.

    курсовая работа [162,2 K], добавлен 03.05.2003

  • Теоретические основы предпринимательского риска, сравнительная оценка возможных его отрицательных и положительных последствий. Методы измерения риска, вероятностные показатели его оценки. Основные методы и приемы снижения предпринимательского риска.

    курсовая работа [33,5 K], добавлен 26.03.2010

  • Понятие, сущность и виды инвестиционных рисков. Оценка стратегического потенциала предприятия. Изучение, анализ и прогнозирование ситуации на рынке. Методы учета факторов риска и неопределенности при оценке эффективности инвестиционных проектов.

    курсовая работа [181,7 K], добавлен 03.06.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.