Применение относительных и средних величин в таможенной статистике внешней торговли
Изучение относительных и средних величин. Сущность средней величины в статистике, ее виды и формы. Анализ показателей относительных и средних величин. Расчеты относительной величины. Расчеты средней величины. Формы представления статистических данных.
Рубрика | Экономика и экономическая теория |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 29.01.2012 |
Размер файла | 325,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
КУРСОВАЯ РАБОТА
Применение относительных и средних величин в таможенной статистике внешней торговли
Оглавление
Введение
Глава 1. Относительные и средние величины
1.1 Относительные величины
1.2 Сущность средней величины в статистике, ее виды и формы
Глава 2. Анализ показателей относительных и средних величин
2.1 Расчеты относительной величины
2.2 Расчеты средней величины
2.3 Формы представления статистических данных
Заключение
Список литературы
Введение
Слово «статистика» имеет латинское происхождение (от status - состояние). В средние века оно означало политическое состояние государства. В науку этот термин введен в XVIII в. немецким ученым Готфридом Ахенвалем.
В настоящее время термин «статистика» употребляется в трех значениях:
1) под статистикой понимают отрасль практической деятельности, которая имеет своей целью сбор, обработку, анализ и публикацию массовых данных о самых различных явлениях общественной жизни (в этом смысле «статистика» выступает как синоним словосочетания «статистический учет»); расчет относительный средний величина
2) статистикой называют цифровой материал, служащий для характеристики какой-либо области общественных явлений или территориального распределения какого-то показателя;
3) статистикой называется отрасль знания, особая научная дисциплина и соответственно учебный предмет в высших и средних специальных учебных заведениях.
Как и всякая наука, статистика имеет свой предмет изучения. Статистика изучает количественную и качественную сторону массовых общественных явлений, исследует количественное выражение закономерностей общественного развития в конкретных условиях места и времени.
Свой предмет статистика изучает при помощи: определенных категорий (т.е. понятий, которые отражают наиболее общие и существенные свойства, признаки, связи и отношения предметов и явлений объективного мира, к ним относятся: статистическая совокупность, единица совокупности, признак единицы, статистический показатель и их система) и специфического метода. Метод статистики - это целая совокупность приемов, пользуясь которыми статистика исследует свой предмет. Она включает в себя три группы собственно методов (этапов любого статистического исследования):
1) метод массовых наблюдений (сбор первичного статистического материала, научно организованная регистрация всех существенных фактов, относящихся к рассматриваемому объекту);
2) метод группировок (дает возможность все собранные в результате массового статистического наблюдения факты подвергать систематизации и классификации);
3) метод обобщающих показателей (позволяет характеризовать изучаемые явления и процессы при помощи статистических величин - абсолютных, относительных и средних, выявляются взаимосвязи и масштабы явлений, определяются закономерности их развития, даются прогнозные оценки).
Основными задачами статистики являются:
1) сбор, обработка, анализ и хранение информации;
2) доведение обработанной информации до органов управления всех уровней;
3) ознакомление широкой общественности и населения с динамикой и дислокацией социально-экономических явлений в стране путем издания статистических сборников, справочников, обзоров, публикаций в печатных и электронных СМИ (например, сайт www.gks.ru);
4) международное сопоставление уровня социально-экономического развития разных стран.
Глава 1. Относительные и средние величины
1.1 Относительные величины
Изучая экономические явления, статистика не может ограничиваться исчислением только абсолютных величин. В анализе статистической информации важное место занимают производные обобщающие показатели -- средние и относительные величины. Остановимся на характеристике относительных величин.
Анализ -- это, прежде всего, сравнение, сопоставление статистических данных. В результате сравнения получают качественную оценку экономических явлений, которая выражается в виде относительных величин.
Относительные величины в статистике представляют собой частное от деления двух статистических величин и характеризуют количественное соотношение между ними.
При расчете относительных величин следует иметь в виду, что в числителе всегда находится показатель, отражающий то явление, которое изучается, т.е. сравниваемый показатель, а в знаменателе -- показатель, с которым производится сравнение, принимаемый за основание, или базу сравнения. База сравнения выступает в качестве своеобразного измерителя. В зависимости от того, какое числовое значение имеет база сравнения (основание), результат отношения может быть выражен либо в форме числа (коэффициента) или процента, либо в форме промилле или дециле. Существуют также именованные относительные величины. Например, показатель фондоотдачи в торговле получают делением объема товарооборота на среднегодовую стоимость основных фондов. Этот коэффициент показывает, сколько рублей товарооборота приходится на каждый рубль основных фондов.
Если значение основания или базы сравнения принимается за единицу (приравнивается к единице), то относительная величина (результат сравнения) является коэффициентом и показывает, во сколько раз изучаемая величина больше основания. Расчет относительных величин в виде коэффициента применяется в том случае, если сравниваемая величина существенно больше той, с которой она сравнивается. Если значение основания или базу сравнения принять за 100%, результат вычисления относительной величины будет выражаться также в процентах.
В тех случаях, когда базу сравнения принимают за 1000 (например, при исчислении демографических коэффициентов), результат сравнения выражается в промилле (%о). Относительные величины могут быть выражены и в дециле, если основание отношения равно 10000 (%оо).
В каждом отдельном случае следует выбирать ту форму выражения относительных величин, которая более наглядна и легче воспринимается. Например, лучше сказать, что объем товарооборота магазина за анализируемый период вырос почти в 2 раза, чем сказать, что объем товарооборота составил 199,5%.
Расчет относительных величин может быть правильным лишь при условии, что показатели, которые сравниваются, являются сопоставимыми. Причины, вызывающие несопоставимость показателей, неодинаковы, например различия в методологии сбора, обработки статистической информации, в длительности периодов времени, за которые исчислены сравниваемые показатели, и др. Во всех этих случаях расчет относительных величин можно выполнять только после приведения изучаемых показателей к сопоставимому виду.
По своему познавательному значению относительные величины подразделяются на следующие виды: выполнение договорных обязательств, структура, динамика, сравнение, координация, интенсивность.
В связи с переходом экономики страны на рыночные отношения в статистической отчетности не будет содержаться плановых показателей. Поэтому в процессе анализа относительные величины выполнения плана рассчитываться не будут. Вместо них исчисляется относительная величина выполнения договорных обязательств -- показатель, характеризующий уровень выполнения предприятием своих обязательств, предусмотренных в договорах.
Расчет этих показателей производится путем соотношения объема фактически выполненных обязательств (например, объема фактической поставки товара) и объема обязательств, предусмотренных в договоре (объем поставки товаров по договору). Выражаются относительные величины выполнения договорных обязательств в форме коэффициентов или в процентах.
Относительные величины структуры характеризуют состав изучаемых совокупностей. Исчисляются они как отношение абсолютной величины каждого из элементов совокупности к абсолютной величине всей совокупности, т.е. как отношение части к целому, и представляют собой удельный вес части в целом. Как правило, относительные величины структуры выражаются в процентах (база сравнения принимается за 100). Показатели структуры могут быть выражены также в долях (база сравнения принимается за 1).
Сравнивая структуру одной и той же совокупности за разные периоды времени, можно проследить структурные изменения, происшедшие во времени.
Пример. Из общей численности населения России, равной на конец 1985 г. 143,8 млн. человек, 104,1 млн. составляли городские жители, 39,7 млн. -- сельские. Рассчитав относительные величины структуры, можно определить удельные веса (или доли городских и сельских жителей) в общей численности населения страны, т.е. структуру населения по месту жительства:
городское -- (104,1:143,8) * 100 % = 72,4 %;
сельское -- (39,7 :148,7) * 100 % = 27,6 %.
Спустя 6 лет численность населения страны составила 148,7 млн. человек, в том числе:
городских жителей -- 109,7 млн., сельских -- 39,0 млн. человек. Исходя из этих данных, исчисляются показатели структуры населения:
городское -- (109,7 :148,7) * 100 % = 73,8 %;
сельское -- (39,0:148,7) * 100 % = 26,2 %.
Сравнив состав населения страны в 1985 г. и в 1991 г., можно сделать вывод о том, что происходит увеличение удельного веса городских жителей.
Относительные величины структуры широко используются в анализе коммерческой деятельности торговли и сферы услуг. Они дают возможность изучить состав товарооборота по ассортименту, состав работников предприятия по различным признакам (полу, возрасту, стажу работы), состав издержек обращения и т.д.
Относительные величины динамики характеризуют изменение изучаемого явления во времени, выявляют направление развития, измеряют интенсивность развития. Расчет относительных величин выполняется в виде темпов роста и других показателей динамики.
Пример. Реализация хлопчатобумажных тканей секцией универмага составила в январе 3956 тыс. руб., в феврале -- 4200 тыс. руб., в марте -- 4700 тыс. руб.
Темпы роста:
базисные (база -- уровень реализации в январе)
Кф/я = 4200: 3950 * 100% = 106,3 %;
Км/я= 4700: 3950 * 100 % = 118,9 %; цепные
Кф/я=4200: 3950-100% = 106,3%;
Км/ф= 4700: 4200 * 100 % = 111,9 %.
Относительные величины сравнения характеризуют количественное соотношение одноименных показателей, относящихся к различным объектам статистического наблюдения.
Пример. По данным Всесоюзной переписи населения 1989 г., численность населения Москвы составила 8967 тыс., а численность населения Ленинграда (ныне Санкт-Петербурга) -- 5020 тыс. человек.
Рассчитаем относительную величину сравнения, приняв за базу сравнения численность жителей Санкт-Петербурга: 8967:5020=1,79. Следовательно, численность населения Москвы в 1,79 раза больше, чем Санкт-Петербурга.
Относительные величины координации представляют собой одну из разновидностей показателей сравнения. Они применяются для характеристики соотношения между отдельными частями статистической совокупности и показывают, во сколько раз сравниваемая часть совокупности больше или меньше части, которая принимается за основание или базу сравнения, т.е., по существу, они характеризуют структуру изучаемой совокупности, причем иногда более выразительно, чем относительные величины структуры.
Пример. На начало года численность специалистов с высшим образованием, занятых в ассоциации «Торговый дом», составила 53 человека, а численность специалистов со средним специальным образованием -- 106 человек. Приняв за базу сравнения численность специалистов с высшим образованием, рассчитаем относительную величину координации:
106:53=2,0:1,0, т.е. на двух специалистов со средним специальным образованием приходится один специалист с высшим образованием.
Относительные величины интенсивности показывают, насколько широко распространено изучаемое явление в той или иной среде. Они характеризуют соотношение разноименных, но связанных между собой абсолютных величин.
В отличие от других видов относительных величин относительные величины интенсивности всегда выражаются именованными величинами.
Одним из условий правильного использования статистических показателей является изучение абсолютных и относительных величин в их единстве. Если это условие не соблюдено, можно прийти к неправильному выводу. Только комплексное применение абсолютных и относительных величин дает всестороннюю характеристику изучаемого явления.1
1.2 Сущность средней величины в статистике, ее виды и формы
Средней величиной называется статистический показатель, который дает обобщенную характеристику варьирующего признака однородных единиц совокупности.
Величина средней дает обобщающую количественную характеристику всей совокупности и характеризует ее в отношении данного признака.
Так, например, средняя заработная плата дает обобщающую количественную характеристику состояния оплаты труда рассматриваемой совокупности работников. Кроме того, используя средние величины, имеется возможность сопоставлять различные информационные совокупности.
Так, например, можно сравнивать различные организации по уровню производительности труда, а также по уровню фондоотдачи, материалоотдачи и по другим показателям.
Сущность средней заключается в том, что в ней взаимопогашаются случайные отклонения значений признака и учитываются изменения вызванные основным фактором.
Статистическая обработка методом средних величин заключается в замене индивидуальных значений варьирующего признака
некоторой уравновешенной средней величиной .
Например, индивидуальная выработка у 5 операционистов коммерческого банка за день составила 136, 140, 154 и 162 операции. Чтобы получить среднее число операций за день, выполненных одним операционистом, необходимо сложить эти индивидуальные показатели и полученную сумму разделить на количество операционистов:
операций.
Как видно из приведенного примера, среднее число операций не совпадает ни с одним из индивидуальных, так как ни один операционист не сделал 150 операций. Но если мы представим себе, что каждый операционист сделал по 150 операций, то их общая сумма не изменится, а будет также равна 750. Таким образом, мы пришли к основному свойству средних величин: сумма индивидуальных значений признака равна сумме средних величин.
Это свойство еще раз подчеркивает, что средняя величина является обобщающей характеристикой всей статистической совокупности.
Средние величины широко применяются в различных отраслях знаний. Особо важную роль они играют в экономике и статистике: при анализе, планировании, прогнозировании, при расчете нормативов и при оценке достигнутого уровня. Средняя всегда именованная величина и имеет ту же размерность, что и отдельная единица совокупности.
Важнейшими условиями (принципами) для правильного вычисления и использования средних величин является следующие:
1. В каждом конкретном случае необходимо исходить из качественного содержания усредняемого признака, учитывать взаимосвязь изучаемых признаков и имеющиеся для расчета данные.
2. Индивидуальные значения, из которых вычисляются средние, должны относиться к однородной совокупности, а число их должно быть значительным.
Виды средних величин
Средние величины делятся на два больших класса: степенные средние и структурные средние
Степенные средние:
§ Арифметическая
§ Гармоническая
§ Геометрическая
§ Квадратическая
Структурные средние:
§ Мода
§ Медиана
Выбор формы средней величины зависит от исходной базы расчета средней и от имеющейся экономической информации для ее расчета.
Исходной базой расчета и ориентиром правильности выбора формы средней величины являются экономические соотношения, выражающие смысл средних величин и взаимосвязь между показателями.
Расчет некоторых средних величин:
§ Средняя заработная плата 1 работника = Фонд заработной платы / Число работников
§ Средняя цена 1 продукции = Стоимость производства / Количество единиц продукции
§ Средняя себестоимость 1 изделия = Стоимость производства / Количество единиц продукции
§ Средняя урожайность = Валовой сбор / посевная площадь
§ Средняя производительность труда = объем продукции, работ, услуг / Отработанное время
§ Средняя трудоемкость = отработанное время / объем продукции, работ, услуг
§ Средняя фондоемкость = Средняя стоимость основных фондов / объем продукции, работ и услуг
§ Средняя фондоотдача = объем продукции, работ и услуг / средняя стоимость основных фондов
§ Средняя фондовооруженность = средняя величина основных производственных фондов / среднесписочная численность производственного персонала
§ Средний процент брака = ( стоимость бракованной продукции / Стоимость всей произведенной продукции ) * 100%
Глава 2 Анализ показателей относительных и средних величин
2.1 Расчеты относительной величины
Анализируя абсолютные величины, например, статистические данные о внешней торговли РФ, необходимо сопоставлять эти данные во времени и пространстве, исследовать закономерности их изменения и развития, изучать структуру совокупностей. С помощью абсолютных величин эти задачи не выполнимы, в этом случае необходимо использовать относительные величины.
Относительная величина - это результат деления (сравнения) двух абсолютных величин. В числителе дроби стоит величина, которую сравнивают, а в знаменателе - величина, с которой сравнивают (база сравнения). Например, если сопоставить величины экспорта США и России, которые в 2005 году составили 904,383 и 243,569 млрд. долл. соответственно, то относительная величина покажет, что величина экспорта США в 3,71 раза (904,383/243,569) больше экспорта России, при этом базой сравнения является величина экспорта России. Полученная относительная величина выражена в виде коэффициента, который показывает, во сколько раз сравниваемая абсолютная величина больше базисной. В данном примере база сравнения принята за единицу. В случае если основание принимается за 100, относительная величина выражается в процентах (%), если за 1000 - в промилле (‰). Выбор той или иной формы относительной величины зависит от ее абсолютного значения:
– если сравниваемая величина больше базы сравнения в 2 раза и более, то выбирают форму коэффициента (как в вышеприведенном примере);
– если относительная величина близка к единице, то, как правило, ее выражают в процентах (например, сравнив величины экспорта России в 2006 и 2005 годах, которые составили 304,5 и 243,6 млрд. долл. соответственно, можно сказать, что экспорт в 2006 году составляет 125% от 2005 года [304,5/243,6*100%]);
– если относительная величина значительно меньше единицы (близка к нулю), ее выражают в промилле (например, в 2004 году Россия экспортировала в страны-СНГ всего 4142 тыс. т нефтепродуктов, в том числе в Грузию 10,7 тыс. т, что составляет 0,0026 [10,7/4142], или 2,6‰ от всего экспорта нефтепродуктов в страны СНГ).
Различают относительные величины динамики, структуры, координации, сравнения и интенсивности, для краткости именуемые в дальнейшем индексами.
Индекс динамики Во многих учебниках по статистике встречается другое название индекса динамики - темп роста. Использование такого названия не совсем логично, так динамика может быть различна (не только рост, но и спад, а также стабильность), поэтому наиболее правильным является использование названия «индекс динамики» или «индекс изменения» характеризует изменение какого-либо явления во времени. Он представляет собой отношение значений одной и той же абсолютной величины в разные периоды времени. Данный индекс определяется по формуле (2):
, (2)
где цифры означают: 1 - отчетный или анализируемый период, 0 - прошлый или базисный период.
Критериальным значением индекса динамики служит единица (или 100%), то есть если >1, то имеет место рост (увеличение) явления во времени; если =1 - стабильность; если <1 - наблюдается спад (уменьшение) явления. Еще одно название индекса динамики - индекс изменения, вычитая из которого единицу (100%), получают темп изменения (динамики) Часто встречается и другое название темпа изменения - темп прироста, что не совсем логично (см. предыдущую сноску) с критериальным значением 0, который определяется по формуле (3):
.(3)
Если T>0, то имеет место рост явления; Т=0 - стабильность, Т<0 - спад.
В рассмотренном выше примере про экспорт России в 2006 и 2005 году был рассчитан именно индекс динамики по формуле (2): iД = 304,5/243,6*100% = 125%, что больше критериального значения 100%, что свидетельствует об увеличении экспорта. Используя формулу (3), получим темп изменения: Т = 125% - 100% = 25%, который показывает, что экспорт увеличился на 25%.
Разновидностями индекса динамики являются индексы планового задания и выполнения плана, рассчитываемые для планирования различных величин и контроля их выполнения.
Индекс планового задания - это отношение планового значения признака к базисному. Он определяется по формуле (4):
,(4)
где X'1 - планируемое значение; X0 - базисное значение признака.
Например, таможенное управление перечислило в федеральный бюджет в 2006 году 160 млрд.руб., а на следующий год запланировали перечислить 200 млрд.руб., значит по формуле (4) iпз = 200/160 = 1,25, то есть плановое задание для таможенного управления на 2007 год составляет 125% от предыдущего года.
Для определения процента выполнения плана необходимо рассчитать индекс выполнения плана, то есть отношение наблюдаемого значения признака к плановому (оптимальному, максимально возможному) значению:
.(5)
Например, на январь-ноябрь 2006 года таможенные органы запланировали перечислить в федеральный бюджет 1,955 трлн. руб., но фактически перечислили 2,59 трлн. руб., значит по формуле (5): iВП = 2,59/1,955 = 1,325, или 132,5%, то есть плановое задание выполнили на 132,5%.
Индекс структуры (доля) - это отношение какой-либо части объекта (совокупности) ко всему объекту. Он определяется по формуле (6):
(6)
В рассмотренном выше примере про экспорт нефтепродуктов в страны СНГ, была рассчитана доля этого экспорта в Грузию по формуле (69): d=10,7/4142 = 0,0026, или 2,6‰.
Индекс координации - это отношение какой-либо части объекта к другой его части, принятой за основу (базу сравнения). Он определяется по формуле (7):
.(7)
Например, импорт России в 2006 году составил 163,9 млрд.долл., тогда, сравнив его с экспортом (база сравнения), рассчитаем индекс координации по формуле (7): iК = 163,9/304,5 = 0,538, который показывает соотношение между двумя составными частями внешнеторгового оборота, то есть величина импорта России в 2006 году составляет 53,8% от величины экспорта. Меняя базу сравнения на импорт, по той же формуле получим: iК = 304,5/163,9 = 1,858, то есть экспорт России в 2006 году в 1,858 раза больше импорта, или экспорт составляет 185,8% от импорта.
Индекс сравнения - это сравнение (соотношение) разных объектов по одинаковым признакам. Он определяется по формуле (8):
,(8)
где А, Б - сравниваемые объекты.
В рассмотренном выше примере, в котором сопоставлялись величины экспорта США и России, был рассчитан именно индекс сравнения по формуле (8): iс = 904,383/243,569 = 3,71. Меняя базу сравнения (то есть экспорт России - объект А, а экспорт США - объект Б), по той же формуле получим: iс = 243,569/904,383 = 0,27, то есть экспорт России составляет 27% от экспорта США.
Индекс интенсивности - это соотношение разных признаков одного объекта между собой. Он определяется по формуле (9):
.(9)
где X - один признак объекта; Y - другой признак этого же объекта
Например, количество ГТД, оформленных 1 работником таможни - это индекс интенсивности, характеризующий интенсивность оформления деклараций работником таможенных органов, который рассматривается в теме «Статистика декларирования» данного учебного пособия.
2.2 Расчеты средней величины
Как уже неоднократно было сказано ранее, статистика изучает массовые явления и процессы. Каждое из таких явлений обладает как общими для всей совокупности, так и особенными, индивидуальными свойствами. Здесь рассмотрим свойство массовых явлений - присущую им близость характеристик отдельных явлений. В этом свойстве заключается причина широчайшего применения средних величин. Главное значение средних величин состоит в их обобщающей функции, то есть замене множества различных индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений.
Виды средних величин различаются прежде всего тем, какое свойство, какой параметр исходной варьирующей массы индивидуальных значений признака должен быть сохранен неизменным.
Средней арифметической величиной называется такое среднее значение признака, при вычислении которого общий объем признака в совокупности сохраняется неизменным. Иначе можно сказать, что средняя арифметическая величина - среднее слагаемое. При ее вычислении общий объем признака мысленно распределяется поровну между всеми единицами совокупности. Исходя из определения, формула средней арифметической величины имеет вид (10):
.(10)
По формуле (10) вычисляются средние величины первичных признаков, если известны индивидуальные значения признака. Если изучаемая совокупность велика, исходная информация чаще представляет собой ряд распределения или группировку, как, например, табл. 3.
Таблица 3. Распределение дней работника таможни по числу оформленных ГТД в марте
Количество ГТД, оформленных работником таможни за день, X |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
Число дней, f |
3 |
5 |
7 |
4 |
2 |
1 |
1 |
Среднее число оформленных ГТД за день должно представлять собой результат равномерного распределения общего числа оформленных ГТД за все 23 рабочих дня марта. Общее число оформленных ГТД, согласно исходной информации табл. 3, можно получить как сумму произведений значений признака в каждой группе Xi, на число дней с таким количеством оформленных ГТД fi (частоты). Получим формулу (11):
,(11)
где i - число групп.
Такую форму средней арифметической величины называют взвешенной арифметической средней Обычно (в т.ч. и в дальнейшем в данном пособии) в статистических формулах пределы суммирования не ставятся, а подразумеваются, т.е. подразумеваются именно такие пределы как формуле (11) - с 1-ой группы по N-ю (последнюю) в отличие от простой средней, рассчитанной по формуле (10). В качестве весов здесь выступают количество единиц совокупности в разных группах. Название «вес» выражает тот факт, что разные значения признака имеют неодинаковую «важность» при расчете средней величины. «Важнее», весомее число дней, когда работник оформлял 2, 3, 4 ГТД за день, а такие значения, как 5, 6 или 7 оформленных ГТД за день, как бы ни радовалось начальство такой производительности работника, при расчете средней не играет большой роли: их «вес» мал.
По формуле (11) по данным табл. 3 имеем:
= 3,17
(оформленных работником за день ГТД).
Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины в качестве значения признака в группах принимают середины этих интервалов, то есть исходят из предположения о равномерном распределении единиц совокупности по интервалу значений признака. Для открытых интервалов в первой и последней группе, если таковые есть, значения признака надо определить экспертным путем исходя из сущности, свойств признака и совокупности. При отсутствии возможности экспертной оценки значения признака в открытых интервалах, для нахождения недостающей границы открытого интервала применяют размах (разность между значениями конца и начала интервала) соседнего интервала (принцип «соседа»).
Например, по условным данным табл. 4 можно минимальной величиной таможенной стоимости считать 0 тыс.долл., тогда первый интервал будет от 0 до 5 тыс.долл., а максимальную величину определить затруднительно, поэтому воспользуемся принципом «соседа» - применим размах соседнего интервала 15 тыс.долл. (30 - 15), значит последний интервал будет от 30 до 45 тыс.долл.
Таблица 4. Распределение товаров по величине таможенной стоимости
Группы товаров по величине таможенной стоимости, тыс.долл. |
Количество товаров, тыс.шт. |
Середина интервала Xi' |
Xi'fi |
|
До 5 |
12 |
2,5 |
30 |
|
5 - 15 |
38 |
10 |
380 |
|
15 - 30 |
45 |
22,5 |
1012,5 |
|
Более 30 |
5 |
37,5 |
187,5 |
|
Итого |
100 |
16,1 |
1610 |
Средняя величина таможенной стоимости, рассчитанная по формуле (11) с заменой точных значений признака в группах серединами интервалов, составил:
тыс. долл.,
что и записано в итоговую строку в 3-м столбце табл. 4. Следует обратить внимание, что объемного показателя - это сумма, а итог по столбцам относительных показателей или средних групповых величин - средняя.
Средняя арифметическая величина обладает свойствами, знание которых полезно как при ее использовании, так и при ее расчете.
1. Сумма отклонений индивидуальных значений признака от его среднего значения равна нулю. Доказательство Для взвешенной средней сумма взвешенных отклонений равна нулю - доказать самостоятельно:
2. Если каждое индивидуальное значение признака умножить или разделить на постоянное число, то и средняя увеличится или уменьшится во столько же раз. Доказательство:
Вследствие этого свойства индивидуальные значения признака можно сократить в c раз, произвести расчет средней и результат умножить на c.
3. Если к каждому индивидуальному значению признака прибавить или из каждого значения вычесть постоянное число, то средняя величина возрастет или уменьшится на это же число. Доказательство:
Это свойство полезно использовать при расчете средней величины из многозначных и слабоварьирующих значений признака аналогично предыдущему свойству.
4. Если веса средней взвешенной умножить или разделить на постоянное число, средняя величина не изменится. Доказательство:
Используя это свойство, при расчетах следует сокращать веса на их общий сомножитель либо выражать многозначные числа весов в более крупных единицах измерениях.
5. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа. Доказательство: составим сумму квадратов отклонений от переменной
a: ,
чтобы найти экстремум этой функции, найдем ее производную по a и приравняем ее нулю, т.е.
,
отсюда получаем
; ; ; .
Таким образом, экстремум суммы квадратов отклонений достигает максимума при a=. Так как логически ясно, что максимума функция иметь не может, этот экстремум является минимумом.
Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменную сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной. Ее формула следующая:
.(12)
Главной сферой применения квадратической средней в силу пятого свойства средней арифметической величины является измерение вариации признака в совокупности.
Аналогично, если по условиям задачи необходимо сохранить неизменной сумму кубов индивидуальных значений признака при их замене на среднюю величину, мы приходим к средней кубической величине, имеющей вид:
.(13)
Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применить геометрическую среднюю величину, имеющую следующий вид:
.(14)
Основное применение средняя геометрическая находит при определении средних относительных изменений, о чем сказано в теме 6. Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения признака, который качественно был бы равноудален как от максимального, так и от минимального значения признака.
Когда статистическая информация не содержит частот f по отдельным вариантам Xi совокупности, а представлена как их произведение Xf, тогда применяется формула средней гармонической взвешенной, для получения которой обозначим Xf=w, откуда f=w/X, и, подставив эти обозначения в формулу (11), получим формулу (15):
.(15)
Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны действительные веса f, а известно w=Xf. В тех случаях, когда вес каждого варианта w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой (16):
.(16)
Все рассмотренные выше виды средних величин принадлежат к общему типу степенных средних, имеющему следующий вид:
=.(17)
При m = 1 получаем среднюю арифметическую; при m = 2 - среднюю квадратическую;
при m = 3 - среднюю кубическую; при m = 0 - среднюю геометрическую; при m = -1 - среднюю гармоническую. Чем выше показатель степени m, тем больше значение средней величины (если индивидуальные значения признака варьируют). В итоге, можно построить следующее соотношение, которое называется правилом мажорантности средних:
? ? ? ? . (18)
2.3 Формы представления статистических данных
Статистические данные должны быть представлены так, чтобы ими можно было пользоваться. Существует 3 основных формы представления статистических данных:
1) текстовая - включение данных в текст;
2) табличная - представление данных в таблицах;
3) графическая - выражение данных в виде графиков.
Текстовая форма применяется при малом количестве цифр, как, например, в 1-м и 2-м вариантах контрольных заданий к данной теме.
Табличная форма применяется чаще всего, так как является более эффективной формой представления статистических данных. В отличие от математических таблиц, которые по начальным условиям позволяют получить тот или иной результат, статистические таблицы рассказывают языком цифр об изучаемых объектах.
Статистическая таблица - это система строк и столбцов, в которых в определенной последовательности и связи излагается статистическая информация о социально-экономических явлениях.
Таблица 5. Внешняя торговля РФ за 2000 - 2006 годы, млрд.долл. Расхождения значений СВТ и ВО с расчетными по формулам (19) и (20) вызваны округлениями данных до десятых
Показатель |
2000 |
2001 |
2002 |
2003 |
2004 |
2005 |
2006 |
|
Внешнеторговый оборот |
149,9 |
155,6 |
168,3 |
212 |
280,6 |
368,9 |
468,4 |
|
Экспорт |
105 |
101,9 |
107,3 |
135,9 |
183,2 |
243,6 |
304,5 |
|
Импорт |
44,9 |
53,8 |
61 |
76,1 |
97,4 |
125,3 |
163,9 |
|
Сальдо торгового баланса |
60,1 |
48,1 |
46,3 |
59,9 |
85,8 |
118,3 |
140,7 |
|
в том числе: |
|
|
|
|
|
|
|
|
со странами дальнего зарубежья |
|
|
|
|
|
|
|
|
экспорт |
90,8 |
86,6 |
90,9 |
114,6 |
153 |
210,1 |
261,1 |
|
импорт |
31,4 |
40,7 |
48,8 |
61 |
77,5 |
103,5 |
138,6 |
|
сальдо торгового баланса |
59,3 |
45,9 |
42,1 |
53,6 |
75,5 |
106,6 |
122,5 |
|
со странами СНГ |
|
|
|
|
|
|
|
|
экспорт |
14,3 |
15,3 |
16,4 |
21,4 |
30,2 |
33,5 |
43,4 |
|
импорт |
13,4 |
13 |
12,2 |
15,1 |
19,9 |
21,8 |
25,2 |
|
сальдо торгового баланса |
0,8 |
2,2 |
4,2 |
6,3 |
10,3 |
11,7 |
18,2 |
Например, в табл. 5 представлена информация о внешней торговле России, выражать которую в текстовой форме было бы неэффективным. Статистические графики - это условные изображения числовых величин и их соотношений посредством линий, геометрических фигур, рисунков или географических карт-схем. Графическая форма облегчает рассмотрение статистических данных, делает их наглядными, выразительными, обозримыми. Однако графики имеют определенные ограничения: прежде всего, график не может включить столько данных, сколько может войти в таблицу; кроме того, на графике показываются всегда округленные данные - не точные, а приблизительные. Таким образом, график используется только для изображения общей ситуации, а не деталей. Последний недостаток - трудоемкость построения графиков. Он может быть преодолен использованием персонального компьютера (например, «Мастером диаграмм» из пакета Microsoft Office Excel).
По способу построения графики делятся на диаграммы, картограммы и картодиаграммы.
Наиболее распространенным способом графического изображения данных являются диаграммы, которые бывают следующих видов: линейные, радиальные, точечные, плоскостные, объемные, фигурные. Вид диаграмм зависит от вида представляемых данных и задачи построения. В любом случае график обязательно сопровождается заголовком - над или под полем графика. В заголовке указывается, какой показатель изображен, по какой территории и за какое время.
Линейные графики используются для представления количественных переменных: характеристики вариации их значений, динамики, взаимосвязи между переменными. Вариация данных анализируется с помощью полигона распределения, кумуляты (кривой «меньше, чем») и огивы (кривой «больше, чем»). Полигон распределения рассматривается в теме 5 (напр., рис. 9). Для построения кумуляты значения варьирующего признака откладываются по оси абсцисс, а на оси ординат помещаются накопленные итоги частот или частостей (от f1 до ?f). Для построения огивы на оси ординат помещаются накопленные итоги частот в обратном порядке (от ?f до f1). Кумуляту и огиву по данным табл. 4. изобразим на рис. 4.
Рис. 4. Кумулята и огива распределения товаров по величине таможенной стоимости
Применение линейных графиков в анализе динамики рассматривается в теме 6 (напр., рис.17), а использование их для анализа связей - в теме 7 (напр., рис.22). В теме 7 также рассмотрено использование точечных диаграмм (напр., рис. 21). Линейные графики подразделяются на одномерные, используемые для представления данных по одной переменной, и двумерные - по двум переменным. Примером одномерного линейного графика является полигон распределения, а двумерного - линия регрессии (напр., рис. 22). При графическом изображении динамики по оси абсцисс показывается время (годы, кварталы, месяцы), а по оси ординат - значения показателей или показателя. Построим график динамики внешней торговли РФ по данным табл. 5 (см. рис. 5).
Рис. 5. Линейный график динамики внешней торговли РФ за 2000 - 2006 гг.
Иногда при больших изменениях показателя прибегают к логарифмической шкале. Например, если значения показателя изменяются от 1 до 1000, то это может вызвать затруднения при построении графика. В таких случаях переходят к логарифмам значений показателя, которые не будут столь сильно различаться:
lg 1 = 0, lg 1000 = 3.
Среди плоскостных диаграмм по частоте использования выделяются столбиковые диаграммы (гистограммы), на которых показатель представляется в виде столбика, высота которого соответствует значению показателя (напр., рис. 8).
Пропорциональность площади той или иной геометрической фигуры величине показателя лежит в основе других видов плоскостных диаграмм: треугольных, квадратных, прямоугольных. Можно использовать и сравнение площадей круга - в этом случае задается радиус окружности.
Ленточная диаграмма представляет показатели в виде горизонтально вытянутых прямоугольников, а в остальном не отличается от столбиковой диаграммы.
Из плоскостных диаграмм часто используется секторная диаграмма, которая применяется для иллюстрации структуры изучаемой совокупности. Вся совокупность принимается за 100%, ей соответствует общая площадь круга, площади секторов соответствуют частям совокупности. Построим секторную диаграмму структуры внешней торговли РФ в 2006 году по данным табл. 5 (см. рис. 6).
При использовании компьютерных программ секторные диаграммы строятся в объемном виде, то есть не в двух, а в трех плоскостях (см. рис. 7).
Рис. 6. Простая секторная диаграмма
Рис. 7. Объемная секторная диаграмма
Фигурные (картинные) диаграммы усиливают наглядность изображения, так как включают рисунок изображаемого показателя, размер которого соответствует размеру показателя.
При построении графика одинаково важно все - правильный выбор графического изображения, пропорций, соблюдение правил оформления графиков. Подробнее эти вопросы освещаются в [17] и [12].
Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений. Они показывают размещение изучаемого явления, его интенсивность на определенной территории - в республике, области, экономическом или административном округе и т.д. (напр., см. рис. 2). Построение картограмм и картодиаграмм рассматривается в специальной литературе, например [7].
Заключение
В заключении подведем итоги. Средние величины -- это обобщающие показатели, в которых находят выражения действие общих условий, закономерность изучаемого явления.
Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного или выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Применение средних должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.
Средняя отражает то общее, что складывается в каждом отдельном, единичном объекте благодаря этому средняя получает большое значение для выявления закономерностей присущих массовым общественным явлениям и незаметных в единичных явлениях.
Отклонение индивидуального от общего -- проявление процесса развития. В отдельных единичных случаях могут быть заложены элементы нового, передового.
В этом случае именно конкретных фактор, взятые на фоне средних величин, характеризует процесс развития. Поэтому в средней и отражается характерный, типичный, реальный уровень изучаемых явлений. Характеристики этих уровней и их изменений во времени и в пространстве являются одной из главных задач средних величин.
Так, через средние проявляется, например, свойственная предприятиям на определенном этапе экономического развития; изменение благосостояния населения находит свое отражение в средних показателях заработной платы, доходов семьи в целом и по отдельным социальным группам, уровня потребления продуктов, товаров и услуг. Средний показатель -- это значение типичное (обычное, нормальное, сложившееся в целом), но таковым оно является по тому, что формируется в нормальных, естественных условиях существования конкретного массового явления, рассматриваемого в целом. Средняя отображает объективное свойство явления. В действительности часто существует только отклоняющиеся явления, и средняя как явления может и не существовать, хотя понятие типичности явления и заимствуется из действительности. Средняя величина является отражения значения изучаемого признака и, следовательно, измеряется в той же размеренности что и этот признак. Однако существуют различные способы приближенного определения уровня распределения численности для сравнения сводных признаков, непосредственно не сравнимых между собой, например средняя численность населения по отношению к территории (средняя плотность населения). В зависимости от того, какой именно фактор нужно элиминировать, будет находиться и содержание средней.
Сочетание общих средних с групповыми средними дает возможность ограничить качественно однородные совокупности. Расчленяя массу объектов, составляющих то или иное сложное явления, на внутренне однородные, но качественно различные группы, характеризуя каждую из групп своей средней, можно вскрыть резервы процесс нарождающегося нового качества. Например, распределения населения по доходу позволяет выявить формирование новых социальных групп. В аналитической части мы рассмотрели частный пример использования средней величины. Подводя итог можно сказать, что область применения и использования средних величин в статистике довольно широка.
Список литературы
1.Бестужев-Лада И.В. Мир нашего завтра, М.: «Мысль», 1998
2.Боярский А.Я., Громыко Г.Л. Общая теория статистики, М., 1995.
3. Гусаров В.М. Теория статистики. - М., 1998.
4. Российский статистический ежегодник. - М.:2002. - часть1
5. http://www.infostat.ru
6. http://www.vedi.ru.
7. http://life-prog.ru/view_statistika.php?id=5
8. «Теория статистики» под редакцией Минашкина В.Г., Шмойловой Р.А., Садовникова Н.А., Моисейкиной Л.Г., Рыбакова Е.С. Московская финансово- промышленная академия, М., - 2004 г., 198 с
9. «Экономическая статистика» Т.В. Чернова, учебное пособие, Таганрог: изд-во ТРТУ, 1999.
10. Учебный курс «Статистика», часть первая под редакцией Степанова В.Г.
11. http://allstats.ru/-образовательный статистический сайт
12. «Статистика», Никитина Е.П., Фрейдлина В.Д., Ярхо А.В.-Москва: МГУ, 1972.
13. Материалы интернет сайта www.d-inform.ru.
14. Практика таможенного регулирования, Ю.М. Петров, И.В. Кудрявцева. М., «Автор», 1994.
15.Таможенный кодекс РФ
16. И.И. Елисеева, М.М. Юзбашев «Общая теория статистики» М: Финансы и статистика: 2008.
17. Назаренко В.М., Назаренко К.С. Таможенное обслуживание ВЭД. М.: Экзамен, 2001.
18. Сельцовский В.С. Статистические методы анализа внешне торговых операций. М.:2004.
19. Официальный сайт Федеральной таможенной службы. // http://www.customs.ru/ru/
20. Официальный сайт Федеральной службы государственной статистики. // http://www.gks.
Размещено на Allbest.ru
Подобные документы
Виды и применение абсолютных и относительных статистических величин. Сущность средней в статистике, виды и формы средних величин. Формулы и техника расчетов средней арифметической, средней гармонической, структурной средней. Расчет показателей вариации.
лекция [985,6 K], добавлен 13.02.2011Группы средних величин: степенные, структурные. Особенности применения средних величин, виды. Рассмотрение основных свойств средней арифметической. Характеристика структурных средних величин. Анализ примеров на основе реальных статистических данных.
курсовая работа [230,6 K], добавлен 24.09.2012Понятие абсолютной и относительной величины в статистике. Виды и взаимосвязи относительных величин. Средние величины и общие принципы их применения. Расчет средней через показатели структуры, по результатам группировки. Определение показателей вариации.
лекция [29,1 K], добавлен 25.09.2011Расчет средних показателей при составлении любого экономического отчета. Исследование метода средних величин. Отражение средней величиной того общего, что характерно для всех единиц изучаемой совокупности. Деление средних величин на два класса.
курсовая работа [91,7 K], добавлен 14.12.2008Абсолютная величина как объем или размер изучаемого события. Виды абсолютных величин: абсолютная и суммарная. Группы величин: моментная и интервальная единицы измерения. Виды относительных величин. Виды средних величин: степенные и структурные.
презентация [173,3 K], добавлен 22.03.2012Построение ряда распределения предприятий по стоимости основных производственных фондов методом статистической группировки. Нахождение средних величин и индексов. Понятие и вычисление относительных величин. Показатели вариации. Выборочное наблюдение.
контрольная работа [120,9 K], добавлен 01.03.2012Сущность и разновидности средних величин в статистике. Определение и особенности однородной статистической совокупности. Расчет показателей математической статистики. Что такое мода и медиана. Основные показатели вариации и их значение в статистике.
реферат [162,6 K], добавлен 04.06.2010Изучение сущности, видов, сферы применения средних величин. Характеристика степенных средних величин: средняя арифметическая; средняя гармоническая; средняя геометрическая; средняя квадратическая. Анализ структурных величин: медиана, мода, их расчет.
курсовая работа [157,3 K], добавлен 16.01.2010Понятие средних величин и их значение в экономике. Классификация видов средних величин и их краткая характеристика. Средняя гармоническая и арифметическая, способы их расчета. Примеры применения средних величин в практической работе экономистов.
курсовая работа [205,4 K], добавлен 17.09.2014Организация статистики и источники статистических данных. Наблюдение по способу регистрации данных. Выявление и изучение связи и взаимозависимости между явлениями. Система статистических показателей. Определение средних и относительных величин.
контрольная работа [53,6 K], добавлен 27.01.2011