Экономическая статистика

Мода и медиана дискретного ряда. Распределение фирм по объему инвестиций и банков по величине кредитных вложений. Модальное значение объема инвестиций. Зависимость между объемом произведенной продукции и прибылью. Индивидуальные и агрегатные индексы цен.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 29.12.2011
Размер файла 183,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Государственное образовательное учреждение высшего профессионального образования

«ЮЖНО УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет филиал ГОУ ВПО «ЮУрГУ» в г. Снежинске

Кафедра «Экономика и инвестиции»

КОНТРОЛЬНАЯ РАБОТА

по дисциплине (специализации) «Статистика»

Проверил

Е.А. Лякина

Автор работы

студент группы ФВЗ-229

Снежинск 2011

Задача №1.

Определить моду и медиану данного дискретного ряда:

х

85

83

84

87

86

f

15

17

18

26

24

Решение:

х

83

84

85

86

87

f

17

18

15

24

26

S

17

35

50

74

100

Находим номер медианы:

По накопленной частоте находим медиану: Ме = 85;

Значение с наибольшей частотой признака: Мо = 87 (f=26);

Задача №2.

По данным таблицы определить средний размер трех видов вкладов в банке в октябре и ноябре:

Вид вклада

Октябрь

Ноябрь

Число вкладов, тыс.

Средний размер вклада, руб.

Сумма вкладов, млн. руб.

Средний размер вклада, руб.

До востребован.

13

158

9,10

297

Срочный

20

419

7,11

300

Пенсионный

15

220

4,20

180

Решение:

В октябре известен средний размер каждого вида вкладов, примем его за x, и число вкладов, примем за f. Для расчета среднего размера по трем вкладам применяем формулу средней арифметической взвешенной:

х = ((13*158)+(20*419)+(15*220)) / (13+20+15) = 286,12 тыс. руб.

В ноябре известен средний размер каждого вида вкладов x и сумма вкладов, примем за

W = xf.

Для расчета среднего размера по трем видам вкладов применяем формулу средней гармонической:

(млн. руб.)

Задача №3

Распределение строительных фирм по объему инвестиций характеризуется следующими данными:

Определить:

Средний объем инвестиций на одно предприятие;

Размах вариации, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение, коэффициент вариации;

модальное и медианное значение объема инвестиций, квартили;

Сделать выводы.

Объем инвестиций, млн. руб.

Число фирм

10-20

6

20-30

7

30-40

10

40-50

12

50-60

8

60-70

5

Итого:

48

Решение:

Объем инвестиций, млн. руб.

Число фирм, f

Расчеты

xi

xi fi

R

10-20

6

15

90

10

-25

150

3750

20-30

7

25

175

10

-15

105

1575

30-40

10

35

350

10

-5

50

250

40-50

12

45

540

10

5

60

300

50-60

8

55

440

10

15

120

1400

60-70

5

65

325

10

25

125

3125

Итого:

48

-

1920

-

-

610

10400

Средний объем инвестиций на одно предприятие составляет:

Размах вариации:

(для всех интервалов)

Среднее линейное отклонение:

Дисперсия:

Среднее квадратическое отклонение:

Коэффициент вариации:

(данная совокупность достаточно однородна, т.к. 17% < V < 33%);

Средний линейный коэффициент и среднее квадратическое отклонение показывают на сколько в среднем колеблется величина признака у единиц исследуемой совокупности (89% всех значений попадают в интервал ).

Коэффициент вариации не должен превышать 33%.

Модальное значение объема инвестиций:

Для интервального вариационного ряда необходимо сначала определить модальный интервал, в пределах которого находится мода (по наибольшей частоте), а затем определить значение модальной величины по формуле:

,

где - нижняя граница модального интервала,

i - величина интервала,

- частота модального интервала,

- частота интервала, предшествующего модальному,

- частота интервала, следующего за модальным.

Модальный интервал «40-50»

Модальным значением объема инвестиций является значение, равное 43,33 млн. руб.

Медианное значение объема инвестиций:

Для вычисления медианы из интервального ряда, сначала определяют медианный интервал, в пределах которого находится медиана:

Интервалы

Частота, f

Накопленная частота, S

10-20

6

6

20-30

7

13

30-40

10

23

40-50

12

35

50-60

8

43

60-70

5

48

-

48

-

Затем приближенное значение медианы по формуле:

,

Квартили

Вычисление квартилей аналогично вычислению медианы. Сначала необходимо определить место квартиля:

= 0,25*48=12; =24; =36.

Затем по накопленным частотам в дискретном ряду определяют численное значение квартиля. В интервальном ряду сначала определяют интервал, в котором находится квартиль, а затем его численное значение по формуле:

,

где - нижняя граница интервала, в пределах которого находится квартиль,

i - величина интервала,

- сумма накопленных частот до интервала, в котором находится квартиль,

- частота интервала, в котором находится квартиль.

25% строительных фирм имеют объем инвестиций менее 28,57 млн. руб.

75% строительных фирм имеют объем инвестиций менее 51,25 млн. руб., а 25% - более.

Задача №4.

Распределение коммерческих банков по величине кредитных вложений характеризуется следующими данными:

Величина кредитных вложений, млн. руб

до 100

100-150

150-200

200-250

250-300

300 и более

Итого

Число банков

8

10

15

20

16

13

Рассчитать характеристики ряда распределения банков по величине кредитных вложений: среднюю величину, дисперсию, среднее квадратическое отклонение, коэффициент вариации. Среднюю и десперсию рассчитать обычным способом и по способу моментов. Определить моду, медиану, квартили. Сделать выводы.

Решение:

Величина кредитных вложений, млн. руб

Число банков, f

Расчетные величины

S

Середина интерв.,

xf

до 100

8

8

75

600

-139,63

19496,54

155972,32

100-150

10

18

125

1250

-89,63

8033,54

80335,4

150-200

15

33

175

2625

-39,63

1570,54

23558,1

200-250

20

55

225

4500

10,37

107,54

2150,8

250-300

16

71

275

4400

60,37

3644,54

58312,64

300 и более

13

84

325

4225

110,37

12181,54

158360,02

Итого:

82

17600

478689,28

а) Средняя арифметическая величина:

Расчет средней по способу моментов применяется в вариационных рядах с равными интервалами:

,

где

- момент первого порядка,

к - величина интервала,

А - условный нуль, в качестве которого удобно использовать середину интервала, имеющего наибольшую частоту. Наибольшей частоте соответствует середина интервала 225, т.е. А = 225, величина интервала = 250 - 200 = 50.

Интервалы

Частота, f

Середина интервала, x

до 100

8

75

-150,00

-3

-24,00

72

100-150

10

125

-100,00

-2

-20,00

40

150-200

15

175

-50,00

-1

-15,00

15

200-250

20

225

0,00

0

0,00

0

250-300

16

275

50,00

1

16,00

16

300 и более

13

325

100,00

2

26,00

52

-

82

-

-17

195

Таким образом, средняя по способу моментов будет равна:

;

б) Дисперсия признака:

Расчет дисперсии по способу моментов проводится по формуле:

гдек - величина интервала,

А - условный нуль, в качестве которого удобно использовать середину интервала, имеющего наибольшую частоту,

- момент второго порядка.

в) Среднее квадратическое отклонение:

г) Коэффициент вариации:

(данная совокупность не однородна, т.к. V > 33%);

д) Модальное значение (интервал «200-250»):

е) Медиана:

Для вычисления медианы из интервального ряда, сначала определяют медианный интервал, в пределах которого находится медиана:

Интервалы

Частота, f

Накопленная частота, S

до 100

8

8

100-150

10

18

150-200

15

33

200-250

20

55

250-300

16

71

300 и более

13

84

-

82

-

Затем приближенное значение медианы по формуле:

ж) Квартили:

= 0,25*82=20,5; =41; =61,5.

Величина кредитных вложений банков: 25% - менее 158,33 млн. руб.

75% - менее 270,31 млн. руб., а 25% - более 270,31 млн. руб.

Задача №5.

Зависимость между объемом произведенной продукции и прибылью по 10 предприятиям одной из отраслей промышленности характеризуется следующими данными:

Определить:

1) Уравнение регрессии;

2) Тесноту связи;

3) Проверить модель на адекватность.

Сделать выводы (экономическая интерпретация параметров уравнения регрессии). Построить линию регрессии.

Номер предприятия

Объем реализованной продукции, млрд. руб., x

Прибыль, млрд. руб., y

1

5,2

24,2

2

4,8

23,8

3

5,8

24,7

4

4,7

23,7

5

4,7

23,9

6

4,8

24,0

7

5,0

24,3

8

5,0

24,2

9

5,4

24,5

10

6,0

24,6

Исходные данные

Расчетные значения

1

5,2

24,2

125,84

27,04

585,64

24,49

-0,29

0,0846

2

4,8

23,8

114,24

23,04

566,44

24,22

-0,42

0,1757

3

5,8

24,7

143,26

33,64

610,09

24,90

-0,20

0,0393

4

4,7

23,7

111,39

22,09

561,69

24,15

-0,45

0,2037

5

4,7

23,9

112,33

22,09

571,21

24,15

-0,25

0,0632

6

4,8

24,0

115,2

23,04

576,00

24,22

-0,22

0,0480

7

5,0

24,3

121,5

25,00

590,49

24,36

-0,05

0,0030

8

5,0

24,2

121

25,00

585,64

24,36

-0,16

0,0240

9

5,4

24,5

132,3

29,16

600,25

24,63

-0,13

0,0160

10

6,0

24,6

147,6

36,00

605,16

25,03

-0,43

0,1884

?

51,40

241,90

1244,66

266,10

5852,61

244,50

-2,60

0,8459

1) Рассматривая уравнение регрессии в форме линейной функции вида

,

найдем параметры данного уравнения (a и ):

Следовательно, уравнение регрессии имеет вид:

.

Подставляя в это уравнение последовательно значения х получим выравненные (теоретические) значения результативного показателя

,

следовательно можно считать, что полученные параметры посчитаны верно.

Построим линию регрессии:

2) Для измерения тесноты зависимости между у и х воспользуемся линейным коэффициентом корреляции (поскольку зависимость линейная):

.

Значение линейного коэффициента корреляции r = 0,92 (т.е. близкое к единице) характеризует не только меру тесноты зависимости вариации у от х, но и степень близости этой зависимости к линейной.

3) Проверка на адекватность (значимость).

При расчете коэффициента корреляции очень важно оценить его значимость. Оценка значимости (существенности) линейного коэффициента корреляции при n30 проводится на основе t-критерия Стьюдента. Для этого рассчитывается фактическое (расчетное) значение критерия:

В рассматриваемом примере

.

По таблицам значений -критерия Стьюдента при числе степеней свободы v = 10 - 2 = 8 и уровне значимости tтабл=2,306.

Поскольку фактическое (расчетное) t больше табличного, т.е.

,

то линейный коэффициент корреляции r = 0,92 считается значимым, а связь между х и у - реальной.

Параметры уравнения регрессии также необходимо проверить на значимость (существенность). Проверку значимости коэффициентов простой линейной регрессии (применительно к совокупностям, у которых ) осуществляют с помощью t-критерия Стьюдента. При этом вычисляют фактические (расчетные) значения t-критерия:

- для параметра :

,

- для параметра :

где

- среднее квадратическое отклонение результативного признака у от выравненных значений ;

- среднее квадратическое отклонение факторного признака х от общей средней.

По таблицам значений t-критерия Стьюдента при числе степеней свободы v = 10 - 2 = 8 и уровне значимости

= 2,306.

Поскольку

и для , и для , то считаем параметры уравнения регрессии значимыми.

Задача №6.

Производство продукции на предприятии характеризуется следующими данными:

Год

Производство продукции, тыс. т.

1999

225

2000

229

2001

231

2002

228

2003

235

2004

239

2005

236

2006

240

Определить:

аналитические показатели ряда динамики, в том числе средние (по средним показателям сделать выводы); проверить взаимосвязь цепных и базисных абсолютных приростов и темпов роста;

провести сглаживание ряда динамики методами укрупнения интервалов, «скользящей» средней, аналитическим методом, определить уравнение тренда, сделать выводы;

построить графики (фактические данные, линия тренда);

провести экстраполяцию ряда динамики для 2007 года (с вероятностью 0,95)

Решение:

1)Аналитические показатели.

Цепные абсолютные приросты:

2000 г. по отношению к 1999 г.:229 - 225 = 4 (тыс. т.);

2001 г. по отношению к 2000 г.:231 - 229 = 2 (тыс. т.);

2002 г. по отношению к 2001 г.:228 - 231 = - 3 (тыс. т.);

2003 г. по отношению к 2002 г.:235 - 228 = 7 (тыс. т.);

2004 г. по отношению к 2003 г.:239 - 235 = 4 (тыс. т.);

2005 г. по отношению к 2004 г.:236 - 239 = - 3 (тыс. т.);

2006 г. по отношению к 2005 г.:240 - 236 = 4 (тыс. т.).

Сумма цепных абсолютных приростов за 1999 - 2006 г.г. дает базисный абсолютный прирост за этот период: 4 + 2 + (- 3) + 7 + 4 + (- 3) + 4 = 15 (тыс. т.).

Базисные абсолютные приросты:

2000 г. по отношению к 1999 г.:229 - 225 = 4 (тыс. т.);

2001 г. по отношению к 1999 г.:231 - 225 = 6 (тыс. т.);

2002 г. по отношению к 1999 г.:228 - 225 = 3 (тыс. т.);

2003 г. по отношению к 1999 г.:235 - 225 = 10 (тыс. т.);

2004 г. по отношению к 1999 г.:239 - 225 = 14 (тыс. т.);

2005 г. по отношению к 1999 г.:236 - 225 = 11 (тыс. т.);

2006 г. по отношению к 1999 г.:240 - 225 = 15 (тыс. т.).

Разность базисных абсолютных приростов за 2006 г. и 2005 г. дает цепной абсолютный прирост за 2006 г.: 15 - 11 = 4 (тыс. т.).

Цепные темпы роста:

2000 г. по отношению к 1999 г.:229 / 225 = 1,018 или 101,8 %;

2001 г. по отношению к 2000 г.:231 / 229 = 1,008 или 100,8 %;

2002 г. по отношению к 2001 г.:228 / 231 = 0,987 или 98,7 %;

2003 г. по отношению к 2002 г.:235 / 228 = 1,031 или 103,1 %;

2004 г. по отношению к 2003 г.:239 / 235 = 1,017 или 101,7 %;

2005 г. по отношению к 2004 г.:236 / 239 = 0,987 или 98,7 %;

2006 г. по отношению к 2005 г.:240 / 236 = 1,017 или 101,7 %.

Произведение цепных темпов роста за 1999 - 2006 г.г. дает базисный темп роста за этот период: 1,018 * 1,008 * 0,987 * 1,031 * 1,017 * 0,987 * 1,017 = 1,07.

Базисные темпы роста:

2000 г. по отношению к 1999 г.:229 / 225 = 1,018 или 101,8 %;

2001 г. по отношению к 1999 г.:231 / 225 = 1,027 или 102,7 %;

2002 г. по отношению к 1999 г.:228 / 225 = 1,013 или 101,3 %;

2003 г. по отношению к 1999 г.:235 / 225 = 1,044 или 104,4 %.

2004 г. по отношению к 1999 г.:239 / 225 = 1,062 или 106,2 %;

2005 г. по отношению к 1999 г.:236 / 225 = 1,049 или 104,9 %;

2006 г. по отношению к 1999 г.:240 / 225 = 1,067 или 106,7 %.

Отношение базисных темпов роста за 2006 и 2005 г.г. дает цепной темп роста за 2006 г.: 1,067/1,049 = 1,017.

Цепные темпы прироста:

2000 г. по отношению к 1999 г.:101,8 - 100= 1,8 %;

2001 г. по отношению к 2000 г.:100,8 - 100 = 0,8 %;

2002 г. по отношению к 2001 г.:98,7 - 100 = -1,3 %;

2003 г. по отношению к 2002 г.:103,1 - 100 = 3,1 %.

2004 г. по отношению к 2003 г.:101,7 - 100 = 1,7 %;

2005 г. по отношению к 2004 г.:98,7 - 100 = - 1,3 %;

2006 г. по отношению к 2005 г.:101,7 - 100 = 1,7 %.

Базисные темпы прироста:

2000 г. по отношению к 1999 г.:101,8 - 100= 1,8 %;

2001 г. по отношению к 1999 г.:102,7 - 100 = 2,7 %;

2002 г. по отношению к 1999 г.:101,3 - 100 = 1,3 %;

2003 г. по отношению к 1999 г.:104,4 - 100 = 4,4 %.

2004 г. по отношению к 1999 г.:106,2 - 100 = 6,2 %;

2005 г. по отношению к 1999 г.:104,9 - 100 = 4,9 %;

2006 г. по отношению к 1999 г.:106,7 - 100 = 6,7 %.

Абсолютные значения 1% прироста (снижения)

в 2000 г.:229 / 100 = 2,29 (тыс. т.);

в 2001 г.:231 / 100 = 2,31 (тыс. т.);

в 2002 г.:228 / 100 = 2,28 (тыс. т.);

в 2003 г.:235 / 100 = 2,35 (тыс. т.);

в 2004 г.:239 / 100 = 2,39 (тыс. т.);

в 2005 г.:236 / 100 = 2,36 (тыс. т.);

в 2006 г.:240 / 100 = 2,4 (тыс. т.);

Среднегодовое производство промышленной продукции за 1999 - 2006 г.г. будет равно:

(тыс. т.);

Определим средний абсолютный прирост:

(тыс. т.);

или (тыс. т.),

то есть ежегодно в среднем производство промышленной продукции увеличивалось на 2,14 тыс. т.

Средний темп роста:

, или , где m = n - 1.

или 101 %

или 101 %.

Среднегодовой темп прироста составит:

,

т.е. ежегодно в среднем производство продукции увеличивалось на 1 %.

2) Аналитическое выравнивание (определение тренда)

Используем технику выравнивания ряда по уравнению тренда прямой:

,

где - параметры искомой прямой, t - время (год по порядку).

Параметры и находятся по формулам:

;

y

t

t2

y*t

225

1

1

225,00

274,38

-49,38

2438,38

229

2

4

458,00

315,89

-86,89

7549,87

231

3

9

693,00

357,4

-126,40

15976,96

228

4

16

912,00

398,91

-170,91

29210,23

235

5

25

1175,00

440,42

-205,42

42197,38

239

6

36

1434,00

481,93

-242,93

59014,98

236

7

49

1652,00

523,44

-287,44

82621,75

240

8

64

1920,00

564,95

-324,95

105592,50

1863,00

36

204

8469,00

3357,32

-1494,32

344602,06

;

,

то есть получили уравнение вида:

.

3) Фактические и расчетные значения можно представить в виде графика.

Сумма уровней эмпирического ряда совпадает с суммой теоретических значений выравненного ряда:

.

Параметры уравнения представляют собой среднегодовой выпуск продукции (а0) = 232,87 тыс. т. и ежегодный прирост (а1) = 41,51 тыс. т.

4) На основе найденного уравнения тренда определим предполагаемый выпуск продукции в 2007 году (t = 9):

(тыс. т.).

Определим границы интервалов по формуле:

=,

где - коэффициент доверия по распределению Стьюдента;

- остаточное среднее квадратическое отклонение от тренда, Остаточное среднее квадратическое отклонение определяется по формуле:

, n = 8, m = 2.

Вероятностные границы интервала прогнозируемого явления:

При доверительной вероятности, равной 0,95 (т.е. при уровне значимости =0,05), коэффициент доверия =2,306 (по таблице распределения Стьюдента), следовательно:

.

Зная точечную оценку выпуска продукции в 2007 году

определяем вероятностные границы интервала:

,

,

то есть с вероятностью 0,95 можно утверждать, что выпуск продукции в 2007 году будет не менее 53,83 тыс. т. и не более 1159,09 тыс. т.

Задача №7

В результате 10%-го выборочного обследования методом случайного бесповторного отбора коммерческих банков были получены следующие данные:

Группы банков по размеру прибыли, млн. руб.

Число банков, f

Расчетные величины

Середина интервала, х

xf

10-20

3

15

45

-18,85

1065,97

20-30

5

25

125

-8,85

391,61

30-40

10

35

350

1,15

13,23

40-50

8

45

360

11,15

994,58

Итого:

26

-

880

2465,39

С вероятностью 0,954 определить ошибку выборки среднего размера прибыли и границы, в которых находится средний размер прибыли в генеральной совокупности;

С вероятностью 0,954 определить ошибку доли банков, у которых размер прибыли выше 30 млн. руб. и границы, в которых будет находиться эта доля в генеральной совокупности.

Решение 1-й задачи:

а)

Среднюю ошибку выборки можно рассчитать по следующей формуле:

При вероятности p = 0,954 коэффициент доверия t = 2. Поскольку дана 10%-ная случайная бесповторная выборка, то:

,

где n - объем выборочной совокупности, N - объем генеральной совокупности.

Подставляем значения:

Предельную ошибку выборки определяем по формуле:

,

где t - коэффициент доверия, равный 2 для вероятности . Следовательно:

Доверительные интервалы генеральной средней определяются по формуле:

33,85 - 3,62 ? ? 33,85 + 3,62;

30,23 ? ? 37,47

Таким образом, на основании проведенного выборочного обследования с вероятностью 0,954 можно утверждать, что средний размер прибыли находится в пределах от 30,23 млн. руб. до 37,47 млн.руб.

Решение 2-й задачи:

2)

или 8,5%

= t · = 2 · 0,085 = 0,17 или 17%

Определим границы генеральной доли:

; 0,7 - 0,17 ? ? 0,7 + 0,17; 0,53 ? ? 0,87

53% ? ? 87%

На основании проведенного выборочного обследования с вероятностью 0,954 можно утверждать, что доля банков, у которых размер прибыли выше 30 млн.руб. будет находиться в пределах от 53% до 87%.

Задача №8.

По данным таблицы определить:

Индивидуальные индексы цен для каждого товара, индивидуальные индексы объема для каждого товара;

Агрегатные индексы цен, физического объема проданных товаров, товарооборота и абсолютные приросты (снижения) стоимости проданных товаров;

Проверить взаимосвязь индексов.

По результатам расчетов сделать соответствующие выводы.

Товары

Количество проданных товаров, тыс.

Цена за единицу товара, руб.

Январь

Февраль

Январь

Февраль

q0

q1

р0

р1

А, кг.

10

40

210

200

Б, л.

20

30

130

150

В, шт.

15

20

140

145

Решение:

1) индивидуальные индексы цен для каждого товара:

,

для товара А ip = 200/210 = 0,95; для товара Б ip = 150/130 = 1,15; для товара В ip = 145/140 = 1,036.

индивидуальные индексы объема каждого вида товара:

,

для товара А iq = 40/10 = 4; для товара Б iq = 30/20 = 1,5;

для товара В iq = 20/15 = 1,33.

2) Агрегатный индекс цен

или 102%

Индекс показывает, что в феврале по сравнению с январем цены на товары увеличились в среднем на 2%.

Абсолютный прирост (снижение) стоимости проданных товаров (из-за увеличения цен) определяется как разность числителя и знаменателя:

(тыс. руб.),

т.е. из-за повышения цен покупатели фактически перерасходовали 300 тыс. руб.

Индекс физического объема проданных товаров

или 222%

Индекс показывает, что в феврале по сравнению с январем физический объем реализации увеличился в среднем на 122%.

(тыс. руб.),

т.е. стоимость продукции из-за уменьшения физического объема продукции увеличилась на 8300 тыс. руб.

Индекс товарооборота:

или 226%

(тыс. руб.),

т.е. в результате изменения цен и физического объема продаж товарооборот увеличился на 126% или 8600 тыс. руб.

5) Проверка взаимосвязи индексов:

2,26 = 2,26

8 600 = 300+83008600 = 8600

Проверка взаимосвязи индексов показала, что все расчеты верны.

Задача №9

Партия роз, поступившая из Голландии, количеством 6600 штук была подвергнута выбраковке. Для этого было обследовано 300 роз, отобранных механическим способом отбора. Среди обследованных обнаружено 25 бракованных. С вероятностью 0,954 определить возможный размер убытка от некачественной транспортировки, если цена приобретенной розы 28 рублей.

Решение:

Среднюю ошибку выборки для доли можно рассчитать по следующей формуле:

При вероятности p = 0,954 коэффициент доверия t = 2. Доля поврежденных роз к общему количеству роз выборки:

,

Подставляем значения:

Предельная ошибка для доли:

= t · = 2 · 0,005 = 0,01 или 1%

Определим границы генеральной доли:

; 0,083 - 0,01 ? ? 0,083 + 0,01; 0,073 ? ? 0,093

7,3% ? ? 9,3%

инвестиция продукция прибыль цена

На основании проведенного выборочного обследования с вероятностью 0,954 можно утверждать, что доля поврежденных роз в генеральной совокупности 6600 штук, будет находиться в пределах от 7,3% до 9,3%. Подсчитаем возможный размер убытка: от 6600*0,073=481,8 шт. до 6600*0,093=613,8 шт. Возможный убыток составит: от 481,8*28=13490,4 руб. до 613,8*28=17186,4 руб., соответственно.

Размещено на Allbest.ru


Подобные документы

  • Расчет средних уровней производительности труда и показателей вариации. Понятие моды и медианы признака, построение полигона и оценка характера асимметрии. Методика выравнивания ряда динамики по прямой линии. Индивидуальные и агрегатные индексы объема.

    контрольная работа [682,4 K], добавлен 24.09.2012

  • Особенности, экономическая сущность и важность инвестиций. Классификация форм и видов инвестиций. Зависимость между видами инвестиций и уровнем риска. Основные объекты и субъекты инвестиционной деятельности. Этапы формирования инвестиционного процесса.

    реферат [128,2 K], добавлен 14.06.2010

  • Изучение зависимости между объемом произведенной продукции и валовой прибылью. Анализ сглаживания уровней ряда динамики с помощью трехчленной скользящей средней. Расчет индекса физического объема реализации, индекса цен и индекса стоимости товарооборота.

    контрольная работа [130,0 K], добавлен 22.03.2012

  • Сущность статистического анализа и выборочного метода. Правила группировки данных выборочного наблюдения по величине объема инвестиций. Графическое представление вариационного ряда (гистограмма, кумулята, кривая Лоренца). Расчет асимметрии и эксцесса.

    курсовая работа [70,7 K], добавлен 26.10.2011

  • Абсолютные, относительные величины. Медиана для интервального и дискретного ряда. Нахождение дисперсии способом моментов. Индексы количества и себестоимости. Основы корреляционного анализа. Статистический анализ социально-экономического развития общества.

    контрольная работа [108,7 K], добавлен 07.10.2012

  • Средние величины и показатели вариации. Агрегатные индексы физического объёма товарной массы. Группировка статистических данных. Индивидуальные и сводный индексы себестоимости единицы продукции. Показатели ряда динамики. Расчёт стоимости основных средств.

    контрольная работа [306,8 K], добавлен 04.06.2015

  • Индивидуальные и общие индексы. Агрегатные индексы. Средневзвешенные индексы. Базисные и цепные индексы. Индекс инновационной способности экономики (GCI). Использование общих индексов в экономическом анализе.

    курсовая работа [173,3 K], добавлен 03.01.2006

  • Построение рядов распределения и секторной диаграммы. Графическое изображение дискретного ряда. Показатели центра распределения, к которым относятся мода, медиана, средняя арифметическая. Вычисление основных показателей вариации и формы распределения.

    контрольная работа [355,3 K], добавлен 22.12.2013

  • Экономическая сущность инвестиций. Классификация инвестиций. Структура инвестиций. Оценка целесообразности инвестиций для всех субъектов предпринимательской деятельности. Эффективность инвестиционного процесса.

    реферат [12,6 K], добавлен 31.05.2007

  • Понятие качества продукции и проблема его измерения. Категории численности работников. Факторы роста объема продукции. Статистика производства, оплаты труда, основных фондов, оборудования, себестоимости. Основные показатели произведенной продукции.

    учебное пособие [278,9 K], добавлен 28.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.