Основные понятия и показатели статистики

Статистический признак, показатель и данные. Понятие объекта наблюдения. Расчет показателя структуры. Возрастающие и убывающие графики. Медиана в интервальном вариационном ряду. Анализ динамического ряда. Индивидуальный индекс себестоимости продукции.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 09.02.2011
Размер файла 299,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Новосибирский государственный аграрный университет ИЗОП

Факультет государственного и муниципального управления

Кафедра экономического анализа и статистики

Контрольная работа

по Статистике

Новосибирск 2011

Введение

Термин "статистика" появился в середине 18 века. Означал "государствоведение". Получил распространение в монастырях. Постепенно приобрел собирательное значение.

С одной стороны, статистика - это совокупность числовых показателей, характеризующих общественные явления и процессы (статистика труда, статистика транспорта).

С другой - под статистикой понимается практическая деятельность по сбору, обработке, анализу данных по различным направлениям общественной жизни.

С третьей стороны, статистика - это итоги массового учета, опубликованные в различных сборниках.

Наконец, в естественных науках статистикой называются методы и способы оценки соответствия данных массового наблюдения математическим формулам.

Таким образом, статистика - это общественная наука, изучающая количественную сторону массовых общественных явлений в неразрывной связи с их качественной стороной.

Что такое статистический признак, его отличие от статистического показателя и статистических данных.

Явления и процесс в жизни общества изучаются статистикой посредством статистических показателей.

Статистический показатель - это количественная оценка свойства изучаемого явления. Одной из важных категорий статистической науки является понятие признака. Признак - это характерное свойство изучаемого явления, отличающее его от других явлений. В разных отраслях статистики изучаются разные признаки. Таким образом, статистических признаков, т.е. свойств, качеств объектов наблюдения очень много. Все их многообразие принято делить на две большие группы: признаки качества и признаки количества.

Качественный признак (атрибутивный) - признак, отдельные значения которого выражаются в виде понятий, наименований. Количественный признак - признак, определенные значения которого имеют количественные выражения.

Статистические показатели могут быть объемными (численность населения, трудовых ресурсов) и расчетными ( средние величины). Они могут быть плановыми, отчетными и прогностическими (т.е. выступать в качестве прогнозных оценок). Статистические показатели следует отличать от статистических данных.

Статистические данные- это конкретные численные значения статистических показателей. Они всегда определенны не только качественно, но и количественно и зависят от конкретных условий места и времени.

Статистическое наблюдение - это сбор необходимых данных по явлениям, процессам общественной жизни. Но это не всякий сбор данных, а лишь планомерный, научно организованный, систематический и направленный на регистрацию признаков, характерных для исследуемых явлений и процессов.

От качества данных, полученных на первом этапе, зависят конечные результаты исследования.

Формы статистического наблюдения

Различают две основные формы статистического наблюдения - отчетность и специально организованное наблюдение.

Отчетность - это такая форма наблюдения, при которой предприятия, организации представляют в статистические и вышестоящие органы постоянные сведения, характеризующие их деятельность. Отчетность предоставляется по заранее определенной программе в строго определенные сроки и содержит важнейшие показатели, необходимые в процессе ежедневной работы.

Специально организованное наблюдение - такое наблюдение, которое организуется со специальной целью на определенную дату для получения данных, которые в силу различных причин не собираются статистической отчетности, а также с целью проверки данных статистической отчетности.

Что такое объект наблюдения

Чтобы провести статистическое наблюдение, нужно сформулировать его цель и основные гипотезы, которые должны быть проверены по данным наблюдения. Эта стадия работы определяет все последующие. На этой стадии работы дается определение объекта и единицы наблюдения, разрабатывается и утверждается программа наблюдения.

Объект наблюдения - совокупность предметов, явлений, у которых должны быть собраны сведения. При определении объекта указываются его основные отличительные черты (признаки). Всякий объект массовых наблюдений состоит из отдельных единиц, поэтому надо решить вопрос о том, каков тот элемент совокупности, который послужит единицей наблюдения.

Единица наблюдения - это составной элемент объекта, который является носителем признаков, подлежащих регистрации и основой счета.

Ценз - это определенные количественные ограничения для объекта наблюдения.

Так например, при переписи населения возникают следующие вопросы: учитывать ли тех граждан, которые длительное время работают за границей; как учитывать тех, кто находится в заключении, на службе в армии и т.д.? Все эти вопросы требуют всестороннего обсуждения. Их решение основано на том, что является конечным результатом.

Как рассчитать показатель структур

Показатель структуры - это относительная доля (или удельный вес) части в целом, выраженная в процентах.

Относительный показатель структуры (ОПС)

Показатель, характеризующий часть совокупности

Показатель, характеризующий совокупность в целом

Расчет относительных величин структуры за несколько периодов позволяет выявить структурные сдвиги.

Показатели структуры используют для выявления соотношения части и целого.

В статистике под структурой понимают совокупность единиц, обладающих определенной устойчивостью внутригрупповых связей при сохранении основных признаков, характеризующих эту совокупность как целое. Основные направления изучения структуры включают:

а) характеристику структурных сдвигов отдельных частей совокупности за два и более периодов;

б) обобщающую характеристику структурных сдвигов в целом по совокупности; Относительный показатель структуры (ОПС)=

Показатель, характеризующий часть совокупности

Показатель, характеризующий совокупность в целом Рассмотрим последовательно эти направления исследования.

Частные показатели структурных сдвигов. Анализ структуры и ее изменений базируется на относительных показателях структуры - долях и удельных весах, представляющих собой соотношение размеров частей и целого. При этом как частные, так и обобщающие показатели структурных сдвигов могут отражать либо «абсолютное» изменение структуры в процентных долях или долях единицы (кавычки показывают, что данные показатели являются абсолютными по методологии расчета, но не по единицам измерения), либо ее относительное изменение в процентах или коэффициентах.

Что такое возрастающие и убывающие графики (функции)

Познакомимся на примере с возрастанием и убыванием функции. На рисунке ниже изображен график функции, определенной на отрезке [-1;10]. Эта функция возрастает на отрезках [-1;3] и [4;5], и убывает на отрезках [3;4] и [5,10].

Рассмотрим еще один пример. Очевидно, что функция y=x2 убывает на промежутке (-?; 0] и возрастает на промежутке [0;?). Видно, что график этой функции при изменении x от -? до 0 сначала опускается до нуля, а затем поднимается до бесконечности.

Определение. Функция f возрастает на множестве P, если для любых x1 и x2 из множества P, таких, что x2>x1, выполнено неравенство f(x2) > f(x1).

Определение. Функция f убывает на множестве P, если для любых x1 и x2 из множества P, таких, что x2>x1, выполнено неравенство f(x2) < f(x1).

Иначе говоря, функция f называется возрастающей на множестве P, если большему значению аргумента из этого множества соответствует большее значение функции. Функция f называется убывающей на множестве P, если большему значению аргумента соответствует меньшее значение функции.

На рынке существует 3 вида трендов: возрастающий(восходящий), убывающий(нисходящий) и боковой тренд. Рассмотрим каждый тренд в отдельности.

Восходящий (возрастающий ) - это такая динамика цены, при которой на графике, каждый следующий пик выше предыдущего, то есть цены колебаний рынка повышаются. В случае повышательной тенденции рынка, линию тренда строят по экстремумам точек, т.е. по локальным минимумам цены. При возрастающем тренде важно иметь границу именно снизу, поскольку в этом случае делается ставка на повышение цены. Пересечение линии тренда, которая ограничивает цены снизу, может сигнализировать о том, что общий тренд на подъем цены либо ослабевает, либо вообще меняет направление.

Линия тренда, ограничивающая цены снизу, называется линией поддержки.

Поддержка - это такой уровень цены, ниже которого, цена не может снизиться, в силу психологических или макроэкономических факторов. В большинстве случаев, при достижении уровня поддержки, цена как бы отталкивается от нее, начиная расти.

Убывающий (нисходящий),- это такая динамика цены, при которой каждый последующий пик также ниже предыдущего. В этом случае линию тренда строят по локальным максимумам, то есть когда максимальные цены колебания рынка понижаются.

При существовании медвежьего тренда, мы ставим на понижение цены, следовательно здесь важно только ограничение цен сверху, так как чем ниже опустится цена, тем лучше для игрока. Пересечение, или пробитие линий сопротивления, предупреждает о возможности ослабления тренда или даже его смене. При убывающем тренде линия тренда, которая ограничивает цены сверху, называется линией сопротивления.

Сопротивление- это такой уровень цены, выше которого цена не может подняться. Как правило, при достижении уровня сопротивления, цена отталкивается от нее и начинает движение вниз.

Что такое макет таблицы

Статистическая таблица - это наиболее рациональная форма изложения и изображения статистической сводки. Таблица состоит из пересечения граф и строк.

Таблица - это статистическое предложение, которое имеет подлежащее и сказуемое.

Подлежащее таблицы - показывает, о чем идет речь в таблице.

Сказуемое таблицы - показывает, какими признаками характеризуется подлежащее.

Статистические таблицы внешне представляют определенного рода пересечения вертикальных граф и горизонтальных строк, которые образуют клетки, предназначенные для записи в них статистических данных.

При нанесении только строк и граф без их наименований и статистических данных получается графленая сетка, которая именуется скелетом таблицы. Если скелет таблицы заполнить наименованиями строк и граф, то получиться макет таблицы

Как рассчитать медиану в интервальном вариационном ряду

Медиана -- это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.

Для определения медианы в дискретном ряду при наличии частот сначала вычисляют полусумму частот , а затем определяют, какое значение варианта приходится на нее.

При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем -- значение медианы по формуле:

где:

-- искомая медиана

-- нижняя граница интервала, который содержит медиануРазмещено на http://www.allbest.ru/

-- величина интервала -- сумма частот или число членов ряда - сумма накопленных частот интервалов, предшествующих медианному -- частота медианного интервала

Возрастные группы

Число студентов

Сумма накопленных частот

До 20 лет

346

346

20-25

872

1218

25-30

1054

2272

30-35

781

3053

35-40

212

3265

40-45

121

3386

45 лет и более

76

3462

Решение:

В данном примере модальный интервал находится в пределах возрастной группы 25-30 лет, так как на этот интервал приходится наибольшая частота (1054).

Рассчитаем величину моды:

Это значит что модальный возраст студентов равен 27 годам.

Вычислим медиану. Медианный интервал находится в возрастной группе 25-30 лет, так как в пределах этого интервала расположена варианта, которая делит совокупность на две равные части (Уfi/2 = 3462/2 = 1731). Далее подставляем в формулу необходимые числовые данные и получаем значение медианы:

Это значит что одна половина студентов имеет возраст до 27,4 года, а другая свыше 27,4 года.

Кроме моды и медианы могут быть использованы такие показатели, как квартили, делящие ранжированный ряд на 4 равные части, децили -10 частей и перцентили -- на 100 частей.

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд.

Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).

Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается

где k - число вариантов значений признака

Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.

Частоты ряда f могут заменяться частотами w, выраженными в относительных числах (долях или процентах). Они представляют собой отношения частот каждого интервала к их общей сумме, т.е.:

При построении вариационного ряда с интервальными значениями прежде всего необходимо установить величину интервала i, которая определяется как отношение размаха вариации R к числу групп m.

(7.2)

где R = xmax - xmin ; m = 1 + 3,322 lgn (формула Стерджесса); n - общее число единиц совокупности.

Какие методы выявления тренда используются при анализе динамических рядов.

Прежде чем применить методы математического анализа для вычисления параметров уравнения тренда, необходимо выявить тип тенденции, а эта задача не является чисто математической. Наличие колебаний уровней крайне усложняет выявление типа тенденции и требует всестороннего подхода к этой проблеме, прежде всего качественного изучения характера развития объекта. При этом нужно дать ответ на такие вопросы:

1. Были ли условия развития объекта достаточно однородными в изучаемый период?

2. Каков характер действия основных факторов развития?

3. Не произошло ли качественное, существенное изменение условий развития объекта внутри изучаемого периода времени?

Если, например, часть периода предприятие работало по старой технологии, а затем произошло техническое перевооружение - введены новые цехи, поточные линий, то единой тенденции показателей за весь период не будет, скорее всего нужна «периодизация» ряда, т.е. его дробление на отдельные подпериоды: до реконструкции, во время таковой (если она длительна) и после освоения новой технологии.

Рассмотрим некоторые основные типы уравнений тренда, выражающие те или иные качественные свойства развития.

А. Линейная форма тренда:

у? = а + bt,

где у? -- уровни, освобожденные от колебаний, выравненные по прямой;

а - начальный уровень тренда в момент или период, принятый за начало отсчета времени t;

b - среднегодовой абсолютный прирост (среднее изменение за единицу времени); константа тренда.

Линейный тренд хорошо отражает тенденцию изменений при действии множества разнообразных факторов, изменяющихся различным образом по разным закономерностям. Равнодействующая этих факторов при взаимопогашении особенностей отдельных факторов (ускорение, замедление, нелинейность) часто выражается в * примерно постоянной абсолютной скорости изменения, т.е. в прямолинейном тренде. Таковы, например, тенденции динамики урожайности для масштаба области, республики, крупного региона, страны в целом.

Б. Параболическая форма тренда:

?у = а + bt + сt2,

где с - квадратический параметр, равный половине ускорения; константа параболического тренда. Остальные обозначения прежние.

Параболическая форма тренда выражает ускоренное или замедленное изменение уровней ряда с постоянным ускорением. Такой характер развития можно ожидать при наличии важных факторов прогрессивного развития (прогрессирующее поступление нового высокопроизводительного оборудования, увеличение среднесуточного прироста живого веса поросят с возрастом и т.п.). Ускоренное возрастание может происходить в период после снятия каких-то сдерживающих развитие преград - ограничений в распределении дохода, в уровне оплаты труда, при повышении цены реализации на дефицитную продукцию.

Параболическая форма тренда с отрицательным ускорением (с < 0) приводит со временем не только к приостановке роста уровня, но и к его снижению со все большей скоростью. Такой характер развития может быть свойствен производству устаревшей продукции, ликвидируемой отрасли сельского хозяйства на предприятии (ферме) и т.п.

Парабола 2-го порядка (квадратическая) имеет либо максимум (если с < 0 и b > 0), либо минимум (b < 0, с > 0). Для нахождения экстремума производную параболы по времени t следует приравнять нулю и решить полученное уравнение относительно t.

В. Экспоненциальная форма тренда:

у??ak?

где k -- темп изменения в разах; константа тренда. Если k > 1, экспоненциальный тренд выражает тенденцию ускоренного и все более ускоряющегося возрастания уровней. Такой характер свойствен, например, размножению организмов при отсутствии ограничения со стороны среды: кормов, пространства, хищников, болезней. При росте по экспоненте абсолютный прирост пропорционален достигнутому уровню. Так росло население Земли в эпоху «демографического взрыва» в XX столетии; сейчас этот период заканчивается и темп роста населения стал уменьшаться. Если бы он остался на уровне 1960 - 1970 гг. т. е. около 2% прироста в год от 1985 г., когда население составило 5 млрд чел., то к 2500 г. население Земли достигло бы уровня: 5 млрд·1,02515 = 134 трлн 286 млрд человек; на 1 человека приходилось бы примерно 1 м2 всей площади суши. Ясно, что рост любого объекта по экспоненциальному закону может продолжаться только небольшой исторический период времени, ибо ресурсы для любого процесса развития всегда встретят ограничения.

При k < 1 экспоненциальный тренд означает тенденцию постоянно все более замедляющегося снижения уровней динамического ряда. Такая тенденция может быть присуща динамике трудоемкости продукции, удельных затрат топлива, металла на единицу полезного эффекта (на 1 кВт ч, на 1 м2 жилой площади и т.д.) при технологическом прогрессе; экстремальных точек экспонента не имеет.

Г. Логарифмическая форма тренда:

у? = а + blogt.

Логарифмический тренд пригоден для отображения тенденции замедляющегося роста уровней при отсутствии предельного возможного значения. Замедление роста становится все меньше и меньше, и при достаточно большом t логарифмическая кривая становится малоотличимой от прямой линии. Логарифмический тренд пригоден для отображения роста спортивных достижений (чем они выше, тем труднее их улучшать), роста производительности агрегата по мере его освоения и совершенствования, повышения продуктивности скота или вообще эффективности системы при ее совершенствовании без качественных, коренных преобразований. Экстремума логарифмическая кривая не имеет.

Д. Тренд в форме степенной кривой:

y? = ath,

где b - константа тренда.

При b = 1 имеем линейный тренд, b = 2 - параболический и т.п. Степенная форма - гибкая, пригодная для отображения изменений с разной мерой пропорциональности изменений во времени. Жестким условием является обязательное прохождение через начало координат: при t = 0, у = 0. Можно усложнить форму тренда: у? = а + th или у? = а + cth, но эти уравнения нельзя логарифмировать, трудно вычислять параметры, и они крайне редко применяются.

Е. Гиперболическая форма тренда:

y=a+b t

Если b > 0, гиперболический тренд выражает тенденцию замедляющегося снижения уровня, стремящегося к пределу а. Если b < 0, тренд выражает тенденцию замедляющегося роста уровней, стремящихся в пределе к а. Следовательно, гиперболическая форма тренда подходит для отображения тенденции, процессов, ограниченных предельным значением уровня (предельным коэффициентом полезного действия двигателя, пределом 100%-ной грамотности населения и т.п.).

Ж. Логистическая форма тренда:

y= ymax - ymin +1 e +1

Логистическая кривая имеет форму латинской буквы s положенной на бок, отчего еще называется эсобризной кривой. Она имеет два перегиба: от ускоряющегося роста к равномерному (вогнутость) и от равномерного роста посреди периода к замедляющемуся (выпуклость). Она подходит для отображения развития в течение длительного периода, проходящего все фазы, например процесса насыщения потребителей каким-то новым товаром, скажем, телевизорами: сначала медленный, но все ускоряющийся рост доли семей, имеющих телевизор, затем рост равномерный (примерно от 30 -40% семей до 70 - 80%). Затем рост доли семей, имеющих телевизор, замедляется по мере приближения доли к 100%.

Как провести анализ динамического ряда на наличие тренда с помощью метода средних.

Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.

Задача состоит в том, чтобы выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения интервалов, скользящей средней и аналитического выравнивания. Одним из наиболее простых методов изучения основной тенденции в рядах динамики является метод укрупнения интервалов. Он основан на укрупнении периодов времени, к которому относится наблюдение.

Важной управленческой задачей, решаемой с использованием рядов динамики, является определение общей тенденции развития. На развитие явления во времени могут оказывать влияние различные по своему характеру и силе воздействия факторы. Одни из них оказывают более или менее постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным. При изучении в рядах динамики общей тенденции развития применяются различные приемы и методы. Одним из наиболее элементарных способов изучения общей тенденции в ряду динамики является укрупнение интервалов. Этот способ основан на укрупнении периодов, к которым относятся уровни ряда динамики.

Выявление общей тенденции ряда динамики можно произвести путем сглаживания ряда динамики с помощью метода скользящей средней. Сущность этого приема состоит в том, что по исходным уровням ряда (эмпирическим данным) определяют расчетные (теоретические) уровни. При этом посредством осреднения эмпирических данных индивидуальные колебания погашаются и общая тенденция развития явления выражается в виде некоторой плавной линии (теоретические уровни).

Основное условие применения этого метода состоит в вычислении звеньев подвижной (скользящей) средней из такого числа уровней ряда, которое соответствует длительности наблюдаемых в ряду динамики циклов.

Недостатком способа сглаживания рядов динамики является то, что полученные средние не дают теоретических закономерностей (моделей) рядов, в основе которых лежала бы математически выраженная закономерность и это позволяло бы не только выполнить анализ, но и прогнозировать динамику ряда на будущее.

Значительно более совершенным приемом изучения общей тенденции в рядах динамики является аналитическое выравнивание. При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены усредненно с помощью определенных математических функций. Путем теоретического анализа выявляется характер развития явления и на этой основе выбирается то или иное математическое выражение типа изменения явления: по прямой, по параболе второго порядка, показательной (логарифмической) кривой и т.п.

Как провести анализ динамического ряда на наличие тренда при помощи фазачастотного критерия знаков первой разрядности.

Ряды динамики - статистические данные, отображающие развитие во времени изучаемого явления. Их также называют динамическими рядами, временными рядами.

В каждом ряду динамики имеется два основных элемента :

1) показатель времени t ;

2) соответствующие им уровни развития изучаемого явления y;

В качестве показаний времени в рядах динамики выступают либо

определенные даты (моменты), либо отдельные периоды (годы , кварталы, месяцы, сутки).

Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами .

Проверка на наличие тренда в ряду динамики может быть осуществлена по нескольким критериям .

1) Фазочастотный критерий знаков первой разности (критерий Валлиса и Мура). Суть его заключается в следующем : наличие тренда в динамическом ряду утверждается в том случае, если этот ряд не содержит либо содержит в приемлемом количестве фазы - изменение знака разности первого порядка (абсолютного цепного прироста).

2) Метод средних . Изучаемый ряд динамики разбивается на несколько интервалов (обычно на два) , для каждого из которых определяется средняя величина () . Выдвигается гипотеза о существенном различии средних . Если эта гипотеза принимается , то признается наличие тренда.

3) Критерий Кокса и Стюарта . Весь анализируемый ряд динамики разбивают на три равные по числу уровней группы (в том случае , когда число уровней ряда не делится на три , недостающие уровни надо добавить) и сравнивают между собой уровни первой и последней групп .

4) Метод серий . По этому способу каждый конкретный уровень временного ряда считается принадлежащим к одному из двух типов : например , если уровень ряда меньше медианного значения , то считается , что он имеет тип А , в противном случае - тип В. Теперь последовательность уровней выступает как последовательность типов . В образовавшейся последовательности типов определяется число серий (серия - любая последовательность элементов одинакового типа , с обоих сторон граничащая с элементами другого типа).

Если в ряду динамики общая тенденция к росту или снижению отсутствует , то количество серий является случайной величиной , распределенной приближенно по нормальному закону (для n > 10) . Следовательно , если закономерности в изменениях уровней нет , то случайная величина R оказывается в доверительном интервале

статистический показатель график ряд индекс

Что такое и как рассчитать индивидуальный индекс себестоимости

Индекс (лат. index) -- это относительная величина, показывающая, во сколько раз уровень изучаемого явления в данных условиях отличается от уровня того же явления в других условиях. Различия условий могут проявляться во времени (динамические индексы), в пространстве (территориальные индексы) и в выборе в качестве базы сравнения какого-либо условного уровня.

По охвату элементов совокупности (ее объектов, единиц и их признаков) различают индексы индивидуальные (элементарные) и сводные (сложные), которые, в свою очередь, делятся на общие и групповые.

В статистике под индексом понимается относительный показатель, который выражает соотношение величин какого-либо явления во времени, в пространстве, или сравнение фактических данных с любым эталоном.

С помощью индексов решаются следующие задачи:

измерение динамики социально-экономического явления за два периода времени и более;

измерение динамики среднего экономического показателя;

измерение соотношения показателей по разным регионам;

определение степени влияния изменений значений одних показателей на динамику других.

Индивидуальный индекс себестоимости единицы продукции показывает изменение себестоимости одного определенного вида продукции в текущий период по сравнению с базисным:

Производительность труда может быть измерена количеством продукции, производимой в единицу времени (v), или затратами рабочего времени на производство единицы продукции (t). Поэтому можно построить:

индекс количества продукции, произведенной в единицу времени

индекс производительности труда по трудовым затратам

Как проводится случайный повторный отбор

Случайный отбор -- это не беспорядочный отбор, а отбор при соблюдении определенной методики, например, осуществление отбора по жребию, применение таблицы, случайных чисел и т.д.

Второй принцип отбора -- обеспечение достаточного числа отобранных единиц -- тесно связан с понятием репрезентативности выборки. Поскольку любое выборочное наблюдение проводится с определенной целью и четко сформулированными конкретными задачами, то понятие репрезентативности как раз и связано с целью и задачами исследования. Отобранная из всей изучаемой совокупности часть должна быть репрезентативной, прежде всего, в отношении тех признаков, которые изучаются или оказывают существенное влияние на формирование сводных обобщающих характеристик.

Простым случайным называют такой отбор, при котором объекты извлекают по одному из всей генеральной совокупности. Осуществить простой отбор можно различными способами. Например, для извлечения п объектов из генеральной совокупности объема N поступают так: выписывают номера от 1 до N на карточках, которые тщательно перемешивают, и наугад вынимают одну карточку; объект, имеющий одинаковый номер с извлеченной карточкой, подвергают обследованию; затем карточку возвращают в пачку и процесс повторяют, т. е. карточки перемешивают, наугад вынимают одну из них и т. д.

Так поступают п раз; в итоге получают простую случайную повторную выборку объема п.

Если извлеченные карточки не возвращать в пачку, то выборка является простой случайной бесповторной.

При большом объеме генеральной совокупности описанный процесс оказывается очень трудоемким. В этом случае пользуются готовыми таблицами «случайных чисел», в которых числа расположены в случайном порядке. Для того чтобы отобрать, например, 50 объектов из пронумерованной генеральной совокупности, открывают любую страницу таблицы случайных чисел и выписывают подряд 50 чисел; в выборку попадают те объекты, номера которых совпадают с выписанными случайными числами. Если бы оказалось, что случайное число таблицы превышает число N, то такое случайное число пропускают. При осуществлении бесповторной выборки случайные числа таблицы, уже встречавшиеся ранее, следует также пропустить.

Что такое параметр а0

Наиболее разработанной в теории статистики является методология так называемой парной корреляции, рассматривающая влияние вариации факторного анализа х на результативный признак у и представляющая собой однофакторный корреляционный и регрессионный анализ. При изучении связи экономических показателей производства (деятельности) используют различного вида уравнения прямолинейной и криволинейной связи. Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения однофакторной (парной) линейной корреляционной однофакторной (парной) линейной корреляционной связи имеет вид:

? = a0 + a1x ,

где ? - теоретические значения результативного признака, полученные по уравнению регрессии; a0 , a1 - коэффициенты (параметры) уравнения регрессии.

Поскольку a0 является средним значением у в точке х=0, экономическая интерпретация часто затруднена или вообще невозможна.

Параметр а0 характеризует условное значение результативного признака при нулевом значении факторного признака (условный объем продаж лука при нулевой цене на него).

Параметры уравнения регрессии оцениваются на вероятностную надежность. Для этого величина каждого из параметров сравнивается с соответствующей средней ошибкой выборки, то есть , где - расчетное значение критерия Стьюдента, а - остаточное среднеквадратическое отклонение, характеризующее вариацию эмпирических значений результативного признака относительно соответствующих им теоретических значений (вариацию около линии регрессии).

Заключение

Во всем мире возрастает интерес к статистике. В нашей стране это внимание тем более обострено в связи с осуществлением экономических реформ, затрагивающих интересы всех людей. В статистических данных, отображающих развитие отдельных сторон жизни общества и служащих информационной базой принятия управленческих решений, каждый из нас ищет результаты реформ.

Одним из непременных условий правильного восприятия и тем более практического использования статистической информации, квалифицированных выводов и обоснованных прогнозов является знание статистической методологии изучения количественной стороны социально-экономических явлений, природы массовых статистических совокупностей, значения и познавательных свойств показателей статистики, условий их применения в экономическом исследовании.

В настоящее время перед статистической наукой встают актуальные проблемы дальнейшего совершенствования системы показателей, приемов и методов сбора, обработки, хранения и анализа статистической информации. Это имеет важное значение для развития и повышения эффективности автоматизированных систем управления.

Список литературы

1. Громыко Г.Л. Статистика. М. 1981.

2. Гусарев В.М. Теория статистики. - М.: ЮНИТИ, 1998.

3. Елисеева И.И., ЮзбашевМ.М. Общая теория статистики: учебник для вузов Финансы и статистика, М 1995.

4. Елисеева И.И., Егорова И.И. Статистика: учебник М 2003

5. Елисеева И.И., Юзбашев М.М. Общая теория статистики М 2004

6. Октябрьский П.Я. Статистика: учебник М 2003

9. Иванова Ю.Н.Экономическая статистика: Учебник М.: ИНФРА-М, 1998.

Размещено на Allbest.ru


Подобные документы

  • Понятие моды и медианы как типичных характеристик, порядок и критерии их определения. Нахождение моды и медианы в дискретном и интервальном вариационном ряду. Квартили и децили как дополнительные характеристики вариационного статистического ряда.

    контрольная работа [22,0 K], добавлен 11.09.2010

  • Абсолютные, относительные величины. Медиана для интервального и дискретного ряда. Нахождение дисперсии способом моментов. Индексы количества и себестоимости. Основы корреляционного анализа. Статистический анализ социально-экономического развития общества.

    контрольная работа [108,7 K], добавлен 07.10.2012

  • Изучение зависимости между электровооруженностью труда и выработкой продукции. Расчет средней урожайности зерновых. Определение абсолютного прироста, темпов роста и прироста уровней динамического ряда. Данные о движении кадров ремонтного предприятия.

    контрольная работа [133,4 K], добавлен 17.10.2010

  • Формулы определения средних величин интервального ряда - моды, медианы, дисперсии. Расчет аналитических показателей рядов динамики по цепной и базисной схемам, темпов роста и прироста. Понятие сводного индекса себестоимости, цен, затрат и товарооборота.

    курсовая работа [218,5 K], добавлен 27.02.2011

  • Построение ранжированного ряда предприятий по величине объема продукции. Определение абсолютных, цепных и базисных приростов динамического ряда, выполнение экстраполяции его уровней по уравнению тренда на предстоящие года. Расчет общих индексов цен.

    контрольная работа [90,2 K], добавлен 20.10.2010

  • Общая теория статистики как одна из основных дисциплин в системе экономического образования. Расчет и анализ обобщающих статистических показателей. Статистические методы, их возможности и границы применения. Индивидуальные индексы потребительских цен.

    курсовая работа [1,2 M], добавлен 16.11.2010

  • Методические рекомендации для решения задач по общей теории статистики. Формулы для вычисления моды. Расчет медианы для интервального ряда. Определение средней арифметической простой, средней геометрической. Расчет индекса структурных сдвигов.

    методичка [101,6 K], добавлен 22.03.2010

  • Средние затраты на 1 руб. произведенной продукции в целом по ЗАО. Структуры численности рабочих. Зависимость между урожайностью и сортом винограда в одном из хозяйств. Общий индекс затрат на производство. Уровень ряда динамики для интервального ряда.

    контрольная работа [128,3 K], добавлен 26.07.2010

  • Основные данные для расчета статистических показателей предприятия. Ассортимент продукции, индексы цен физического объёма продукции. Показатели продукции, численности и движения персонала, производительности труда. Финансовые результаты и рентабельность.

    курсовая работа [80,7 K], добавлен 02.06.2011

  • Статистический показатель, его определение, сущность, характеристика, виды и признаки. Абсолютные показатели как количественное выражение признаков статистических явлений, их качественная определенность. Расчет уровня смертности с помощью статистики.

    контрольная работа [21,3 K], добавлен 23.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.